Learning Games from Selfplay
Reinforcement Learning Zurich, January 21, 2019

Thilo Stadelmann

Outline

* Learning to act

 Example: DeepMind’s Alpha Zero
« Training the policy/value network

Based on material by

+ David Silver, DeepMind

« David Foster, Applied Data Science
* Surag Nair, Stanford University

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

zh
aw

Zurich University
of Applied Sciences

Teaser

zh
aw

See https://youtu.be/tXIM99XPQC8

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

https://youtu.be/tXlM99xPQC8

Zurich University
of Applied Sciences

zh
aw

1. LEARNING TO ACT

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Reinforcement learning (RL) Zh

aw

Agent learns by interacting with a stochastic environment
=>» Science of sequential decision making XX

7/ { . . A .
observation /4 Y "\ 4 DA action

Many faces of reinforcement learning

* Optimal control (Engineering)

« Dynamic Programming (Operations Research)
* Reward systems (Neuro-science)

« Classical/Operant Conditioning (Psychology)

Characteristics —
» No supervisor, only reward signals

 Feedback is delayed

« Trade-off between exploration & exploitation

« Sequential decisions: actions effect observations (non i.i.d.)

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Application areas

zh
aw

« Automated vehicle control e
> An unmanned helicopter learning to fly and perform stunts = esm "
* Chat bots

- Agent figuring out how to make a conversation
* Medical treatment planning

- Planning a sequence of treatments based on the effect of past treatments
« Game playing

- Playing backgammon, Atari Breakout, Tetris, Tic Tac Toe
« Data Center Cooling

- https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
« Database query optimization

- J. Ortiz et al., “Learning State Representations for Query Optimization with Deep Reinforcement Learning”
« Learning new machine learning algorithms

—> https:/bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/

« Guiding computer vision
- M. Gori, “What’'s Wrong with Computer Vision?”

...and more

- see https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry,
https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/
https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry
https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/

Zurich University
of Applied Sciences

2. EXAMPLE: DEEPMIND’S ALPHA ZERO

00000 =
z,.?.g Google DeepMind
Challenge Match

8 -.35 March 2016
R

Lee Sedol
‘®,

D

Zurich University of Applied Sciences and Arts 10
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

The game of Go Zh
Properties

« Perfect-information, deterministic, two-player, turn-based, zero-sum game

* Played on a 19x19 board, alternate moves between black and white

* Two possible results: win or loss
« Considered a grand challenge for Al due to vast search space (~1017° states; chess: 10°°)

Rules

« Each turn, a stone of the player’s color is put on an intersection of the board (or “pass”)

» A stone (or connected group of stones) fully and directly surrounded by stones of the
other color is removed from the board (“captured”)

« Itis not allowed to recreate the last board position

« Two consecutive passes end the game

* The player having more “area” wins

Zurich University of Applied Sciences and Arts 11
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

zh
aw

AlphaGo, AlphaGo Zero & Alpha Zero

At last — a computer program that
an beat a champion Go player page484

ALL SYSTEMS 9'0

ARTICLE

40k:10.1038/nature24270

Mastering the game of Go without

human knowledge

David Silver', Julian Schrittwieser'#, Karen Simonyan'», loannis Antonoglou!, Aja Huang!, Arthur Guez!,
Thomas Hubert', Lucas Baker!, Matthew Lai', Adrian Bolton!, Yutian Chen!, Timothy Lillicrap', Fan Hus', Laurent Sifre!,
George van den Driessche!, Thore Graepel! & Demis Hassabis'

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency i

challenging domains. Recently, AlphaGo became the irs program to defeat a world champion i the game of Go
arch in

pl

rules.

or y
AlphaGo's own i 1

AlphaGo’s games.

