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Why you should care: an example (a)
See https://en.wikipedia.org/wiki/2018_Caracas_drone_attack

https://en.wikipedia.org/wiki/2018_Caracas_drone_attack
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Why you should care: an example (b)
See https://www.youtube.com/watch?v=ruWC10AW87E

https://www.youtube.com/watch?v=ruWC10AW87E
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About me

• Scientific director digitalization, Prof. AI, computer scientist, 18F alumni

• 15 years corporate experience (software development)

• 15 years research experience (AI, machine learning)

• 10 years leadership experience (corporate / non-profit /public sector)
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1. What is AI / ML / Data Science?

Sources: Kulina et al., «A survey on Machine Learning-based Performance Improvement of Wireless Networks: PHY, MAC and Network layer», 2020

https://www.youtube.com/watch?v=umRdt3zGgpU, https://www.muni.org/Departments/traffic/Pages/Data.aspx

https://www.youtube.com/watch?v=umRdt3zGgpU
https://www.muni.org/Departments/traffic/Pages/Data.aspx
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What is AI?

"The exciting new effort to make 
computers think... machines with minds, 

in the full and literal sense." 
(Haugeland, 1985)

"[The automation of] activities that we 
associate with human thinking, activities 
such as decision-making, problem solving, 

learning..." (Bellman, 1978)

"The study of mental faculties through
the use of computational models." 

(Charniak and McDermott, 1985)

"The study of the computations that 
make it possible to perceive, reason, 

and act." (Winston, 1992)

"The art of creating machines that 
perform functions that require 

intelligence when performed by people." 
(Kurzweil, 1990)

"The study of how to make computers 
do things at which, at the moment, 

people are better." 
(Rich and Knight, 1991)

"Computational Intelligence is the study 
of the design of intelligent agents." 

(Poole et al., 1998)

"AI... is concerned with intelligent 
behaviour in artefacts." (Nilsson, 1998)
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What belongs to AI?
An incomplete view of its subdisciplines

AI

Methods

Symbolic

Search

Logic

Knowledge 
representation

Planning

Sub-symbolic

Statistical 
learning

Neural 
networks

Applications

Computer vision

Image 
classification

Object 
detection

Semantic 
segmentation

Speech processing

Speech 
recognition

Voice 
recognition

NLP

Text 
analytics

Machine 
translation

Chatbots

Robotics

Perception

Control

Deep learning
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What can AI do today?

1. Play a decent game of table tennis

2. Drive safely along a curving mountain road

3. Drive safely along Technikumstrasse Winterthur

4. Buy a week's worth of groceries on the web

5. Buy a week's worth of groceries at Migros

6. Play a decent game of bridge

7. Discover and prove a new mathematical theorem

8. Design and execute a research program in molecular biology

9. Write an intentionally funny story

10. Give competent legal advice in a specialized area of law

11. Translate spoken English into spoken Swedish in real time

12. Converse successfully with another person for an hour

13. Perform a complex surgical operation

14. Unload any dishwasher and put everything away

15. Compete in the game show Jeopardy!

16. Write clickbait articles fully automatized

ok

ok

ok (only since recently)

ok

no

ok

not completely

not completely

no

ok

ok

no

not completely

no

ok

ok
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Example: What AI can and cannot do in 

computer vision

https://www.cultofmac.com/495088/avoid-potentially-deadly-ai-app/

https://www.cultofmac.com/495088/avoid-potentially-deadly-ai-app/
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But: «Drone Race: Human vs. Machine»
See https://www.youtube.com/watch?v=SrqrGweKQAU

https://www.youtube.com/watch?v=SrqrGweKQAU
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Why is AI hot today?
The ImageNet Competition

1000 categories

1       Mio. examples …

A. Krizhevsky is first to use a «Deep 

Neural Network» (CNN)

2015: computers have lerned to «see»

4.95% Microsoft (February 06) 

→ super-human (5.10%)

4.80% Google (February 11)

4.58% Baidu (May 11)

3.57% Microsoft  (December 10)
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Idea: Add «depth» to learn features automatically

(0.2, 0.4, …)

Container ship

Tiger

Classical image

processing

(0.4, 0.3, …)

Feature extraction

(SIFT, SURF, LBP, HOG, etc.)

Container ship

Tiger

Using Convolutional

Neual Networks

(CNNs)

Takes raw pixels in, learns

features automatically!

Classification

(SVM, neural network, etc.)

