aw

Beyond ImageNet – **Deep Learning in Industrial Practice**

4th Swiss Conference on Data Science, Bern, June 16, 2017 Thilo Stadelmann & Oliver Dürr

Zürcher Hochschule für Angewandte Wissenschaften

Introduction → Use Cases → Lessons Learned

Deep Learning in a nutshell

Deep learning (DL) @ ZHAW Datalab

Initial group of 10+ researchers to start research line in 2014

- > 11 projects since, 9 of which with industry participation (19 month duration on average, >7M CHF overall volume, several publications)
- > 20 students in thesis projects per semester (Bachelor & Master level)
- 125k CHF investment in GPU resources up to fall 2017
- New modules in Bachelor, Master, and professional education curricula

Zürcher Hochschule

DL History: ImageNet competition starts hype

zh aw

2015: computers *learned to see*

4.95% Microsoft (February 6, 2015) → surpassing human performance of 5.10%

4.80% Google (February 11, 2015)

4.58% Baidu (May 1, 2015)

3.57% Microsoft (December 10, 2015)

Zürcher Fachhochschule

A. Krizhevsky uses a convolutional deep neural network (CNN) for the first time.

Convolutional Neural Networks Building blocks forming a sophisticated architecture

Source: <u>http://vision03.csail.mit.edu/cnn_art/data/single_layer.png</u>

Micro building blocks: layers

Fc8: Object Classes

Zürcher Hochschule für Angewandte Wissenschaften

E.g., convolutional layers

Strong in finding local patterns (i.e., 2D structure)

 \rightarrow based on the idea of filtering:

Dumoulin, Visin, «A guide to convolution arithmetic for deep learning », 2016

- Translation- and scale invariant
 → through down sampling (strided conv's or max pooling)
- Fast to compute
 → all possible filter locations share the 3 × 3 weights

Alternatives

• Recurrent layers, different output layers, ...

→ for temporal relationships, regression, distribution matching, ...

Zürcher Fachhochschule

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts

Based on https://docs.gimp.org/en/plug-in-convmatrix.html

Macro building block: whole architectures

PLAYING WITH DEEP LEARNING IS LIKE Playing with legos, you can grab all These modules of lego pieces and build Things

- Nando de Freitas Senior Staff Research Scientist, Google

techemergence

Zürcher Hochschule für Angewandte Wissenschaften

What makes CNNs work?

More history

- Biological plausibility known since 1959 (Hubel & Wiesel)
- First CNN ("Neocognitron") in 1980 (Fukushima) •
- Automatic bank check reading in 1998 (LeCun et al.) ٠
- But: General breakthrough in computer vision only in 2012 (see the ve) ٠

...most of this progress is not just the result of more powerful hardware,

Szegedy et al., "Going

Deeper with Convolutions", 2014

larger datasets and bigger models, but mainly a consequence of new ideas, algorithms and improved network architectures"

What s different now?

- **Big Data** (labeled images via the web)
- **Compute power** (consumer GPUs, i.e. NVIDIA's GeForce series)
- **Algorithmic improvements**
 - → Regularization: **Dropout**
 - → Optimization: ADADELTA
 - → Trainability ("gradient flow"): Batchnorm, ReLU
 - → Exploitation of available data: Augmentation, transfer learning
 - → More powerful architectures: ResNet, Fully Convolutional NN, Generative Adversarial N, YOLO, ...

Zürcher Hochschule für Angewandte Wissenschaften

Introduction → Use Cases → Lessons Learned

From image classification to paths less travelled

Case Study I (Limited Resources) Face Recognition on Raspberry Pi

Architecture and Training Set

Training indoors

Approx. 40 images of 6 persons

Prediction done on Raspberry Pi

Testing outdoors

Forward pass

.