1f-play in the next it

i o et b U O b eyl b st rkieznng I\Iphz(m

Much progress towards artificial mhlhgcn« has been made using
supervised l:
of humar

e trained to replicate the decisions

or simply unavailable. Even when reliable data sets are
he performance of systems
ast, reinforcement learning systems

perience, in principle allowing them to
exceed human capabiltes and © operat in domains where human
expertise s lacking Recently,there has been rapid

trained solely by self-play reinforcement learning, starting from ran
dom play, without any supervision or se of human data. Second, it
uses only the black and white stones from the board as input features.
‘Third, it uses a single neural network, rather than separate policy and
value networks. Finally,it uses a simpler tree search that relies upon

ural network to evaluate positions
ing any Monte Carlo rollouts. To achieve these results,

forcement learning algorith

ad sample moves,

al, using deep neural networks trained by reinforcement lumm\
Th ms have outperformed humans in computer games, such

lookahead p, resulting in rapid improve
ment and precise and stable learning, Further technical differences in
the search algorith nd network arch case

as Atari®? and 3D virtual environments**°. However, the most chal- described in Methods.
lenging domains intrms of huma inellect—such s he game o Go,
widely viewed e forart quire

apreciseand myhmh.\h‘l e spaces.
ral methods have not previously achieved human-level performance
in these domains.

AlphaGo was the first program to achieve superhuman performance
in Go. The published version™, which we refer to as AlphaGo Fan,
defeated the European champion Fan Hui in October 2015. AlphaGo
Fan used two deep neural networks: a palicy network that outputs
move probabilities and a value network that outputs a position cval.

learning in AlphaGo Zero
Our new method uses decp neural network fy with parameters .
This nural network takes as an input the raw board representtior

$ a

avalue, (p.v) -hm.mr“.mm.-,v,\,m,(,m.’pr.-,mm\mx“-
probabilty ofsclecting cach move a (including pass), pa= Pr(als). The

uation. The policy network was trained initia edlearn.
¢ to accurately predict human expert moves, and was subsequently
ined by policy-gradient reinforcement learning. The value network
was trained to predict the winner of games playcd by the policy net.
vorkagint il One nocd nm actworks wae consbineg with
aMonte 1

‘approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016,

Our program, AlphaGo Zero, differs from AlphaGo Fan and
AlphaGo Lee™ in several import

pects. First and foremost, it is

Vauevis 3 scalar valoation, stimating the probabiley ofthe current
the roles

efboth policy nctwork and value nctwork'™ mhmwmblx architecture.
consists of many ! of convolutional

layers!®*7 with batch normalization' and rectifier nonlinarities'® (sec:
Methods).

The neural network in AlphaGo Zero is trained from games of sclf

MCTS scarch ot probabltics of plying each move. These
seacch probebilis sl acect mach tronger moves than the raw
move probabilicspofthe neural network oy MCT

e vicwed s 8 poverul polly Improvers operatoe

with search—using the improved MCTS-based policy to sel
move, then using the game winner z as a sample of the value—may

be viewed asa powerfulpolicy evaluation operato.The main ides o
our e s sto use these

arXiv:1712.01815v1 [es.Al] 5 Dec 2017

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

David Silver,'* Thomas Hubert,!* Julian Schrittwieser,'*
Toannis Antonoglou,’ Matthew Lai," Arthur Guez,! Marc Lanctot,!
Laurent Sifre,' Dharshan Kumaran,' Thore Graepel,'
Timothy Lillicrap,’ Karen Simonyan,' Demis Hassabis®

DeepMind. 6 Pancras Square, London N1C 4AG.
*These authors contribuied equally io this work.

Abstract

The game of chess is the most widely-studied domain in the history of artificial intel-
ligence. The strongest programs are based on a combination of sophisticated search tech-
niques, domain-specific adaptations, and handcrafied evaluation functions that have been
refined by human experts over several decades. In contrast, the AlphaGo Zero program
recently achieved superhuman performance in the game of Go. by tabula rasa reinforce-
ment learning from games of self-play. In this paper, we generalise this approach into
a single AlphaZero algorithm that can achieve, rabula rasa, superhuman performance in
many challenging domains. Starting from random play. and given no domain knowledge
except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in
the games of chess and shogi (Japanese chess) as well as Go, and convincingly defeated a
warld-champion program in each case.