…

…

Automation of classical processes based on (high-

dimenional) sensory input
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Generierte Sprache 

«aus Texteingabe»

Generierte Musik 

«ohne Inhaltsvorgabe»
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…and also with text!
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«Die verblüffenden athletischen Leistungen 

von Quadrocoptern»
See https://www.youtube.com/watch?v=w2itwFJCgFQ

https://www.youtube.com/watch?v=w2itwFJCgFQ
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Foundation
Inductive supervised learning

Assumption
• A model fitted to a sufficiently large sample 

of data…

• …will generalize to unseen data

Method
• Searching for optimal parameters of a 

function…

• …such that all sample inputs (images) are

mapped to the correct outputs (e.g., «car»)

Source: http://lear.inrialpes.fr/job/postdoc-large-scale-classif-11-img/attribs_patchwork.jpg

𝒇 𝒙 = 𝒚

http://lear.inrialpes.fr/job/postdoc-large-scale-classif-11-img/attribs_patchwork.jpg
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Search for optimal parameters of a function?

neuron neural net

features (e.g., pixel)

Tunable parameters

Threshold / decision

Result (interpreted as e.g. «car»)

𝑦
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«Meet the dazzling flying machines of the future»
See https://www.youtube.com/watch?v=RCXGpEmFbO

https://www.youtube.com/watch?v=RCXGpEmFbO
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2. AI for Security

Source: https://eu.usatoday.com/story/tech/2019/11/19/police-technology-and-surveillance-politics-of-facial-recognition/4203720002/

https://eu.usatoday.com/story/tech/2019/11/19/police-technology-and-surveillance-politics-of-facial-recognition/4203720002/
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Cybersecurity
See https://securityintelligence.com/posts/how-ai-makes-jobs-in-cybersecurity-less-stressful/

https://securityintelligence.com/posts/how-ai-makes-jobs-in-cybersecurity-less-stressful/
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But: Artificial intelligence vs. natural stupidity
…or the difficulty of “optimizing” a complex system
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Face recognition in the public
See https://www.vice.com/en/article/n7ve4q/varanasi-india-using-facial-recognition-surveillance-technology

https://www.vice.com/en/article/n7ve4q/varanasi-india-using-facial-recognition-surveillance-technology


Zürcher  Fachhochschule
24

Biometric access
See https://www.munich-airport.de/kontaktlos-reisen-9912987

https://www.munich-airport.de/kontaktlos-reisen-9912987
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But: Biases through purely statistical learning



Zürcher  Fachhochschule
26

…introduces many problems for biometrics

Source: https://www.aclum.org/en/news/facial-recognition-technology-falsely-identifies-famous-athletes

https://www.aclum.org/en/news/facial-recognition-technology-falsely-identifies-famous-athletes
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3. Security threats through AI
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Inherent existential risks?

Assumption: AI systems will gain general intelligence 

eventually

Conclusion: Any AI system optimizing a fixed objective will 

eventually become destructive to human interests

➔
➔

But:
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Risks through malicious use of AI?

• AI per definition is a “dual use technology”
→ see report by Brundage et al., 2018

• Still: “natural stupidity” is the more imminent threat

• AI ethics and explainable AI became mainstream 

and hot research topics in the recent years – not 

because of intolerable risks, but because of: 
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Security-relevant properties of AI

What enables potential threats by AI systems?
• Dual-use area of technology: AI systems and the knowledge of how to design them can be put 

toward both civilian and military uses, and more broadly, toward beneficial and harmful ends.

• Efficiency and scalability: “efficient” if it can complete a certain task more quickly or cheaply than a 

human could in production; “scalable” if increasing the computing power or making copies would allow it 

to complete many more instances of the task.

• Potential to exceed human capabilities: there appears to be no principled reason why currently 

observed human-level performance is the highest level of performance achievable.

• Potential to increase anonymity and psychological distance: AI systems can allow their users 

who would otherwise be performing the task to retain their anonymity and experience a greater degree 

of psychological distance from the people (victims) they impact.

• Rapid diffusion: it is easy to gain access to software and relevant scientific findings in AI.

• Novel unresolved vulnerabilities: e.g., poisoning attacks (introducing training data that causes a 

learning system to make mistakes), adversarial examples (inputs designed to be misclassified by 

machine learning systems ), and the exploitation of flaws in the design of autonomous systems’ goals.
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Scenario 1/3: AI expands existing threats

Expandable (by means of efficiency, scalability, and ease of diffusion)

• Set of actors who can carry out the attack

• Rate at which these actors can carry it out

• Set of plausible targets

• Willingness of actors to carry out certain attacks (by means of increased distance)

Example: spear phishing attack
• Definition: a personally targeted phishing 

attack (fooling by building a superficially 

trustworthy facade) using information 

specifically relevant to the target

• Usually too expensive and labor-intensive, but 

likely automatable in the future (data collection, 

data synthesis)
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Scenario 2/3: AI introduces new threats

