A Winterthur Perspective on Data Science and Machine Learning

Thilo Stadelmann, 29th of January, 2016

Zürcher Fachhochschule

(explained later upon request)

Datalab \rightarrow **Projects** \rightarrow **ML**

The ZHAW Data Science Laboratory

What is Data Science? Natural Language **Enables Data Products** Feature Processing ➔ Applied Science Engineering Information ➔ Interdisciplinary Retrieval Artificial **Big Data** Scientific **Statistics** Intelligence Method Data Data Science := "Unique Warehousing blend of skills from Databases **Analytics** Predictive Simulation analytics, engineering & Modelina **Data Management** communication aiming at Data & Text generating value from the Machine Learning Minina Mashups data itself [...]" Business (ZHAW Datalab*) Intelligence scientific curious Programming mindset creative & Complexity & Data Scientist expressive Parallel Processing pragmatic business-Technology thinking Visualization Cloud / Distributed Art & Design Systems Impartation Communication Privacy & Security **Data Product Design ICT** Infrastructure Ethics & Entrepreneurship Values Law Domain Service Engineering Knowledge Zürcher Fachhochschule 3

*) Stadelmann, Stockinger, Braschler, Cieliebak, Baudinot, Dürr and Ruckstuhl (2013). Applied Data Science in Europe . ECSS 2013, Amsterdam.

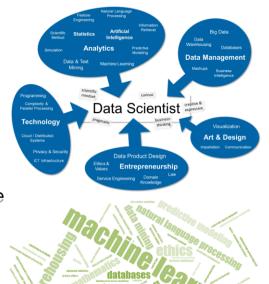
A Personal Story

- Fascinated by AI
- Studied computer science
- Researched ML & IR during Ph.D.
- Used DWH & DM professionally
- Difficult to briefly explain professional interests
- → Excited about term «Data Scientist»

ZHAW Datalab: Est. 2013

Forerunner

- One of the first interdisciplinary data science initiatives in Europe
- · One of the first interdisciplinary centers at ZHAW


Foundation

- People: ca. 60 researchers from 5 institutes / 3 departments opted in
- Vision: Nationally leading and internationally recognized center of excellence
- Mission: Generate projects through critical mass and mutual relationships
- Competency: Data Product design with structured and unstructured data

Success factors

- Lean organization and operation \rightarrow geared towards projects
- Years of successful pre-Datalab collaboration

Education

Undergraduate

• Involved in numerous courses of B.Sc. Programs: e.g., «Scripting» for industrial engineers

Graduate and post-graduate

- Several M. Eng. modules: Machine Learning and Predictive Modeling in Swiss-wide program
- Actively seeking collaborations: Ambitions for Data Science M.Sc. and Ph.D. programs

Professional education

- Diploma of Advanced Studies (DAS) in Data Science
- Planned Master of Advanced Studies (MAS) in Data Science
- Sole technical oriented data science program in Switzerland!
- Completely booked for fall 2016, few free seats for fall 2017

Zürcher Hochschule für Angewandte Wissenschaften

Community Outreach

data service

Generating impact

- Leader of National Initiative: Swiss Alliance for Data-Intensive Services
- Workshop organization: e.g. SwissText 2016 (Swiss conference on text understanding)
- Keynotes: e.g. IBM Business Connect 2013, SwissICT 2014, SAS Forum 2016
- Overview publications: e.g. book on applied data science (to appear with Springer)

SDS – Swiss Conference on Data Science

- SDS|2014: ca. 120 participants (planned 60)
- SDS|2015: ca. **190 participants**, ca. 45'000 CHF budget
- SDS|2016: planned, ca. **79'000 CHF budget**, several international keynote speakers invited

8

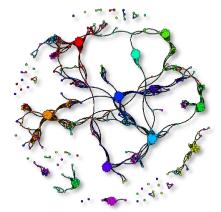
Zürcher Hochschule für Angewandte Wissenschaften