...predict on Raspberry Pi

Results

Method	Accuracy	Classification Time [msec]	Enrollment Rate N _e /N	Total Time Per Face [msec]
CNN (p ₀ =0.85)	99.59%	105 +/- 8	250/278	529 +/- 64
CNN (p ₀ =0.00)	97.48%	105 +/- 8	278/278	529 +/- 64
Fisherfaces (no al.)	88.5%	54 +/- 11	278/278	511 +/- 89
Fisherfaces (al.)	96.87%	535 +/- 89	192/278	1006 +/- 18

- Faster then traditional pipeline
- No alignment needed
- Alternative implementation on Android (BA Thesis)
- Similar: BA Thesis for classification of weasel

Dürr, O., Pauchard, Y., Browarnik, D; Axthelm, R.; Loeser, M. (2015): *Deep Learning on a Raspberry Pi for Real Time Face Recognition*. EG 2015 – Posters 11-12.

Apodemus speciosus

Case Study II HCS Screening

Phenotypic High Content Screening

- Compounds (potential drugs) are placed in a well (test-tube)
- Some compounds make cell to react in a particular way (change the phenotype)
- Interest in compounds which change the phenotype in a particular way

Phenotypic High Content Screening: Robotics at Scale

One well (close up)

Small screen (by industry standards)

- 20 plates
- 384 wells
- 900 cells per well

~7 million cells in the screen (350 GB)

➔ need for an automatic approach...

Classical Image Analysis workflow for HCS

Deep Learning-based workflow of HCS

- No time-consuming tuning of image analysis algorithms
- No scripting expertise required
- Single convenient process from start to finish
- Classify training data by simple drag-and-drop
- No tuning of experiment protocols to fit image analysis needs
- Reduction of project times !!

Comparison

- Current Project with Genedata AG funded by the Swiss Government (CTI, 300+ kCHF) ٠
- Dürr, O., and Sick, B. "Single-cell phenotype classification using deep convolutional neural networks". ٠ Journal of biomolecular screening 21, 9 (2016), 998-1003

Unsupervised Learning for fast creation of training set

- We can help even more by pre sorting
 - Use a network trained on ImageNet (cats&dogs) VGG16
 - Feed images of cells into network
 - Use intermediate vector (FC7) as input to tSNE

Case Studies III-IV

Condition Monitoring

Deviation from normal condition infered by a variational auto encoder

- CTI Project Data Driven Condition Monitoring DaCoMo (CTI, 350+ kCHF)
- Stadelmann, T; Tolkachev V; Sick, B; Stampfli, Dürr, O; J. "Beyond ImageNet Deep Learning in Industrial Practice" submitted to *Applied Data Science* Braschler, M; Stadelmann, T.; Stockinger, K. (Eds.) Springer

Zürcher Hochschule für Angewandte Wissenschaften

23

Learning to segment: Vision-based newspaper article segmentation

Solution:

Results:

Zürcher Fachhochschule

Zürcher Hochschule für Angewandte Wissenschaften

Introduction → Use Cases → Lessons Learned

DL using limited resources, and other advice

Beyond ImageNet? We've successfully trained non-classical DL models to ...

- Learn to detect novelties / anomalies •
 - Task: predictive maintenance
 - Approach: autoencoders
 - Training data: ca. 400 time points per machine
 - Satisfaction: medium (worked well for faults humans can recognize; fails for faults humans don't see coming)

60

40

Learn to segment ٠

- Task: segmentation of newspaper pages into articles
- Approach: fully convolutional neural networks
- Training data: ca. 500 fully labeled pages, ca. 5'000 partially labeled pages
- Satisfaction: high (much better than all other automatic approaches; ca. 70% "felt" accuracy)

- Learn to use existing networks ٠
 - Task: create labeled data for training
 - Approach: use existing network as feature extractor, then cluster
 - Satisfaction: high (faster human interaction for creating training data)

Tips for working with limited data

Transfer learning

 Use pre-trained networks designed for a "close enough" task (e.g. VGG-16 for image classification)

• Trainable architectures

- Use architectures like Inception or ResNet that adapt their complexity to the available data
- Use network compression (less parameters → less data needed)

Data augmentation

- Provide variants of original data that
 - (a) you can create randomly on the fly
 - (b) resemble distortions / alterations relevant and realistic in practice

Unlabeled data

- Employ semi-supervised learning
- Use high-level features created by a first net to do a clustering / t-SNE embedding
 → This allows to label lots of data after a short inspection

Important lessons learned

• A good baseline

- For a new use case, start from an easy & well understood baseline model (i.e., one closely resembling a published architecture and task)
- Increase the complexity of the architecture slowly.

