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See https://youtu.be/tXIM99XPQC8
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1. LEARNING TO ACT
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Reinforcement learning (RL) Zh
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Agent learns by interacting with a stochastic environment
=>» Science of sequential decision making XX

7/ { . . A .
observation /4 Y "\ 4 DA action

Many faces of reinforcement learning

* Optimal control (Engineering)

« Dynamic Programming (Operations Research)
* Reward systems (Neuro-science)

« Classical/Operant Conditioning (Psychology)

Characteristics —
» No supervisor, only reward signals

 Feedback is delayed

« Trade-off between exploration & exploitation

« Sequential decisions: actions effect observations (non i.i.d.)
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« Automated vehicle control e
> An unmanned helicopter learning to fly and perform stunts = esm "
* Chat bots

- Agent figuring out how to make a conversation
* Medical treatment planning

- Planning a sequence of treatments based on the effect of past treatments
« Game playing

- Playing backgammon, Atari Breakout, Tetris, Tic Tac Toe
« Data Center Cooling

- https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
« Database query optimization

- J. Ortiz et al., “Learning State Representations for Query Optimization with Deep Reinforcement Learning”
« Learning new machine learning algorithms

—> https:/bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/

« Guiding computer vision
- M. Gori, “What’'s Wrong with Computer Vision?”

...and more

- see https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry,
https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/
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2. EXAMPLE: DEEPMIND’S ALPHA ZERO

00000 =
z,.?.g Google DeepMind
Challenge Match

8 -.35 March 2016
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The game of Go Zh
Properties

« Perfect-information, deterministic, two-player, turn-based, zero-sum game

* Played on a 19x19 board, alternate moves between black and white

* Two possible results: win or loss
« Considered a grand challenge for Al due to vast search space (~1017° states; chess: 10°°)

Rules

« Each turn, a stone of the player’s color is put on an intersection of the board (or “pass”)

» A stone (or connected group of stones) fully and directly surrounded by stones of the
other color is removed from the board (“captured”)

« Itis not allowed to recreate the last board position

« Two consecutive passes end the game

* The player having more “area” wins
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AlphaGo, AlphaGo Zero & Alpha Zero

At last — a computer program that
an beat a champion Go player page484

ALL SYSTEMS 9'0

ARTICLE

40k:10.1038/nature24270

Mastering the game of Go without

human knowledge

David Silver', Julian Schrittwieser'#, Karen Simonyan'», loannis Antonoglou!, Aja Huang!, Arthur Guez!,
Thomas Hubert', Lucas Baker!, Matthew Lai', Adrian Bolton!, Yutian Chen!, Timothy Lillicrap', Fan Hus', Laurent Sifre!,
George van den Driessche!, Thore Graepel! & Demis Hassabis'

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency i

challenging domains. Recently, AlphaGo became the irs program to defeat a world champion i the game of Go
arch in

pl

rules.

or y
AlphaGo's own i 1

AlphaGo’s games.

1f-play in the next it
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Much progress towards artificial mhlhgcn« has been made using
supervised l:
of humar

e trained to replicate the decisions

or simply unavailable. Even when reliable data sets are
he performance of systems
ast, reinforcement learning systems

perience, in principle allowing them to
exceed human capabiltes and © operat in domains where human
expertise s lacking Recently,there has been rapid

trained solely by self-play reinforcement learning, starting from ran
dom play, without any supervision or se of human data. Second, it
uses only the black and white stones from the board as input features.
‘Third, it uses a single neural network, rather than separate policy and
value networks. Finally,it uses a simpler tree search that relies upon

ural network to evaluate positions
ing any Monte Carlo rollouts. To achieve these results,

forcement learning algorith

ad sample moves,

al, using deep neural networks trained by reinforcement lumm\
Th ms have outperformed humans in computer games, such

lookahead p, resulting in rapid improve
ment and precise and stable learning, Further technical differences in
the search algorith nd network arch case

as Atari®? and 3D virtual environments**°. However, the most chal-  described in Methods.
lenging domains intrms of huma inellect—such s he game o Go,
widely viewed e forart quire

apreciseand myhmh.\h‘l e spaces.
ral methods have not previously achieved human-level performance
in these domains.