R&D

- > 450'000 CHF in first half year
- > 3.3 Mio. CHF since foundation
- Overall turnover of Datalab projects:
 > 8 Mio. CHF in < 3 years

Spin-offs

- Prognosik a ZHAW IAS spin-off
- SPINNINGBYTES a joint spin-off from ZHAW and ETH Zurich


Topics

- E-Health (e.g. CTI application «SenSkin»)
- Industry 4.0 (e.g., CTI project «DaCoMo»)
- FinTech (e.g., CTI application «DatFisMo»)
- Mobility (e.g., project «Placebook»)
- Sustainability (e.g., CTI project «EAT-IT CO₂»)
- Technology (e.g., CTI project «Zurich NoSQL»)

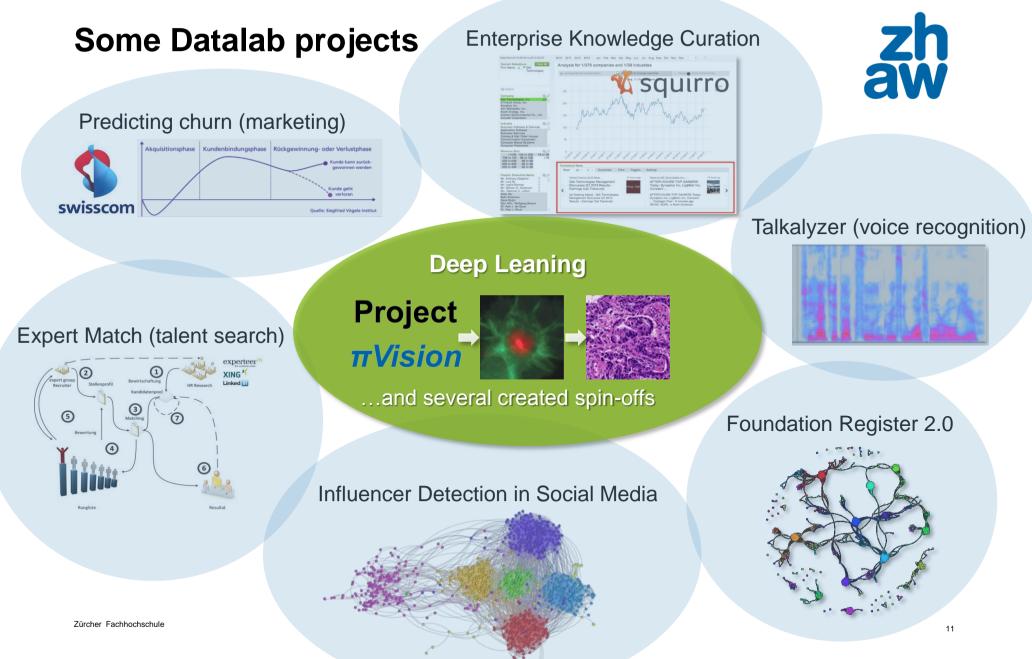
• .

Figure: Visualizing the relationships of all Swiss foundations, based on the similarity of goals as expressed in their statutes. A proud collaboration of InIT and IDP within CTI project «Stiftungsregister SR 2.0»