The study of compuier chess is as old as compuler science itself. Babbage, Turing, Shan-
non, and von Neumann devised hardware, algorithms and theory to analyse and play the game
of chess. Chess subsequently became the grand challenge task for a generation of artificial intel-
ligence i in high e computer chess programs that perform at
superhuman level (9, /3). However, these systems are highly tuned to their domain, and cannot
be generalised to other problems without significant human effort.

A long-standing ambition of artificial intelligence has been to create programs that can in-
stead learn for themselves from first principles (26). Recently. the AlphaGo Zero algorithm
achieved superhuman performance in the game of Go, by representing Go knowledge using
deep convolutional neural networks (22, 28), trained solely by reinforcement learning from
games of self-play (29). In this paper, we apply a similar but fully generic algorithm, which we

1

Interesting: playing strength 7, generality 7, complexity £ (over time)

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Goal: a policy Zh
aw
Policy

* Policy T = p (a;|s;) maps (probabilistically) from the current state s; to action a;
=» can be represented by a function approximator (e.g., a neural network)

« Given the optimal policy 7*, one can behave optimally in the environment
=>» but optimality in complex strategic situations is difficult to achieve
=» lookahead search makes tactical behavior easier

AA.A.-': N T
e PR
g7~ | v { \
. (7 1 ~ : R | .
observation 4/ ‘% v 4 4| action
¢ A 2\ Lo S — \?'
St ({7 S e O it A
N e i
AKJ—«'— frp—
(o ,’,
&7
reward Ty

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Goal: a policy Zh
aw
Policy

* Policy T = p (a;|s;) maps (probabilistically) from the current state s; to action a;
=» can be represented by a function approximator (e.g., a neural network)

« Given the optimal policy 7*, one can behave optimally in the environment
=>» but optimality in complex strategic situations is difficult to achieve
=» lookahead search makes tactical behavior easier Convolution Fully connected

A
Mot ‘:: 4 Oxd
"\) e
.ﬂ: ,'-"" 3
. b s ’
: %’ : mo:
N

LO (Input) L1 L2
512x512 256x256 128x128 64x64 32x32 (Output)

A

action

g

reward Ty

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Goal: a policy Zh
aw
Policy

* Policy T = p (a;|s;) maps (probabilistically) from the current state s; to action a;
=» can be represented by a function approximator (e.g., a neural network)

« Given the optimal policy 7*, one can behave optimally in the environment
=>» but optimality in complex strategic situations is difficult to achieve
=» lookahead search makes tactical behavior easier -

N action

HE B

reward Ty

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Using a learned policy in Alpha Zero

l.e., play a move given a policy azﬁ

Goal
* In state s;, chose next move a;

Ingredients

* Neural network p,v = fy(s;) that outputs two quantities
« Policy vector g (a distribution over all possible actions)
« Valuev (an estimate of the probability of winning from this state)
=» intuition

 Monte Carlo Tree Search (MCTS) to build ad hoc search tree
* MC: tree not fully grown - only likely branches get explored
* (Chosen branch can be reused for next move for computational savings)
= tactics

How to chose each move

* Perform MCTS search on ad-hoc built tree
(using neural network for initial intuition if a move is good - see next slide)

* Play move most often taken by search (max(N))

Zurich University of Applied Sciences and Arts 16
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Perform a MCTS search Zh

l.e., provide the basis for a move aw

* Create (empty or partly re-used) tree with root s;

 Perform 1,600 simulations:

(one simulation = one traversal of current tree until yet unexpanded leaf node or terminal node is hit)

1. Startats =s;

3. Expand tree: query neural net for p,v = fp(s)
N=0,W=0,Q0=0,p=p,

Move probabiities

Action value

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Perform a MCTS search

l.e., provide the basis for a move azﬁ

The curvent game state (s)
Each potentidl action from a game

state stores four numbers:

* Create (empty or partly re-used) tree with root s;

N The number of fimes action a has
been taken from state s

W The total value of the next state

 Perform 1,600 simulations:

(one simulation = one traversal of current tree until yet unexpanded leaf node or terminal node is hit) Q The mean value of the next stafe

P The prior probabiity of selecting

1. Startats =s;

leaf node
2. Traverse tree:
while s is not a leaf node: choose a that maximizes Q + U
(Q is the current mean value of s over all simulations in this search; el ricised
U is high if s has high prior prob. p from the neural net, or hasn’t been explored much (small N); nodes

=>» U dominates at the beginning of a search; as the branch gets explored, Q becomes important) - . ’
N-o e

3. Expand tree: query neural net for p,v = fp(s) 7 weo
N=0,W=0,Q=0p=7p, oo

R

4. Backup: update statistics of each visited node: e T
N=N+1,W=W+v,Q=W/N

The current game state (s)

P N=10 +1
W=5.4+0.2 _
Q=5.6/1
P-0.5
-]
Ve------------
Action value

Zurich University of Applied Sciences and Arts 18

InIT Institute of Applied Information Technology (stdm)

3. TRAINING THE POLICY/NVALUE NETWORK

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

zh
aw

19

Zurich University
of Applied Sciences

Create experience by selfplay

(=Evaluate the current policy / create “training data”) aw

1. Initialize fg randomly

1 black stene here

Qif black stone not here
2. Play 25,000 games against yourself G gstonc 19 %19 x17 stack 11
lack’s stones
+ Use MCTS and current best f, for both player's moves 1 oo
0 0 1

* For each move, store - crd o he previous
« game state (see figure =), 7 time periods
. search probabilities from MCTS (rr; ~ N for all actions of s;),
. winner (z = +1 from perspective of current player)

Current position of
white's stones

..and for the previous
AllTif black to play > | 7 time periods

S A if whte to play

Sy
a, ~m, I

_>-+-&>H§.>ailff.> %%

. - .

Ty Ty z

1

3. Trigger retraining (= see next slide), goto 2

Zurich University of Applied Sciences and Arts 20

InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Retrain neural network

(=Improve the current policy / do “model training”) aw

1. Experience replay: sample mini-batch of 2,048 positions from last 500,000 self-play games

2. Retrain fg on this batch using supervised learning:
* Input: game states
* Output: move-probabilities p (dropping vector notation for simplicity), value v
* Labels: search-probabilities 7, actual winner z
* Loss: cross-entropy betweenp,m 4+ MSE betweenv,z + L,-regularization of 6

Sy S S5
++
hd

T

%, 73

3. Trigger evaluation (- see next slide) after 1,000 training loops, goto 2

Zurich University of Applied Sciences and Arts 21

InIT Institute of Applied Information Technology (stdm)

Evaluate current network

1. Play 400 games between current best vs. latest fy
* Choose each move by MCTS and respective network
+ Play deterministically (no additional exploration - see below)
After 1,600 simulations, the move can either be chosen:

Deterministically (for competitive play)
Choose the action from the current state with greatest N

Stochastically (for exploratory play)
Choose the action from the current state from the distribution

T~ N%

where T is a temperature parameter: controlling exploration

2. Replace best network with latest fy if the latest wins > 55% of matches

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

zh
aw

22

Zurich University
of Applied Sciences

Important RL concepts showcased here

To be detailed elsewhere azﬁ

* Formal framework: Markov decision processes (MPDs)

 The RL problem: observations vs. states, learning vs. planning, prediction & control

* Ingredients to a solution: model, value function (v: state-value / g: action-value), policy

* Methods: dynamic programming (policy iteration), Monte Carlo, temporal difference learning

* RL & function approximation: general instability, experience replay, target networks
« Exploration vs. exploitation: optimistic initialization (upper confidence bounds), noise on priors

Zurich University of Applied Sciences and Arts 23
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

Where’s the intelligence?

