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Outline
• Learning to act

• Example: DeepMind’s Alpha Zero

• Training the policy/value network

Based on material by 

• David Silver, DeepMind

• David Foster, Applied Data Science

• Surag Nair, Stanford University
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Teaser

See https://youtu.be/tXlM99xPQC8

https://youtu.be/tXlM99xPQC8


Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

5

1. LEARNING TO ACT
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Reinforcement learning (RL)

Agent learns by interacting with a stochastic environment
 Science of sequential decision making

Many faces of reinforcement learning
• Optimal control (Engineering)

• Dynamic Programming (Operations Research)

• Reward systems (Neuro-science)

• Classical/Operant Conditioning (Psychology)

Characteristics
• No supervisor, only reward signals

• Feedback is delayed

• Trade-off between exploration & exploitation

• Sequential decisions: actions effect observations (non i.i.d.)

𝑎𝑡

𝑟𝑡

𝑜𝑡
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Application areas

• Automated vehicle control
 An unmanned helicopter learning to fly and perform stunts

• Chat bots
 Agent figuring out how to make a conversation

• Medical treatment planning
 Planning a sequence of treatments based on the effect of past treatments

• Game playing
 Playing backgammon, Atari Breakout, Tetris, Tic Tac Toe

• Data Center Cooling
 https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

• Database query optimization
 J. Ortiz et al., “Learning State Representations for Query Optimization with Deep Reinforcement Learning”, DEEM’2018

• Learning new machine learning algorithms
 https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/

…and more
 see https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry, 

https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/
https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry
https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/
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2. EXAMPLE: DEEPMIND’S ALPHA ZERO
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The game of Go

Properties
• Perfect-information, deterministic, two-player, turn-based, zero-sum game

• Played on a 19x19 board, alternate moves between black and white 

• Two possible results: win or loss

• Considered a grand challenge for AI due to vast search space (~10170 states; chess: 1050)

Rules
• Each turn, a stone of the player’s color is put on an intersection of the board (or “pass”)

• A stone (or connected group of stones) fully and directly surrounded by stones of the 

other color is removed from the board (“captured”)

• It is not allowed to recreate a former board position

• Two consecutive passes end the game

• The player having more “area” wins
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AlphaGo, AlphaGo Zero & Alpha Zero

Interesting: playing strength ⇧, generality ⇧, complexity ⇩ (over time)
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Goal: a policy

Policy
• Policy 𝜋 = 𝑝 (𝑎𝑡|𝑠𝑡) maps (probabilistically) from the current state 𝑠𝑡 to action 𝑎𝑡
 can be represented by a function approximator (e.g., a neural network)

• Given the optimal policy 𝜋∗, one can behave optimally in the environment
 but optimality in complex strategic situations is difficult to achieve

 lookahead search makes tactical behavior easier

𝑎𝑡

𝑟𝑡

𝑜𝑡
𝝅 = 𝒑(𝒂𝒕|𝒔𝒕)

𝑠𝑡
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Using a learned policy in Alpha Zero
I.e., play a move given a policy

Goal
• In state 𝑠𝑡, chose next move 𝑎𝑡

Ingredients
• Neural network Ԧ𝑝, v = 𝑓𝜃(𝑠𝑡) that outputs two quantities

• Policy vector Ԧ𝑝 (a distribution over all possible actions)

• Value 𝑣 (an estimate of the probability of winning from this state)

 intuition

• Monte Carlo Tree Search (MCTS) to build ad hoc search tree
• MC: tree not fully grown  only likely branches get explored

• (Chosen branch can be reused for next move for computational savings)

 tactics

How to chose each move
• Perform MCTS search on ad-hoc built tree

(using neural network for initial intuition if a move is good  see next slide)

• Play move most often taken by search (max(𝑁))
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Perform a MCTS search
I.e., provide the basis for a move

• Create (empty or partly re-used) tree with root 𝑠𝑡

• Perform 1,600 simulations: 
(one simulation = one traversal of current tree until yet unexpanded leaf node or terminal node is hit)

1. Start at 𝑠 = 𝑠𝑡

2. Traverse tree:

while 𝑠 is not a leaf node: choose 𝑎 that maximizes 𝑄 + 𝑈
(𝑄 is the current mean value of 𝑠 over all simulations in this search;

𝑈 is high if 𝑠 has high prior probability 𝑝 from the neural net, or hasn’t been explored much (small 𝑁);

 𝑈 dominates at the beginning of a search; as the branch gets explored, 𝑄 becomes important)

3. Expand tree: query neural net for Ԧ𝑝, v = 𝑓𝜃 𝑠
𝑁 = 0, 𝑊 = 0, 𝑄 = 0, 𝑝 = Ԧ𝑝𝑎

4. Backup: update statistics of each visited node:

𝑁 = 𝑁 + 1, 𝑊 = 𝑊 + v, 𝑄 = 𝑊/𝑁
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3. TRAINING THE POLICY/VALUE NETWORK
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Create experience by selfplay
(=Evaluate the current policy)

1. Initialize 𝑓𝜃 randomly

2. Play 25,000 games against yourself
• Use MCTS and current best 𝑓𝜃 for both player’s moves

• For each move, store
• game state (see figure ), 

• search probabilities from MCTS (𝜋𝑡 ∼ 𝑁 for all actions of 𝑠𝑡), 
• winner (z = ±1 from perspective of current player)