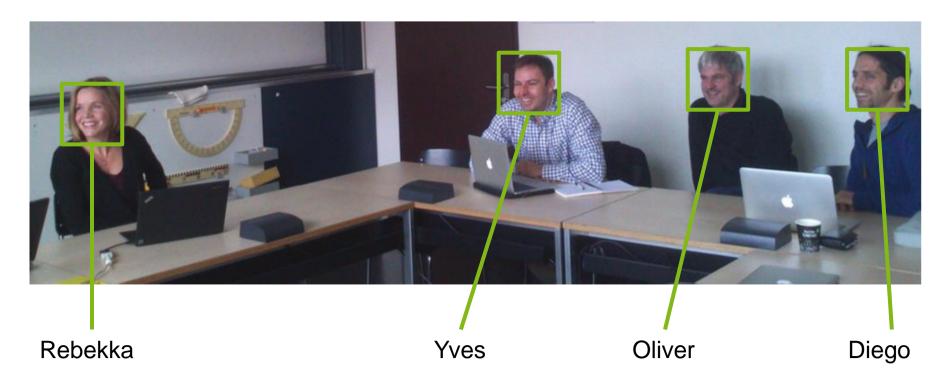
3 Years of Datalab: Lessons Learned

PRO

- We **backed the right horse**: Buzzwords come and go, disciplines stay
- Lean is beautiful: create an opportunity space, and that's it
- A **«coalition of the willing»** helps settle power issues in interdisciplinary, matrixlike structures


- CON
- Interdisciplinary networks stretch official processes and structures
- Challenging to engage a larger number
 of coworkers

Datalab \rightarrow **Projects** \rightarrow **ML**



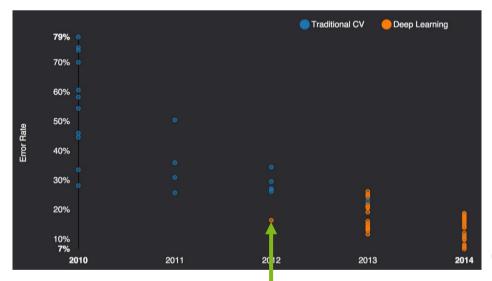
Project Examples – A Deep Learning Story

Beginning: The π -Vision Project (internal seed funding)

Idea: Bring face recognition to a Raspberry Pi, foster exchange and knowledge.

Introducing Deep Learning

Half way through the project, during a cup of tea in the cafeteria...



Background I: ...what is he talking about? The ImageNet competition

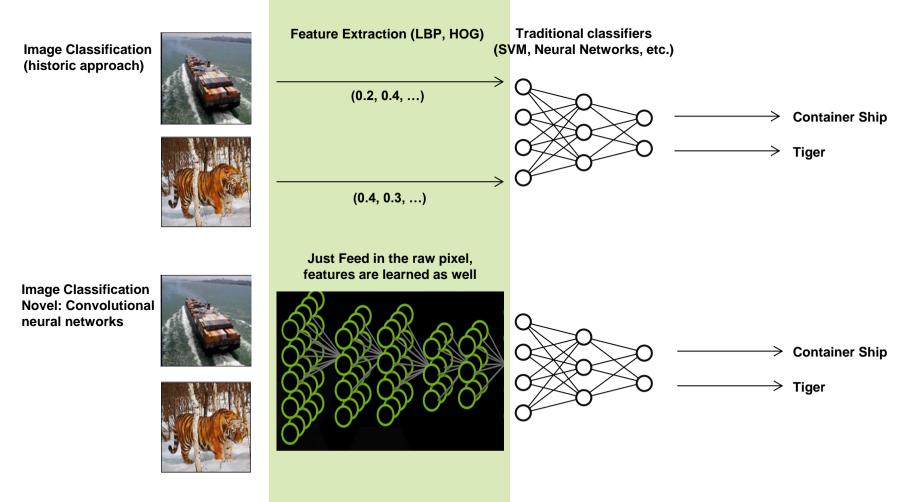
1000 Classes1 Mio. samples

Zürcher Fachhochschule A. Krizhevsky uses first CNN in 2012. Trained on Gaming Graphic Cards

2015: It gets tougher

4.95% Microsoft (Feb 6)

 \rightarrow surpassing human performance of 5.1%


4.8% Google (Feb 11)

4.58% Baidu (May 11)