• A suitable loss function

- Ensure to provide a loss function which **really describes the problem** to be solved
- Especially useful if the task is not classification (e.g., clustering)

- Debugging
 - A first DL model on a completely new task and data set usually does not work
 - Options:
 - Hand-calculating training equations for toy examples → bugs e.g. in the loss function?
 - Visualizing the pre-processed data → bug in data loading?
 - Visualizing expected loss values → does it learn at all?
 - Inspecting misclassified training examples → get intuition into what goes wrong

Zürcher Hochschule

Conclusions

- Solid technical foundations and a growing base of use cases
 - → the technology is ready to apply to new areas (in pattern recognition)
- DL tech transfer is really fast: ~3 month from publication to industry
- Success (on non-traditional use cases) depends on experience & experiments

How to find us

- Dr. Thilo Stadelmann
- Head of ZHAW Datalab, Vice President SGAICO, Board Data+Service
- thilo.stadelmann@zhaw.ch, @thilo_on_data
- 058 934 72 08
- <u>www.zhaw.ch/~stdm</u>

- Dr. Oliver Dürr
- Deputy head of ZHAW Datalab, Senior Lecturer Statistical Data Analysis
- <u>oliver.duerr@zhw.ch</u>
- 058 934 67 47
- <u>www.zhaw.ch/~dueo</u>

Swiss Alliance for Data-Intensive Services

Zürcher Hochschule für Angewandte Wissenschaften

APPENDIX

CNN for HCS

No. of Images/Feature Maps ×					
Layer Description	Their Dimensions	No. of Weights			
Input	5 × 72 × 72				
Convolution (3 × 3)	32 × 70 × 70	32*9*5			
Convolution (3 × 3)	32 × 68 × 68	32*9*32			
Max pooling (2 × 2)	32 × 34 × 34				
Convolution (3 × 3)	64 × 32 × 32	64*9*32			
Convolution (3 × 3)	64 × 30 × 30	64*9*64			
Max pooling (2 × 2)	64 × 15 × 15				
Convolution (3 × 3)	128 × 13 × 13	128*9*64			
Convolution (33)	128 × 11 × 11	128*9*128			
Max pooling (2 × 2)	128 × 6 × 6				
Fully connected	200	200*128*6*6			
Fully connected	200	200*200			
Fully connected	50	50*200			
Output	4	4*50			

Table 1. Architecture of the Convolutional Neural Network.

Newer Versions use dropout but no batch-norm

More non-traditional DL applications

... beyond image classification

Learn to cluster

- Task: cluster 1s long speech utterances into an unknown number of unknown speakers
- Approach: CNN/RNN to extract embeddings for subsequent hierarchical clustering
- Training data: ca. 20s from 100 speakers
- Satisfaction: high (achieved state of the art, doesn't work end-to-end yet)

	[L6: max-pooling (4x4)]	L12: softmax		
	L5: batch-norm ($\epsilon=10^{-9}\alpha=0.1$)	L11: dense (#N _a)		
	L4: convolution (#64)(FxT)	L10: dense (#10Ng/2)	labela	
	L3: max-pooling (4x4)	L9: dropout (50%)	100610	
	L2: batch-norm ($r=10^{-4}\alpha=0.1$)	L8: batch-norm (r=10 ⁻⁴ a=0.1)		
0 20 40 60 80 spectra (2 second)	L1: convolution (#32)(FxT)	L7: dense (#10Ng)		
spectrogram	convolution layers	dense layers		