Otherwise infeasible attacks (by means of being unbounded by human capabilities) 

• Example: disinformation by impersonating others using voice/image/text synthesis

• Compare https://lyrebird.ai/

Novel vulnerabilities (by means of deployed systems with known issues)

• Example: cause self-driving cars to crash by presenting them with adversarial examples

Eykholt et al., „Robust Physical-World Attacks on Deep Learning Visual Classification“, CVPR 2018

https://lyrebird.ai/
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Example for novel vulnerabilities
Adversarial attacks and counter measures

Adversarial examples 
• Created by optimizing (training on) the input image for an expected (wrong) output

• Can be detected using average local spatial entropy of feature response maps

Amirian, Schwenker & Stadelmann (2018). «Trace and Detect Adversarial Attacks on CNNs using Feature Response Maps». ANNPR’2018.

Classification:                  |         car |    whatever |    Gyromitra |  traffic light |
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Scenario 3/3: AI alters the typical character of 

threats

• Highly effective attacks will become more typical as trade-off between the frequency and 

scale of attacks vanishes (because of efficiency, scalability, and exceeding human capabilities)

• Finely targeted attacks will become more prevalent (because of efficiency and scalability): for 

example, killing specific members of a crowd using drone swarms and facial recognition 

instead of bombing

• Difficult-to-attribute attacks will become more typical (because of increasing anonymity)

• Exploiting vulnerabilities of AI systems become more typical (because of known 

vulnerabilities and pervasiveness of deployed systems)
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Potential impact areas

Digital security
• By using AI systems to automate cyberattacks or social engineering

• By attacking AI systems

Physical security 
• By individual drones or autonomous weapons

• By coordinating swarms that otherwise not be controllable

• By making normal autonomous agents like cars, power plants etc. malfunction

Political security
• By surveillance and mass collection of data

• By persuasion through targeted propaganda

• By deception through synthetic news, videos etc.

Picture: Cambridge Analytica CEO Alexander Nix speaks at the 2016 Concordia Summit 

© BRYAN BEDDER / GETTY IMAGES FOR CONCORDIA SUMMIT



Zürcher  Fachhochschule
36

4. Outlook & ethical considerations

Source: https://xkcd.com/1838/

https://xkcd.com/1838/


Zürcher  Fachhochschule
37

It’s difficult to make predictions, especially 

about the future1

Some guidelines how not to do it2:
1. Overestimating and underestimating: «We tend to overestimate the effect of a technology in 

the short run and underestimate the effect in the long run.»

2. Imagining magic: «Any sufficiently advanced technology is indistinguishable from magic.»

3. Performance versus competence: «People generalize from the performance an AI shows on 

some task to a competence that a person performing the same task could be expected to have.»

4. Suitcase words: «Marvin Minsky called words that carry a variety of meanings “suitcase words.” 

“Learning” is a powerful suitcase word; it can refer to so many different types of experience.»

5. Exponentials: «People may think that the exponentials they use to justify an argument are going to 

continue apace. But exponentials can collapse when a physical limit is hit, or when there is no more 

economic rationale to continue them.»

6. Hollywood scenarios: «Many science fiction movies assume that the world is just as it is today, 

except for one new twist. But we will not suddenly be surprised by the existence of super-intelligences.»

7. Speed of deployment: «Capital costs keep physical hardware around for a long time. Thus, almost 

all innovations in robotics and AI take far, far, longer to be really widely deployed.»

1) See https://quoteinvestigator.com/2013/10/20/no-predict/.
2) See Rodney Brooks, «The Seven Deadly Sins of AI Predictions», Technology Review, 2017 (compare lab P01b). 

https://quoteinvestigator.com/2013/10/20/no-predict/
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Basis for transformation (I): automation „at scale“
Or: “digital transformation” refers to a shift in all aspects of 

society, driven/enabled by this small set of technologies

Massively enhanced automation depth 

through progress in pattern recognition

AI CLOUD COMPUTING

No need to invest into (IT) infrastructure 

anymore before entering the market
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Basis for transformation (II): decoupling

size of idea ≠ size of implementing organization

…small organizations can build whatever they want

(given know-how, data and an interesting use case)

the technology is sector-independent

…enabling new alliances and co-operations
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Basis for transformation (III): speed

State of the art 

in research
State of the art in 

application
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Forecast: rapid transformation
…even without any further technological progress

1. hypothesis: Use of (current) AI will increase massively within the next 3 years

• Indicator: AI progress is mainly driven by industrial interests (earnings outlook); customers value 

convenience; these incentives „keep the engine running“

2. hypothesis: This will revolutionize all aspects of society

• Indicator: It shifts power

3. hypothesis: Main challenge is our dealings with each other (not with AI)