→ Computers learn to identify objects

Background II: Key idea "feature learning"

für Angewandte Wissenschaften

Adapting feature learning for Raspberry Pi Approach

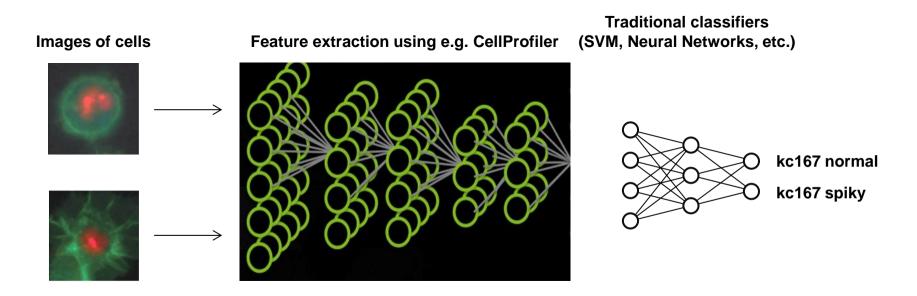
- Changed architecture from traditional to novel approach
- Caring for a small (embedded) target system
 - Train on GPU (Datalab Servers with Gaming Graphic Cards)
 - Run on Raspberry Pi

Learn on GPU

Run on Raspberry Pi



Zürcher Hochschule


Adapting feature learning for Raspberry Pi Results

Dürr, Pauchard, Browarnik, Axthelm, Loeser (2015): *Deep Learning on a Rasperry Pi for Real Time Face Recognition*. EG 2015 – Posters 11-12.

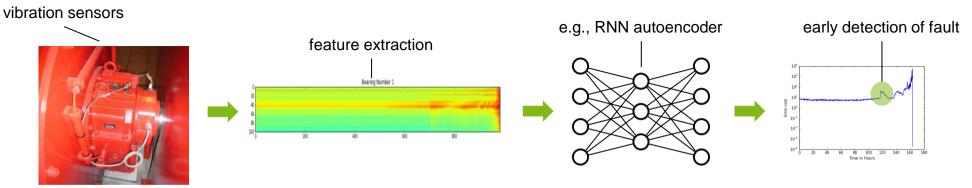
Further applications I Talking to a biologist

Dürr, Sick (2015): *Deep learning: A novel approach to classify phenotypes in high content screening*, Swiss Image Based Screening Conference.

Dürr, Sick (2016): Single cell phenotype classification using deep convolutional neural networks, J. of Biomolecular Screening.

Further applications II Deep Learning picked up in teaching

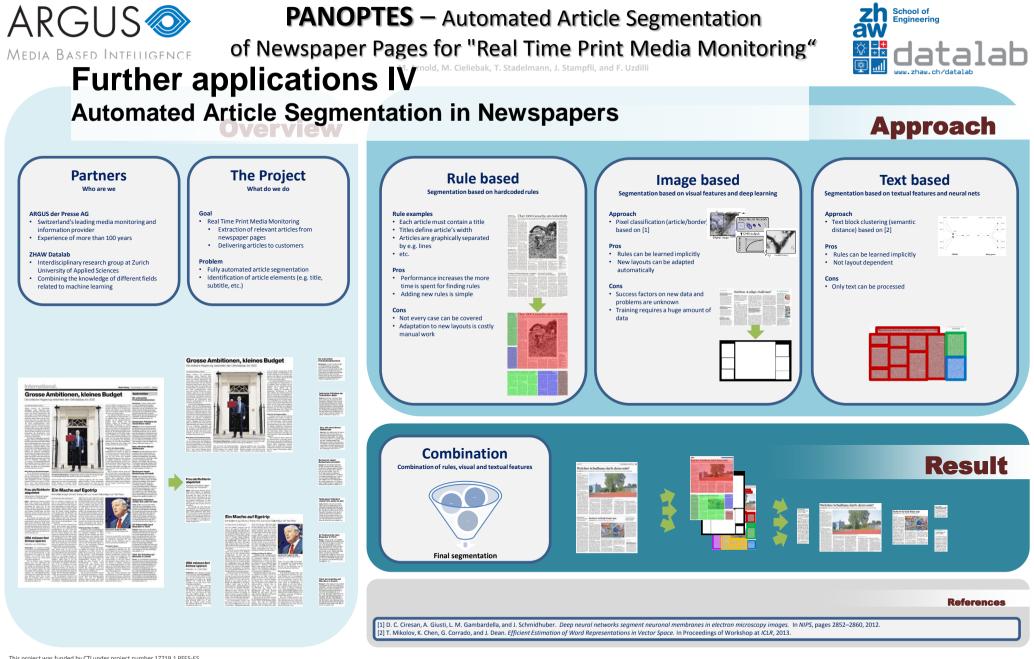
CAS	 Data Science Applications, module «Machine Learning» 	
M.Eng.	 TSM_MachLe «Machine Learning» 	
Thesis	 E. Murnia, M. Hirt: Top 10% in intl. Diabetes retinopathy Kaggle® competition (\$ 100k) G. Eyyi: Speaker identification 	
Thesis	 Y. Lukic, C. Vogt: Speaker clustering 	HERE