_ zh
Man vs. machine aw

« Alpha(Go) Zero learns without human intervention from scratch (pure selfplay & the rules)
—> strong point for capabilities of RL

« Alpha(Go) Zero is considerably more simple/principled than previous approaches
- good ideas are usually simple and intuitively right (the reverse is not necessarily true!)

* Recently*, OpenAl showed similar fascinating performance on Dota2, and DeepMind on
Quake Il Arena**
- RL has made big progress and seems fit for real applications beyond simulations

« Yet**, solutions are still hand-crafted per use case and suffer from extreme sample
inefficiency and training instabilities
—> Training takes very long even on server hardware, debugging is frustrating, success is fragile

=/

*) See https://blog.openai.com/openai-five/ and https://blog.openai.com/learning-dexterity/ \ N >
**) See https://deepmind.com/blog/capture-the-flag/ ’J
***) See https://www.alexirpan.com/2018/02/14/rl-hard.html and http://amid.fish/reproducing-deep-rl 5

Zurich University of Applied Sciences and Arts 24
InIT Institute of Applied Information Technology (stdm)

https://blog.openai.com/openai-five/
https://blog.openai.com/learning-dexterity/
https://deepmind.com/blog/capture-the-flag/
https://www.alexirpan.com/2018/02/14/rl-hard.html
http://amid.fish/reproducing-deep-rl

Zurich University
of Applied Sciences

Review

zh
aw

+ Reinforcement learning (RL) is “learning to act” — a general method for
“sequential decision making”

» Most notable differences from unsupervised & supervised ML.:
* no “data set”
* agent learns from interaction with environment and sparse rewards
- less learning signal
- experience is highly correlated and not i.i.d.!
- yet:

Denny Britz L 4
@dennybritz

Ironically, the major advances in RL over the past few years all
boil down to making RL lock less like RL and more like
supervised learmning.

5:56 PM - Oct 30, 2017

195 () 55 people are talking about this o

» Alpha Zero uses an elegant RL algorithm based on
« selfplay (for experience generation)
« MCTS tree search (to plan ahead in a principled way)
« function approximation using deep learning (to use intuition about board states to
guide/focus the tree search)

* Read the original publication, it is worth it (clear, concise, precise, complete): |

https://www.nature.com/articles/nature24270

Zurich University of Applied Sciences and Arts 25
InIT Institute of Applied Information Technology (stdm)

https://www.nature.com/articles/nature24270

APPENDIX

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

zh
aw

27

Alpha Zero overview

Source: https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

The training pipeline for AlphaGo Zero consists of three stages, executed in parallel

Cregte a ‘training set’

The bast curvent ployer ploys 25.000 games oganat ek

See NCTS secton s undersiand how Apholio Zers seiects esch move

At each move, the falowing information i stored

oo - i
e e v frares j k

PREDICTIONS.

(" SELF PLAY) RETRAIN NETWORK

Optimise the network weights

A TRANNG LOOP

Somple & mei-batch of 2048 pontions fram the lant 500.000 gumen

Retremn the curvent sercl nebesrt on thase powtors
The game ses are e ot (10 Doep N Nermars Arcvechre

Lows Fumchon

Campures sradkcwve from e card etert am e taarch prebebidves ond e wrrer

P = TU

AT

Voo @

g rachon

After every 1,000 trising loops. evaluste the setwerk

AN

) (EVALUATE NETWORK
Test to see if the new network is stronger

Ploy 400 games between the lotest neundl network ond the current best
neurol retwork

Boh ployers use VTS o seect fher moves. with fher respactive neurdl
netwarks fo evate leof rodes

Latest ployer must win S5 of gomes fo be deciared the new best ployer

Y ¥

5

'WHAT IS A ‘GAME STATE'

J

How AlphaGo Zero assesses new positions

The network leams “tobula nasa’ (from a blonk slate)
At no pont s the network frained using human knowledge or expert moves.

