
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

AlphaZero: Learning Games from Selfplay

Datalab Seminar, ZHAW, November 14, 2018

Thilo Stadelmann

Outline
• Learning to act

• Example: DeepMind’s Alpha Zero

• Training the policy/value network

Based on material by

• David Silver, DeepMind

• David Foster, Applied Data Science

• Surag Nair, Stanford University

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

Teaser

See https://youtu.be/tXlM99xPQC8

https://youtu.be/tXlM99xPQC8

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

1. LEARNING TO ACT

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

Reinforcement learning (RL)

Agent learns by interacting with a stochastic environment
 Science of sequential decision making

Many faces of reinforcement learning
• Optimal control (Engineering)

• Dynamic Programming (Operations Research)

• Reward systems (Neuro-science)

• Classical/Operant Conditioning (Psychology)

Characteristics
• No supervisor, only reward signals

• Feedback is delayed

• Trade-off between exploration & exploitation

• Sequential decisions: actions effect observations (non i.i.d.)

𝑎𝑡

𝑟𝑡

𝑜𝑡

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Application areas

• Automated vehicle control
 An unmanned helicopter learning to fly and perform stunts

• Chat bots
 Agent figuring out how to make a conversation

• Medical treatment planning
 Planning a sequence of treatments based on the effect of past treatments

• Game playing
 Playing backgammon, Atari Breakout, Tetris, Tic Tac Toe

• Data Center Cooling
 https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

• Database query optimization
 J. Ortiz et al., “Learning State Representations for Query Optimization with Deep Reinforcement Learning”, DEEM’2018

• Learning new machine learning algorithms
 https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/

…and more
 see https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry,

https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/
https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry
https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

2. EXAMPLE: DEEPMIND’S ALPHA ZERO

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

The game of Go

Properties
• Perfect-information, deterministic, two-player, turn-based, zero-sum game

• Played on a 19x19 board, alternate moves between black and white

• Two possible results: win or loss

• Considered a grand challenge for AI due to vast search space (~10170 states; chess: 1050)

Rules
• Each turn, a stone of the player’s color is put on an intersection of the board (or “pass”)

• A stone (or connected group of stones) fully and directly surrounded by stones of the

other color is removed from the board (“captured”)

• It is not allowed to recreate a former board position

• Two consecutive passes end the game

• The player having more “area” wins

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

AlphaGo, AlphaGo Zero & Alpha Zero

Interesting: playing strength ⇧, generality ⇧, complexity ⇩ (over time)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Goal: a policy

Policy
• Policy 𝜋 = 𝑝 (𝑎𝑡|𝑠𝑡) maps (probabilistically) from the current state 𝑠𝑡 to action 𝑎𝑡
 can be represented by a function approximator (e.g., a neural network)

• Given the optimal policy 𝜋∗, one can behave optimally in the environment
 but optimality in complex strategic situations is difficult to achieve

 lookahead search makes tactical behavior easier

𝑎𝑡

𝑟𝑡

𝑜𝑡
𝝅 = 𝒑(𝒂𝒕|𝒔𝒕)

𝑠𝑡

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

Goal: a policy

Policy
• Policy 𝜋 = 𝑝 (𝑎𝑡|𝑠𝑡) maps (probabilistically) from the current state 𝑠𝑡 to action 𝑎𝑡
 can be represented by a function approximator (e.g., a neural network)

• Given the optimal policy 𝜋∗, one can behave optimally in the environment
 but optimality in complex strategic situations is difficult to achieve

 lookahead search makes tactical behavior easier

𝑎𝑡

𝑟𝑡

𝑜𝑡
𝝅 = 𝒑(𝒂𝒕|𝒔𝒕)

𝑠𝑡

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

Goal: a policy

Policy
• Policy 𝜋 = 𝑝 (𝑎𝑡|𝑠𝑡) maps (probabilistically) from the current state 𝑠𝑡 to action 𝑎𝑡
 can be represented by a function approximator (e.g., a neural network)