Further applications III Data-driven Condition Monitoring Project

Situation: Maintaining big (rotating) machinery is expensive, defect is more expensive

Goal: Schedule maintenance shortly before defect is expected, not merely regularly

Challenge: Develop an approach that adapts to each new machine automatically


Solution: Use machine learning approaches for anomaly detection to learn the normal state of each machine and deviations of it purely from observed sensor signals; the approach combines classic and industry-proven features with e.g. deep learning auto-encoders

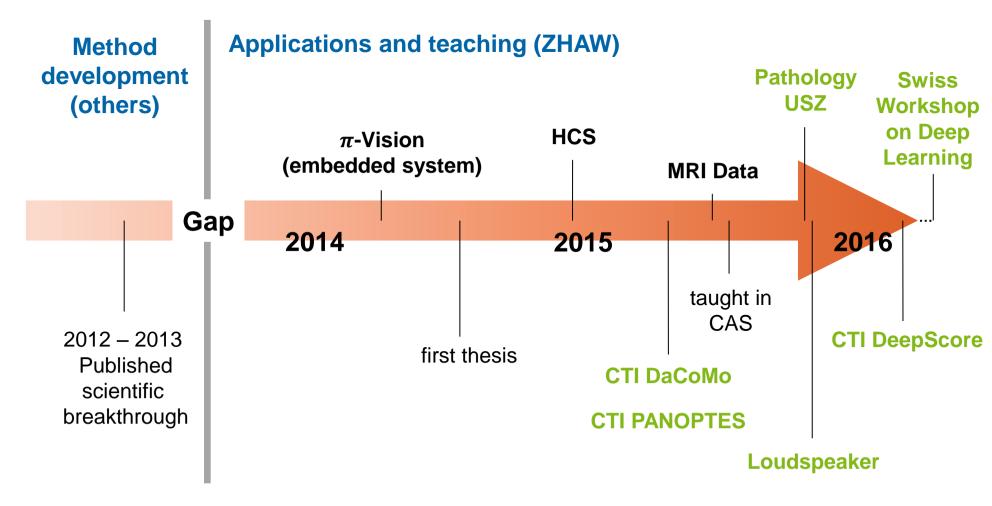
Zürcher Hochschule für Angewandte Wissenschaften

swiss group for artificial intelligen

This project was funded by CTI under project number 17719.1 PFES-ES

Federal Department of Economic Affairs.