The network
The value head s =

o whe bor aurvent soyer el
by ez e e
-m N-Em ==

‘ . am oo =

e loyer 530 256 —

by comecred oar

Recwier on ety ——

1 - v oam ——

Ao rmanster

I fEm = =m s

oenteng e]

. THE DEEP NEURAL NETWORK ARCHITECTURE

The policy head

9419+ therpom
o o7 st

m v-Em
Ractfr e rey
1 " v Em
e o
] fEE = Em
ks s W
A residudl layer
" O =
tecthr vt
t - N-em
l N V-am
Bt rrmaneton
' YEEm ¢ Em
256 comtondd %
[
I um ==
i bty
| m V.
Soch rermcicton
I rEm ¢ E.
Frp——
fen 303
o S—

~then select a move

After 1,600 smustons, the move can efther be chesen:

Determnisticaly (for comgettve soy)
Choose the acton frem the curvent state wih greatest N

Stochosticaly (for explorctory poy)
Croose fhe acton from the cuent shate from the dsfrbuton

T~ N%

where T .0 femperchure parameten caniraling explroten

Curvent poston of
whte's stores.

ond for e prevos
\ 7 twme perads

First, run the following simulation
1,600 times..
Shart ot fhe root rode of the free (fhe cument game stote)

1. Choose fhe action that maximises...

The o b of
et sicne

Early on in the smuoten. U domnates (more exploration).
bt loter: Qs more mportant fless explorction)

2. Continue unti @ leof node is reached
The game stole of the leof nade & passed n the reurdl
network. which cutputs predctons cbat tws things:
P Vo srobctites
V' Vohue of the stote (for the cument goyer)

The move probabiites p are attoched fo the new feasble
chons from fhe leof node

3. Bockap previous edges
Eoch edge frot wos troversed fo get o the leof rode i updoted
o folows

N—=+N+1
W—=W+y
Q= W/N

Other points

= The sub-ree from the chosen move & refoned
for cakeuotng et moves

= Therest of fhe free & dacorded

Zurich University
of Applied Sciences

Z
aw

28

https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

Pseudo code —training

Source: https://web.stanford.edu/~surag/posts/alphazero.html

def policyIterSP (game):
nnet = initNNet () #initialise random neural network
examples = []
for 1 in range (numlters):
for e in range (numEps) :
#collect examples from this game
examples += executeEpisode (game, nnet)
new_nnet = trainNNet (examples)
#compare new net with previous net
frac win = pit(new_nnet, nnet)
if frac win > threshold:
nnet = new nnet freplace with new net
return nnet

def executeEpisode (game, nnet):

examples = []
s = game.startState()
mcts = MCTS() #initialise search tree

while True:
for _ in range (numMCTSSims) :
mcts.search (s, game, nnet)
#rewards can not be determined yet
examples.append([s, mcts.pi(s), Nonel)
#sample action from improved policy
a = random.choice(len(mcts.pi(s)), p=mcts.pi(s))
s = game.nextState (s, a)
if game.gameEnded(s) :

examples = assignRewards (examples, game.gameReward(s))

return examples

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Zurich University
of Applied Sciences

aw

def search(s, game, nnet):

if game.gameEnded(s): return -game.gameReward(s)

if s not in visited:
visited.add (s)
P[s], v = nnet.predict(s)
return -v

max u, best a = -float("inf"), -1

for a in range(game.getValidActions(s)):
u = Q[s]la]l + c_puct*P[s][a]l*sqrt(sum(N[s]))/(1+N[s][a])
if u>max_u:

max u = u
best a = a
a = best a

sp = game.nextState(s, a)
v = search(sp, game, nnet)

Qlsllal = (N[sllal*Q[s]l[al + v)/(N[s][a]l+1)
N[s] [a] += 1
return -v

29

https://web.stanford.edu/~surag/posts/alphazero.html