AlphaGo was the first program to achieve superhuman performance
in Go. The published version™, which we refer to as AlphaGo Fan,
defeated the European champion Fan Hui in October 2015. AlphaGo
Fan used two deep neural networks: a palicy network that outputs
move probabilities and a value network that outputs a position cval.

learning in AlphaGo Zero
Our new method uses  decp neural network fy with parameters .
This nural network takes as an input the raw board representtior

$ a

avalue, (p.v) -hm.mr“.mm.-,v,\,m,(,m.’pr.-,mm\mx“-
probabilty ofsclecting cach move a (including pass), pa= Pr(als). The

uation. The policy network was trained initia edlearn.
¢ to accurately predict human expert moves, and was subsequently
ined by policy-gradient reinforcement learning. The value network
was trained to predict the winner of games playcd by the policy net.
vorkagint il One nocd nm actworks wae consbineg with
aMonte 1

‘approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016,

Our program, AlphaGo Zero, differs from AlphaGo Fan and
AlphaGo Lee™ in several import

pects. First and foremost, it is

Vauevis 3 scalar valoation, stimating the probabiley ofthe current
the roles

efboth policy nctwork and value nctwork'™ mhmwmblx architecture.
consists of many ! of convolutional

layers!®*7 with batch normalization' and rectifier nonlinarities'® (sec:
Methods).

The neural network in AlphaGo Zero is trained from games of sclf

MCTS scarch ot probabltics  of plying each move. These
seacch probebilis sl acect mach tronger moves than the raw
move probabilicspofthe neural network oy MCT

e vicwed s 8 poverul polly Improvers operatoe

with search—using the improved MCTS-based policy to sel
move, then using the game winner z as a sample of the value—may

be viewed asa powerfulpolicy evaluation operato.The main ides o
our e s sto use these
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Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

David Silver,'* Thomas Hubert,!* Julian Schrittwieser,'*
Toannis Antonoglou,’ Matthew Lai," Arthur Guez,! Marc Lanctot,!
Laurent Sifre,' Dharshan Kumaran,' Thore Graepel,'
Timothy Lillicrap,’ Karen Simonyan,' Demis Hassabis®

DeepMind. 6 Pancras Square, London N1C 4AG.
*These authors contribuied equally io this work.

Abstract

The game of chess is the most widely-studied domain in the history of artificial intel-
ligence. The strongest programs are based on a combination of sophisticated search tech-
niques, domain-specific adaptations, and handcrafied evaluation functions that have been
refined by human experts over several decades. In contrast, the AlphaGo Zero program
recently achieved superhuman performance in the game of Go. by tabula rasa reinforce-
ment learning from games of self-play. In this paper, we generalise this approach into
a single AlphaZero algorithm that can achieve, rabula rasa, superhuman performance in
many challenging domains. Starting from random play. and given no domain knowledge
except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in
the games of chess and shogi (Japanese chess) as well as Go, and convincingly defeated a
warld-champion program in each case.

The study of compuier chess is as old as compuler science itself. Babbage, Turing, Shan-
non, and von Neumann devised hardware, algorithms and theory to analyse and play the game
of chess. Chess subsequently became the grand challenge task for a generation of artificial intel-
ligence i in high e computer chess programs that perform at
superhuman level (9, /3). However, these systems are highly tuned to their domain, and cannot
be generalised to other problems without significant human effort.

A long-standing ambition of artificial intelligence has been to create programs that can in-
stead learn for themselves from first principles (26). Recently. the AlphaGo Zero algorithm
achieved superhuman performance in the game of Go, by representing Go knowledge using
deep convolutional neural networks (22, 28), trained solely by reinforcement learning from
games of self-play (29). In this paper, we apply a similar but fully generic algorithm, which we

1

Interesting: playing strength 7, generality 7, complexity £ (over time)
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Policy

* Policy T = p (a;|s;) maps (probabilistically) from the current state s; to action a;
=» can be represented by a function approximator (e.g., a neural network)

« Given the optimal policy 7*, one can behave optimally in the environment
=>» but optimality in complex strategic situations is difficult to achieve
=» lookahead search makes tactical behavior easier
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* Policy T = p (a;|s;) maps (probabilistically) from the current state s; to action a;
=» can be represented by a function approximator (e.g., a neural network)

« Given the optimal policy 7*, one can behave optimally in the environment
=>» but optimality in complex strategic situations is difficult to achieve
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Policy

* Policy T = p (a;|s;) maps (probabilistically) from the current state s; to action a;
=» can be represented by a function approximator (e.g., a neural network)

« Given the optimal policy 7*, one can behave optimally in the environment
=>» but optimality in complex strategic situations is difficult to achieve
=» lookahead search makes tactical behavior easier -