Commission for Technology and Innovation CTI Innovation Promotion Agency


Education and Research EAER

eizerische Eidgengssenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

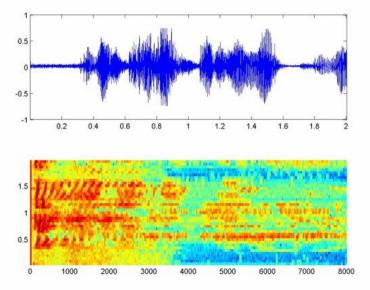
Swiss Confederation

Further applications V Timeline of Deep Learning @ Datalab

Datalab \rightarrow **Projects** \rightarrow **ML**

Open Machine Learning Questions: Sequential Learning & Inductive Biases

Open Question #1 Overcoming the Bag of Features Approach


Supervised Learning

	Incanter Dat	aset	
Sepal.Width	Petal.Length	Petal.Width	Species
3.5	1.4	0.2	setosa
3.0	1.4	0.2	setosa
3.2	1.3	0.2	setosa
3.1	1.5	0.2	setosa
3.6	1.4	0.2	setosa
3.9	1.7	0.4	setosa
3.4	1.4	0.3	setosa
3.4	1.5	0.2	setosa
2.9	1.4	0.2	setosa
3.1	1.5	0.1	setosa
3.7	1.5	0.2	setosa
3.4	1.6	0.2	setosa
3.0	1.4	0.1	setosa
3.0	1.1	0.1	setosa
4.0	1.2	0.2	setosa
4.4	1.5	0.4	setosa
3.9	1.3	0.4	setosa
3.5	1.4	0.3	setosa
3.8	1.7	0.3	setosa
3.8	1.5	0.3	setosa
3.4	1.7	0.2	setosa
		0.4	
	3.5 3.0 3.2 3.1 3.6 3.9 3.4 2.9 3.1 3.7 3.4 3.0 3.0 4.0 4.4 3.9 3.5 3.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5 1.4 0.2 3.0 1.4 0.2 3.2 1.3 0.2 3.1 1.5 0.2 3.6 1.4 0.2 3.9 1.7 0.4 3.4 1.4 0.3 3.4 1.5 0.2 2.9 1.4 0.2 3.1 1.5 0.1 3.7 1.5 0.2 3.4 1.6 0.2 3.0 1.1 0.1 3.0 1.1 0.1 4.0 1.2 0.2 4.4 1.5 0.4 3.9 1.3 0.4 3.5 1.4 0.3 3.8 1.7 0.3

Typical assumption on data:

• i.i.d.

Sequential Supervised Learning

Typical finding:

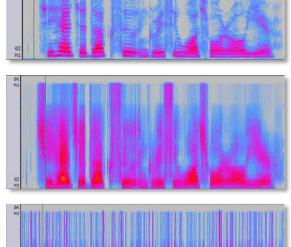
• Sequence information matters

Example: Voice Recognition Question #1

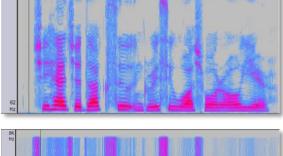
Temporal context matters

- Typical approaches are based on modeling the statistical distribution (GMM) of bag of features (MFCC)
- But: Voice emerges in chunks of ca. 120 ms length ٠
- Literature promises one order of magnitude improvement ٠ on correct dealing with this issue*

Problem description

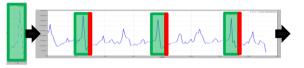

Zürcher Fachhochschule

Need to go from "feature vector" to "feature matrix" ٠


$$(x_1, x_2, \cdots, x_d) \rightarrow \begin{pmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{\Delta t,1} & \cdots & x_{\Delta t,d} \end{pmatrix}$$

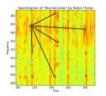
I.e., local structure of features has to be considered ٠

*) Stadelmann, Freisleben, "Unfolding Speaker Clustering Potential – A Biomimetic Approach", 2009