• Given the optimal policy 𝜋∗, one can behave optimally in the environment
 but optimality in complex strategic situations is difficult to achieve

 lookahead search makes tactical behavior easier

𝑎𝑡

𝑟𝑡

𝑜𝑡
𝝅 = 𝒑(𝒂𝒕|𝒔𝒕)

𝑠𝑡

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

Using a learned policy in Alpha Zero
I.e., play a move given a policy

Goal
• In state 𝑠𝑡, chose next move 𝑎𝑡

Ingredients
• Neural network Ԧ𝑝, v = 𝑓𝜃(𝑠𝑡) that outputs two quantities

• Policy vector Ԧ𝑝 (a distribution over all possible actions)

• Value 𝑣 (an estimate of the probability of winning from this state)

 intuition

• Monte Carlo Tree Search (MCTS) to build ad hoc search tree
• MC: tree not fully grown  only likely branches get explored

• (Chosen branch can be reused for next move for computational savings)

 tactics

How to chose each move
• Perform MCTS search on ad-hoc built tree

(using neural network for initial intuition if a move is good  see next slide)

• Play move most often taken by search (max(𝑁))

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

Perform a MCTS search
I.e., provide the basis for a move

• Create (empty or partly re-used) tree with root 𝑠𝑡

• Perform 1,600 simulations:
(one simulation = one traversal of current tree until yet unexpanded leaf node or terminal node is hit)

1. Start at 𝑠 = 𝑠𝑡

2. Traverse tree:

while 𝑠 is not a leaf node: choose 𝑎 that maximizes 𝑄 + 𝑈
(𝑄 is the current mean value of 𝑠 over all simulations in this search;

𝑈 is high if 𝑠 has high prior probability 𝑝 from the neural net, or hasn’t been explored much (small 𝑁);

 𝑈 dominates at the beginning of a search; as the branch gets explored, 𝑄 becomes important)

3. Expand tree: query neural net for Ԧ𝑝, v = 𝑓𝜃 𝑠
𝑁 = 0, 𝑊 = 0, 𝑄 = 0, 𝑝 = Ԧ𝑝𝑎

4. Backup: update statistics of each visited node:

𝑁 = 𝑁 + 1, 𝑊 = 𝑊 + v, 𝑄 = 𝑊/𝑁

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

3. TRAINING THE POLICY/VALUE NETWORK

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

Create experience by selfplay
(=Evaluate the current policy)

1. Initialize 𝑓𝜃 randomly

2. Play 25,000 games against yourself
• Use MCTS and current best 𝑓𝜃 for both player’s moves

• For each move, store
• game state (see figure ),

• search probabilities from MCTS (𝜋𝑡 ∼ 𝑁 for all actions of 𝑠𝑡),
• winner (z = ±1 from perspective of current player)

3. Trigger retraining ( see next slide), goto 2

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

Retrain neural network
(=Improve the current policy)

1. Experience replay: sample mini-batch of 2,048 positions from last 500,000 self-play games

2. Retrain 𝑓𝜃 on this batch using supervised learning:
• Input: game states

• Output: move-probabilities 𝑝 (dropping vector notation for simplicity), value 𝑣
• Labels: search-probabilities 𝜋, actual winner 𝑧
• Loss: cross-entropy between 𝑝, 𝜋 + MSE between 𝑣, 𝑧 + 𝐿2-regularization of 𝜃

3. Trigger evaluation ( see next slide) after 1,000 training loops, goto 2

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

Evaluate current network

1. Play 400 games between current best vs. latest 𝑓𝜃
• Choose each move by MCTS and respective network

• Play deterministically (no additional exploration  see below)

2. Replace best network with latest 𝑓𝜃 if the latest wins ≥ 55% of matches

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

Important RL concepts showcased here
To be detailed elsewhere

• Formal framework: Markov decision processes (MPDs)

• The RL problem: observations vs. states, learning vs. planning, prediction & control