N action
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Using a learned policy in Alpha Zero

l.e., play a move given a policy azﬁ

Goal
* In state s;, chose next move a;

Ingredients

* Neural network p,v = fy(s;) that outputs two quantities
« Policy vector g (a distribution over all possible actions)
« Valuev (an estimate of the probability of winning from this state)
=» intuition

 Monte Carlo Tree Search (MCTS) to build ad hoc search tree
* MC: tree not fully grown - only likely branches get explored
* (Chosen branch can be reused for next move for computational savings)
= tactics

How to chose each move

* Perform MCTS search on ad-hoc built tree
(using neural network for initial intuition if a move is good - see next slide)

* Play move most often taken by search (max(N))

Zurich University of Applied Sciences and Arts 16
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Perform a MCTS search Zh

l.e., provide the basis for a move aw

* Create (empty or partly re-used) tree with root s;

 Perform 1,600 simulations:

(one simulation = one traversal of current tree until yet unexpanded leaf node or terminal node is hit)

1. Startats =s;

3. Expand tree: query neural net for p,v = fp(s)
N=0,W=0,Q0=0,p=p,

Move probabiities

Action value
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Perform a MCTS search

l.e., provide the basis for a move azﬁ

The curvent game state (s)
Each potentidl action from a game

state stores four numbers:

* Create (empty or partly re-used) tree with root s;

N The number of fimes action a has
been taken from state s

W The total value of the next state

 Perform 1,600 simulations:

(one simulation = one traversal of current tree until yet unexpanded leaf node or terminal node is hit) Q The mean value of the next stafe

P The prior probabiity of selecting

1. Startats =s;

leaf node
2. Traverse tree:
while s is not a leaf node: choose a that maximizes Q + U
(Q is the current mean value of s over all simulations in this search; el ricised
U is high if s has high prior prob. p from the neural net, or hasn’t been explored much (small N); nodes

=>» U dominates at the beginning of a search; as the branch gets explored, Q becomes important) - . ’
N-o e

3. Expand tree: query neural net for p,v = fp(s) 7 weo
N=0,W=0,Q=0p=7p, oo

R

4. Backup: update statistics of each visited node: e T
N=N+1,W=W+v,Q=W/N

The current game state (s)

P N=10 +1
W=5.4+0.2 _
Q=5.6/1
P-0.5
- ]
Ve------------
Action value
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3. TRAINING THE POLICY/NVALUE NETWORK
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Create experience by selfplay

(=Evaluate the current policy / create “training data”) aw

1. Initialize fg randomly

1 black stene here

Qif black stone not here
2. Play 25,000 games against yourself G gstonc 19 %19 x17 stack 11
lack’s stones
+ Use MCTS and current best f, for both player's moves 1 oo
0 0 1

* For each move, store - crd o he previous
«  game state (see figure =), 7 time periods
. search probabilities from MCTS (rr; ~ N for all actions of s;),
. winner (z = +1 from perspective of current player)

Current position of
white's stones

..and for the previous
AllTif black to play > | 7 time periods

S A if whte to play

Sy
a, ~m, I

_>-+-&>H§.>ailff.> %%

. - .

Ty Ty z

1

3. Trigger retraining (= see next slide), goto 2

Zurich University of Applied Sciences and Arts 20
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Retrain neural network

(=Improve the current policy / do “model training”) aw

1. Experience replay: sample mini-batch of 2,048 positions from last 500,000 self-play games

2. Retrain fg on this batch using supervised learning:
* Input: game states
*  Output: move-probabilities p (dropping vector notation for simplicity), value v
* Labels: search-probabilities 7, actual winner z
* Loss: cross-entropy betweenp,m 4+ MSE betweenv,z + L,-regularization of 6

Sy S S5
++
hd

T

%, 73

3. Trigger evaluation (- see next slide) after 1,000 training loops, goto 2

Zurich University of Applied Sciences and Arts 21
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Evaluate current network

1. Play 400 games between current best vs. latest fy
* Choose each move by MCTS and respective network
+ Play deterministically (no additional exploration - see below)
After 1,600 simulations, the move can either be chosen:

Deterministically (for competitive play)
Choose the action from the current state with greatest N

Stochastically (for exploratory play)
Choose the action from the current state from the distribution

T~ N%

where T is a temperature parameter: controlling exploration

2. Replace best network with latest fy if the latest wins > 55% of matches

Zurich University of Applied Sciences and Arts
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Important RL concepts showcased here

To be detailed elsewhere azﬁ

* Formal framework: Markov decision processes (MPDs)

 The RL problem: observations vs. states, learning vs. planning, prediction & control

* Ingredients to a solution: model, value function (v: state-value / g: action-value), policy

* Methods: dynamic programming (policy iteration), Monte Carlo, temporal difference learning

* RL & function approximation: general instability, experience replay, target networks
« Exploration vs. exploitation: optimistic initialization (upper confidence bounds), noise on priors

Zurich University of Applied Sciences and Arts 23
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Where’s the intelligence?