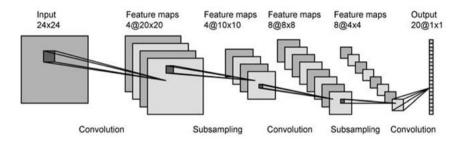


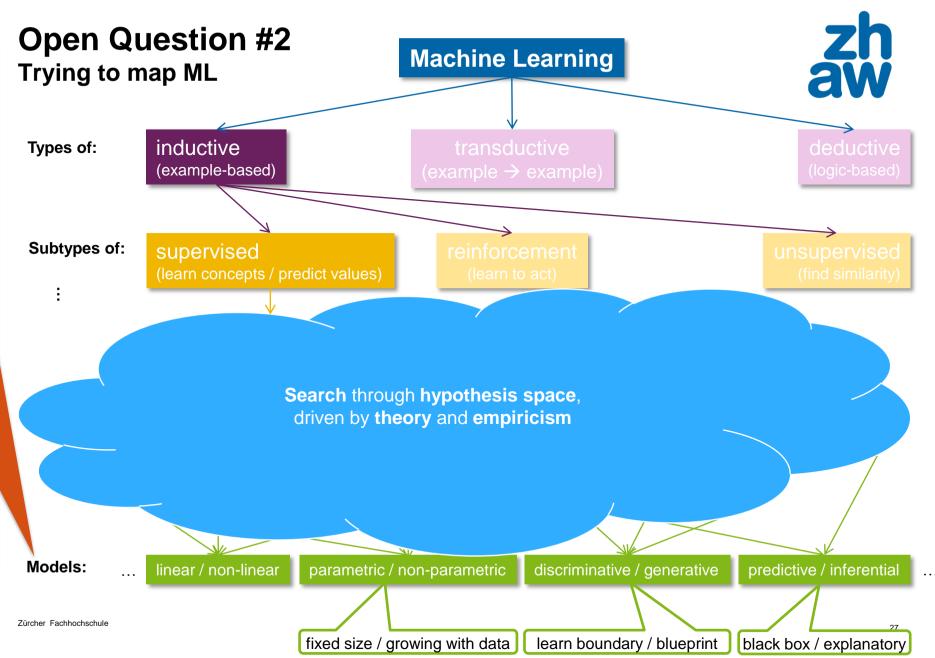
Why is this a fundamental, open question? Question #1

MULTIPLE USE CASES


• Food consumption forecasting for grocers

Music-OCR




Content-based music similarity

INSUFFICIENT SOLUTIONS

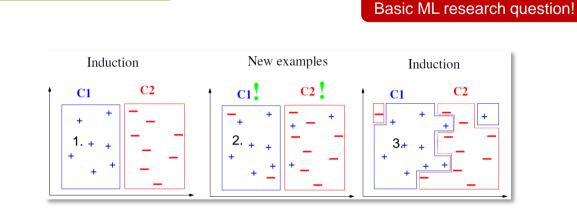
- δ / δδ features, other "super vectors"
 → yet another form of bags of features
- **Clustering**s of multi-dim patterns → problem of pattern **representation** remains
- CNN and other multi-dimensional models →are features like locality desirable?
- Sequence models like HMM/RNN →difficult to train, enough data?

Question #2

What makes Learning Algorithms learn?

Background: The goal of Machine Learning

• Discover general concepts from a limited set of examples (experience)


Methods are based on inductive reasoning

- Obtain general knowledge (a model) from specific information
- This is heuristic in nature (i.e., no well-founded theory)
- Most of the human learning is inductive

called the «inductive learning hypothesis»

→ Assumption: A model fitted to sufficiently large example set will generalize to unseen data

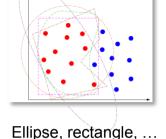
What is sufficient? Another

Zurich University

Background I: Learning as search through a hypothesis space \mathcal{H} Question #2

Hypothesis spaces

 \mathcal{H} contains all possible hypothesis that can be built with the chosen representation


Formal goal

٠

- Find the hypothesis $h^*(x, \theta) = \hat{y}$ that best fits the training data...
 - ...according to a loss function $L(h(x, \theta), y)$...
 - ... by searching the hypothesis space $\mathcal{H} = \{h(x, \theta) | \theta \in P\}$ (*P* is the set of all possible parameters)
 - That is: find $h^* = \underset{h \in \mathcal{H}}{\operatorname{arg min}} E_{emp}(h) \dots$
 - ...by minimizing the empirical error $E_{emp}(h) = \frac{1}{N} \sum_{i=1}^{N} L(h(x_i, \theta), y_i)$, with e.g. $L(\hat{y}, y) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \rho l \leq \rho \end{cases}$

Linear/non-linear functions

What is best? Driven by the **inductive bias**.