• Ingredients to a solution: model, value function (v: state-value / q: action-value), policy

• Methods: dynamic programming (policy iteration), Monte Carlo, temporal difference learning

• RL & function approximation: general instability, experience replay, target networks

• Exploration vs. exploitation: optimistic initialization (upper confidence bounds), noise on priors

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

Where’s the intelligence?
Man vs. machine

• Alpha(Go) Zero learns without human intervention from scratch (pure selfplay & the rules)
 strong point for capabilities of RL

• Alpha(Go) Zero is considerably more simple/principled than previous approaches
 good ideas are usually simple and intuitively right (the reverse is not necessarily true!)

• Recently*, OpenAI showed similar fascinating performance on Dota2, and DeepMind on

Quake III Arena**
 RL has made big progress and seems fit for real applications beyond simulations

• Yet***, solutions are still hand-crafted per use case and suffer from extreme sample

inefficiency and training instabilities
 Training takes very long even on server hardware, debugging is frustrating, success is fragile

*) See https://blog.openai.com/openai-five/ and https://blog.openai.com/learning-dexterity/

**) See https://deepmind.com/blog/capture-the-flag/

***) See https://www.alexirpan.com/2018/02/14/rl-hard.html and http://amid.fish/reproducing-deep-rl

https://blog.openai.com/openai-five/
https://blog.openai.com/learning-dexterity/
https://deepmind.com/blog/capture-the-flag/
https://www.alexirpan.com/2018/02/14/rl-hard.html
http://amid.fish/reproducing-deep-rl

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

Review

• Reinforcement learning (RL) is “learning to act” – a general method for

“sequential decision making”

• Most notable differences from unsupervised & supervised ML:
• no “data set”

• agent learns from interaction with environment and sparse rewards

 less learning signal

 experience is highly correlated and not i.i.d.!

 yet:

• Alpha Zero uses an elegant RL algorithm based on
• selfplay (for experience generation)

• MCTS tree search (to plan ahead in a principled way)

• function approximation using deep learning (to use intuition about board states to

guide/focus the tree search)

• Read the original publication, it is worth it (clear, concise, precise, complete):
https://www.nature.com/articles/nature24270

https://www.nature.com/articles/nature24270

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Alpha Zero overview
Source: https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

27

Pseudo code – training 𝝅
Source: https://web.stanford.edu/~surag/posts/alphazero.html

def policyIterSP(game):

nnet = initNNet() #initialise random neural network

examples = []

for i in range(numIters):

for e in range(numEps):

#collect examples from this game

examples += executeEpisode(game, nnet)

new_nnet = trainNNet(examples)

#compare new net with previous net

frac_win = pit(new_nnet, nnet)

if frac_win > threshold:

nnet = new_nnet #replace with new net

return nnet

def executeEpisode(game, nnet):

examples = []

s = game.startState()

mcts = MCTS() #initialise search tree

while True:

for _ in range(numMCTSSims):

mcts.search(s, game, nnet)

#rewards can not be determined yet

examples.append([s, mcts.pi(s), None])

#sample action from improved policy

a = random.choice(len(mcts.pi(s)), p=mcts.pi(s))

s = game.nextState(s,a)

if game.gameEnded(s):

examples = assignRewards(examples, game.gameReward(s))

return examples

def search(s, game, nnet):

if game.gameEnded(s): return -game.gameReward(s)

if s not in visited:

visited.add(s)

P[s], v = nnet.predict(s)

return -v

max_u, best_a = -float("inf"), -1

for a in range(game.getValidActions(s)):

u = Q[s][a] + c_puct*P[s][a]*sqrt(sum(N[s]))/(1+N[s][a])

if u>max_u:

max_u = u

best_a = a

a = best_a

sp = game.nextState(s, a)

v = search(sp, game, nnet)

Q[s][a] = (N[s][a]*Q[s][a] + v)/(N[s][a]+1)

N[s][a] += 1

return –v

https://web.stanford.edu/~surag/posts/alphazero.html