_ zh
Man vs. machine aw

« Alpha(Go) Zero learns without human intervention from scratch (pure selfplay & the rules)
—> strong point for capabilities of RL

« Alpha(Go) Zero is considerably more simple/principled than previous approaches
- good ideas are usually simple and intuitively right (the reverse is not necessarily true!)

* Recently*, OpenAl showed similar fascinating performance on Dota2, and DeepMind on
Quake Il Arena**
- RL has made big progress and seems fit for real applications beyond simulations

« Yet**, solutions are still hand-crafted per use case and suffer from extreme sample
inefficiency and training instabilities
—> Training takes very long even on server hardware, debugging is frustrating, success is fragile

=/

*) See https://blog.openai.com/openai-five/ and https://blog.openai.com/learning-dexterity/ \ N >
**) See https://deepmind.com/blog/capture-the-flag/ ’J
***) See https://www.alexirpan.com/2018/02/14/rl-hard.html and http://amid.fish/reproducing-deep-rl 5
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+ Reinforcement learning (RL) is “learning to act” — a general method for
“sequential decision making”

» Most notable differences from unsupervised & supervised ML.:
* no “data set”
* agent learns from interaction with environment and sparse rewards
- less learning signal
- experience is highly correlated and not i.i.d.!
- yet:

Denny Britz L 4
@dennybritz

Ironically, the major advances in RL over the past few years all
boil down to making RL lock less like RL and more like
supervised learmning.

5:56 PM - Oct 30, 2017

195 () 55 people are talking about this o

» Alpha Zero uses an elegant RL algorithm based on
« selfplay (for experience generation)
« MCTS tree search (to plan ahead in a principled way)
« function approximation using deep learning (to use intuition about board states to
guide/focus the tree search)

* Read the original publication, it is worth it (clear, concise, precise, complete): |

https://www.nature.com/articles/nature24270
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Alpha Zero overview

Source: https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

The training pipeline for AlphaGo Zero consists of three stages, executed in parallel

Cregte a ‘training set’

The bast curvent ployer ploys 25.000 games oganat ek

See NCTS secton s undersiand how Apholio Zers seiects esch move

At each move, the falowing information i stored
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Pseudo code —training

Source: https://web.stanford.edu/~surag/posts/alphazero.html

def policyIterSP (game):
nnet = initNNet () #initialise random neural network
examples = []
for 1 in range (numlters):
for e in range (numEps) :
#collect examples from this game
examples += executeEpisode (game, nnet)
new_nnet = trainNNet (examples)
#compare new net with previous net
frac win = pit(new_nnet, nnet)
if frac win > threshold:
nnet = new nnet freplace with new net
return nnet

def executeEpisode (game, nnet):

examples = []
s = game.startState()
mcts = MCTS() #initialise search tree

while True:
for _ in range (numMCTSSims) :
mcts.search (s, game, nnet)
#rewards can not be determined yet
examples.append([s, mcts.pi(s), Nonel)
#sample action from improved policy
a = random.choice(len(mcts.pi(s)), p=mcts.pi(s))
s = game.nextState (s, a)
if game.gameEnded(s) :

examples = assignRewards (examples, game.gameReward(s))

return examples
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def search(s, game, nnet):

if game.gameEnded(s): return -game.gameReward(s)

if s not in visited:
visited.add (s)
P[s], v = nnet.predict(s)
return -v

max u, best a = -float("inf"), -1

for a in range(game.getValidActions(s)):
u = Q[s]la]l + c_puct*P[s][a]l*sqrt(sum(N[s]))/(1+N[s][a])
if u>max_u:

max u = u
best a = a
a = best a

sp = game.nextState(s, a)
v = search(sp, game, nnet)

Qlsllal = (N[sllal*Q[s]l[al + v)/(N[s][a]l+1)
N[s] [a] += 1
return -v
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