3. Trigger retraining ( see next slide), goto 2
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Retrain neural network 
(=Improve the current policy)

1. Experience replay: sample mini-batch of 2,048 positions from last 500,000 self-play games

2. Retrain 𝑓𝜃 on this batch using supervised learning:
• Input: game states

• Output: move-probabilities 𝑝 (dropping vector notation for simplicity), value 𝑣
• Labels: search-probabilities 𝜋, actual winner 𝑧
• Loss: cross-entropy between 𝑝, 𝜋 + MSE between 𝑣, 𝑧 + 𝐿2-regularization of 𝜃

3. Trigger evaluation ( see next slide) after 1,000 training loops, goto 2
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Evaluate current network 

1. Play 400 games between current best vs. latest 𝑓𝜃
• Choose each move by MCTS and respective network

• Play deterministically (no additional exploration  see below)

2. Replace best network with latest 𝑓𝜃 if the latest wins ≥ 55% of matches
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Important RL concepts showcased here
To be detailed elsewhere

• Formal framework: Markov decision processes (MPDs)

• The RL problem: observations vs. states, learning vs. planning, prediction & control

• Ingredients to a solution: model, value function (v: state-value / q: action-value), policy

• Methods: dynamic programming (policy iteration),  Monte Carlo, temporal difference learning

• RL & function approximation: general instability, experience replay, target networks

• Exploration vs. exploitation: optimistic initialization (upper confidence bounds), noise on priors
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Where’s the intelligence?
Man vs. machine

• Alpha(Go) Zero learns without human intervention from scratch (pure selfplay & the rules)
 strong point for capabilities of RL

• Alpha(Go) Zero is considerably more simple/principled than previous approaches
 good ideas are usually simple and intuitively right (the reverse is not necessarily true!)

• Recently*, OpenAI showed similar fascinating performance on Dota2, and DeepMind on 

Quake III Arena**
 RL has made big progress and seems fit for real applications beyond simulations

• Yet***, solutions are still hand-crafted per use case and suffer from extreme sample 

inefficiency and training instabilities
 Training takes very long even on server hardware, debugging is frustrating, success is fragile

*) See https://blog.openai.com/openai-five/ and https://blog.openai.com/learning-dexterity/

**) See https://deepmind.com/blog/capture-the-flag/

***) See https://www.alexirpan.com/2018/02/14/rl-hard.html and http://amid.fish/reproducing-deep-rl

https://blog.openai.com/openai-five/
https://blog.openai.com/learning-dexterity/
https://deepmind.com/blog/capture-the-flag/
https://www.alexirpan.com/2018/02/14/rl-hard.html
http://amid.fish/reproducing-deep-rl
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Review

• Reinforcement learning (RL) is “learning to act” – a general method for 

“sequential decision making”

• Most notable differences from unsupervised & supervised ML: 
• no “data set”

• agent learns from interaction with environment and sparse rewards

 less learning signal

 experience is highly correlated and not i.i.d.!

 yet: 

• Alpha Zero uses an elegant RL algorithm based on 
• selfplay (for experience generation)

• MCTS tree search (to plan ahead in a principled way)

• function approximation using deep learning (to use intuition about board states to 

guide/focus the tree search)

• Read the original publication, it is worth it (clear, concise, precise, complete): 
https://www.nature.com/articles/nature24270

https://www.nature.com/articles/nature24270
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APPENDIX



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

26

Alpha Zero overview
Source: https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0
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Pseudo code – training 𝝅
Source: https://web.stanford.edu/~surag/posts/alphazero.html

def policyIterSP(game):

nnet = initNNet() #initialise random neural network

examples = []    

for i in range(numIters):

for e in range(numEps):

#collect examples from this game

examples += executeEpisode(game, nnet)

new_nnet = trainNNet(examples)

#compare new net with previous net                  

frac_win = pit(new_nnet, nnet)

if frac_win > threshold: 

nnet = new_nnet #replace with new net            

return nnet

def executeEpisode(game, nnet):

examples = []

s = game.startState()

mcts = MCTS() #initialise search tree

while True:

for _ in range(numMCTSSims):

mcts.search(s, game, nnet)

#rewards can not be determined yet

examples.append([s, mcts.pi(s), None])

#sample action from improved policy 

a = random.choice(len(mcts.pi(s)), p=mcts.pi(s))

s = game.nextState(s,a)

if game.gameEnded(s):

examples = assignRewards(examples, game.gameReward(s)) 

return examples

def search(s, game, nnet):

if game.gameEnded(s): return -game.gameReward(s)

if s not in visited:

visited.add(s)

P[s], v = nnet.predict(s)

return -v

max_u, best_a = -float("inf"), -1

for a in range(game.getValidActions(s)):

u = Q[s][a] + c_puct*P[s][a]*sqrt(sum(N[s]))/(1+N[s][a])

if u>max_u:

max_u = u

best_a = a

a = best_a

sp = game.nextState(s, a)

v = search(sp, game, nnet)

Q[s][a] = (N[s][a]*Q[s][a] + v)/(N[s][a]+1)

N[s][a] += 1

return –v

https://web.stanford.edu/~surag/posts/alphazero.html