• Argument: AI (etc.) “for the common good” is an important topic; decisive however is how the society 

designs new rules (regulations) for community life in a digital society

Cp: Stockinger, Braschler & Stadelmann. “Lessons Learned from Challenging Data Science Case Studies”. In: Braschler et al. (Eds), “Applied Data 

Science - Lessons Learned for the Data-Driven Business”, Springer, 2019.
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Where are we heading?
The vision of Kai-Fu Lee, venture capitalist & scientist

• AI systems can take 

over routine tasks…

• …so that humans can 

follow their calling: 

love (“jobs of compassion”)

Kai-Fu Lee. “How AI can save our humanity”. TED Talk, available online: https://youtu.be/ajGgd9Ld-Wc
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A pragmatic, Swiss-made ethical code of 

conduct for using AI in use
See https://data-service-alliance.ch/innovation/ethics

https://data-service-alliance.ch/innovation/ethics
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Conclusions

• Deep Learning led to a paradigm shift in pattern recognition tasks

• The resulting tech can be used for security purposes (e.g., biometric access, automatic 

surveillance) – and to breach security (new risks, new attack schemes)

• The pace is extremely high (new results are applied within months)

• Big question: what kind of society are we building around these opportunities?

About me:
• Prof. AI/ML, scientific director ZHAW digital

• Email: stdm@zhaw.ch

• Phone: +41 58 934 72 08

• Web: https://stdm.github.io/

• Twitter: @thilo_on_data

• LinkedIn: thilo-stadelmann

Chapter 2 «Introduction to

Applied Data Science»

Chapter 4 «Wie Maschinelles 

Lernen den Markt verändert»

mailto:stdm@zhaw.ch
https://stdm.github.io/
https://twitter.com/thilo_on_data
https://www.linkedin.com/in/thilo-stadelmann/
https://stdm.github.io/downloads/papers/ADS_2019_Introduction.pdf
https://stdm.github.io/downloads/papers/FCW_2019.pdf
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ANHANG
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AI in context

2007 2012 2016

4.0

isierung

…

1950 1960 19701970 1980 1990 2000
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Search for optimal parameters of a function?

• Our artificial neural net: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 and parameters 𝑾
(𝑾 = {𝑤1, 𝑤2} initialized at random)

• Error measure: 𝑙 𝑾 =
1

𝑁
σ𝑖=1
𝑁 𝑓𝑾 𝑥𝑖 − 𝑦𝑖

2

Average of (quadratic) difference between prediction

and ground truth («loss»)

 error landscape

𝑤2

𝑤1

𝑙(𝑤1, 𝑤2)

Method: iterative change of 

parameters of 𝑓 in the direction of 

the steepest descent of 𝐽

Probability [%] for         showing a car
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What does the neural network «see»?
Hierarchy of more complex features

Source: https://www.pinterest.com/explore/artificial-neural-network/

Olah, et al., "Feature Visualization", Distill, 2017, https://distill.pub/2017/feature-visualization/. 

https://www.pinterest.com/explore/artificial-neural-network/
https://distill.pub/2017/feature-visualization/
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Potential interventions 

Learning from and with the cybersecurity community
• Explore and potentially implement red teaming, formal verification, responsible 

disclosure of AI vulnerabilities, security tools, and secure hardware

Exploring different openness models
• Reimagine norms and institutions around the openness of research

• Pre-publication risk assessment, central access licensing models, sharing regimes that 

favor safety and security, and other lessons from other dual-use technologies

Promoting a culture of responsibility
• Highlight education, ethical statements & standards, framings, norms, and expectations

Developing technological and policy solutions
• Strive for legislative and regulatory responses 

• This requires attention and action from AI researchers and companies, legislators, 

civil servants, regulators, security researchers and educators

• The challenge is daunting, and the stakes are high
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Team AI/ML: Overview (cp. https://stdm.github.io/research/)

ZHAW School of Engineering, Winterthur, Switzerland
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[1]
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[3]
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https://stdm.github.io/research/
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Outlook: Current projects & work in progress

• Medical image analysis: learning to reduce motion artifacts in 

3D CT scans

• Learning an artificial communication language for multi-agent 

reinforcement learning in logistics 
(notable rank in Flatland 2019 competition, best poster award [11])

• Automated deep learning
(top rank in AutoDL 2020 challenge [9])

• Learning to segment and classify food waste in professional 

kitchens under adversarial conditions

• Improving robotic vision through active vision and combined

supervised and reinforcement learning
(Dr. Waldemar Jucker Award 2020 [10])
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