Zurich University

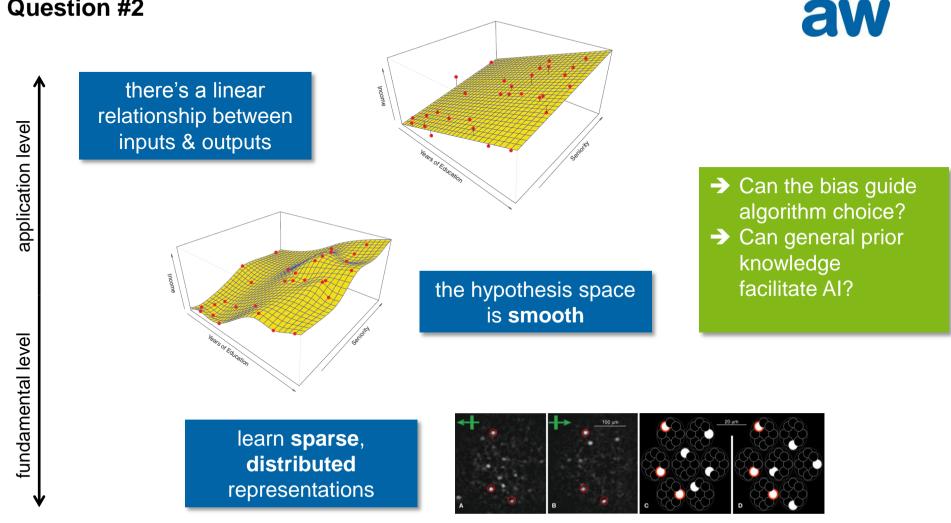
Zurich University of Applied Sciences

Background II: The Inductive bias guides the search through \mathcal{H} Question #2

«A learner that makes **no a priori assumptions** regarding the identity of the target concept has **no rational basis for classifying** any unseen instances» [Mitchell, 1997, Ch. 2.7.3]

→ Verv useful decomposition of inductive bias for practice:

language bias I search bias I overfitting-avoidance bias


Inductive bias of a learning algorithm \mathcal{L} for instances in X

- Any **minimal set of assertions** *B* that, together with \mathcal{L} and the training set $D = \{(x_i, y_i)\}, i = 1..N$, allows for deductively inferring the y' for a new $x' \in X$
- That is: Make all assumptions **explicit** in *B* such that $\forall x' \in X$: $(B, \mathcal{L}, D, x') \Rightarrow y'$ is provable

i.e.: based on a priori knowledge

→ Ultimately, ML depends on intelligent choice of the class of \mathcal{H} ; \mathcal{L} then optimizes the details → We can characterize ML algorithms by (the strength of) their inductive bias

Is there a universal guide to learning? Question #2


Summary

This talk has been about introduction:

- To our organization and achievements → to inspire organizational out-of-the-box thinking
- To some of our work (R&D, education, community) → to inspire research
- To our research questions → to gain collaborators

Looking forward to getting in touch!

data service

Swiss Alliance for Data-Intensive Services

More about me:

- Head of ZHAW Datalab
- thilo.stadelmann@zhaw.ch
- +41 58 934 72 08
- www.zhaw.ch/~stdm

More about Data Science?

- Education <u>www.zhaw.ch/datalab</u>
- Conference: <u>www.zhaw.ch/datalab/sds2016</u>
- Projects: datalab@zhaw.ch
- Association data+service: Being founded, open for members

→ Please get in touch.