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SUMMARY

Artificial Intelligence (Al) is transforming every aspect of modern society. It demonstrates a
high potential to contribute to more flexible operations of safety-critical network infrastructures
under deep transformation to tackle global challenges, such as climate change, energy transition,
efficiency, and digital transformation, including increasing infrastructure resilience to natural and
human-made hazards. The widespread adoption of Al creates the conditions for a new and
inevitable interaction between humans and Al-based decision systems. In such a scenario,
creating an ecosystem in which humans and Al interact healthily, where the roles and positions
of both actors are well-defined, is a critical challenge for research and industry in the coming
years. This perspective paper outlines the challenges and requirements for effective human-Al
interaction by taking an interdisciplinary point of view that merges computer science, decision-
making sciences, psychological constructs, and industrial practices. The work focuses on three
emblematic safety-critical scenarios from two different domains: energy (power grids) and mobility
(railway networks and air traffic management).
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INTRODUCTION

Artificial Intelligence (Al) has the potential to enhance the flexibility and resilience of safety-critical
network infrastructures to address global challenges like climate change impacts™, facilitating
the seamless integration of renewable energy sources?, increasing demand from mobility and
energy infrastructures, and optimizing resources/assets to postpone the need for significant
capital investments in infrastructure reinforcement=. Despite these advantages, Al faces several
challenges. These include ensuring robustness, reliability, transparency, and ethical compliance to
avoid issues such as errors and adversarial attacks. Additionally, Al must manage the complexity
and uncertainty associated with aging assets and the non-stationarity introduced by increasing
demand for energy and mobility networks. Finally, Al needs to address scalability limitations,
particularly in methods like Reinforcement Learning (RL), which struggle in large-scale network
infrastructures.

The widespread adoption of Al is driving a new and inevitable interaction between humans
and Al systems, particularly in processes that require real-time decision-making and forecasting.
Traditionally, these infrastructures have been managed by humans relying on expertise, control
and supervision software at different levels of automation. Examples of that are air traffic
management® and power grid operations®. In scenarios like Al-assisted operations in power
grid control rooms®, such human-Al interactions are crucial. Although current Al technologies
can incorporate human feedback, such as integrating human preferences in RL”* or facilitating
interactive natural language conversations to explain Al models?, they are not inherently designed
to optimize the overall efficiency of socio-technical systems — hybrid systems composed of
technical artifacts, human beings, institutions, and rules™ — nor to maximize human performance
and engagement consistently. This implies that current applications of Al cannot fully leverage
this form of human-Al interaction, calling for new advancements in scientific research.

This paper integrates industry-specific knowledge from three safety-critical domains — power
grid, railway network, and air traffic — where operational scenarios are typically characterized
by multiple features that make the decision-making process particularly challenging. Indeed,
such systems often consist of complex structures composed of multiple interconnected subsys-
tems, requiring many decisions to be made within a limited amount of time. Furthermore, they
are frequently affected by stochasticity, dynamic changes over time, and the need to handle
cascading events and edge cases. These characteristics not only make Al highly relevant in
such environments but also reveal the limitations of current methods. Specifically, they highlight
the need for Al systems that are not only robust and scalable but also designed to collaborate
with humans in meaningful ways. As we will discuss in |[Common Decision-making Aspects|
despite domain-specific contexts, critical infrastructures face shared decision-making challenges,
including complex human-Al interaction, multi-stakeholder coordination, and trade-offs under
uncertainty, highlighting the need for a common conceptual framework2.

To succeed in these domains, Al must go beyond accuracy and performance — it must be
trustworthy. Trustworthiness® refers to a broad set of properties that capture both the technical
and ethical dimensions of system design and use, including safety, robustness, transparency,
fairness, interpretability, and explainability’*. These properties are critical for ensuring that Al
systems can be accepted and relied upon in complex, high-stakes environments. This need
is confirmed by the inclusion of trustworthiness requirements in the emerging regulation of Al
systems, in particular, in the EU Al Act™®. As automation increasingly takes over cognitive tasks,
systems must also preserve human skills, maintain human agency and oversight, and support
effective interaction with Al1®. Achieving this requires transparent Al agents that help humans
understand their outputs, learn from them, and assess their limitations™”.

Complementing this technical perspective, recent frameworks such as “Meaningful Human




Control"® and “Human Readiness Levels™* stress the importance of designing for effective
human-Al collaboration. These approaches recognize that trust must be supported by systems
that actively engage human decision-making, learning, and motivation.

In this context, joint decision-making between humans and Al can leverage the complementary
strengths of both, ensuring that humans remain engaged and informed. Human learning in
these settings involves developing an accurate understanding of the task and the Al’'s behavior,
supported by feedback and experimentation<?. Motivation to collaborate with Al depends on
providing meaningful tasks, autonomy, and timely feedback. A promising direction to support this
is co-learning?’, where humans and Al continuously learn from each other to improve overall
performance. This requires Al agents to be autonomous yet collaborative, capable of adapting
to humans and shared goals??. While progress is being made, real-world examples of such
systems remain limited. Therefore, this paper offers a concise overview of practical use cases
and requirements in three safety-critical infrastructures, highlighting key challenges and research
directions (theses) to improve both Al capabilities and human-Al interaction.

DECISION-MAKING IN POWER GRID, RAILWAY NETWORK,
AND AIR TRAFFIC MANAGEMENT

This section discusses the common challenges in decision-making across the three aforemen-
tioned safety-critical domains (i.e., power grid, railway network, and air traffic), adopting a use
case-oriented approach that highlights the synergy between human expertise and Al-driven solu-
tions. The goal is to identify cross-domain similarities in how decisions are made under uncertainty,
time pressure, and system constraints, and, by aligning perspectives from different infrastructures,
it contributes to establishing a foundational understanding of shared decision-making dynamics
and to informing the design of joint human-Al decision systems.

Common Decision-making Aspects

To identify common challenges in the decision-making process across all domains, scenarios were
described and analyzed for each domain with industrial stakeholders in a joint workshop. These
scenarios, which will be discussed in|Challenges in Today’s Operation and Use Cases|section and
extensively detailed in?3, are defined by involving representatives from power network operators
(Réseau de Transport d’Electricité — RTE, TenneT), railway network operators (Deutsche Bahn —
DB, Schweizerische BundesBahnen — SBB), and an air traffic management organization (NAV
Portugal). In these scenarios, human operators face complex decision-making challenges that
arise from a combination of external events, collaborative dynamics, conflicting objectives, and
tight time constraints (Figure[1a). These decisions involve iterative interactions between human
expertise and Al-driven insights, aiming to balance operational demands with system objectives
(Figure [Tb). Even if the decision context is different for each domain (which can be explained by
the fact that each infrastructure remains intrinsically different), a high degree of similarity in the
characteristics of the decision-making process was observed, specifically (see?® for a complete
analysis):

* Human-Al interaction. Decision-making involves human operators and Al agents collabo-
rating through manual, co-learning, and autonomous approaches, with iterative processes
of exploration and feedback to refine and align actions with system objectives.
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Figure 1: Decisions in safety-critical network infrastructure operations.

Multiple operators and other stakeholders. Decisions involve coordination among diverse
stakeholders (e.g., airport operators, power grid operators, train dispatchers) operating
across various timeframes, from long-term planning to real-time adjustments.

Action type. Decision-making includes preventive or corrective actions, which can be
planned or executed in real time. We distinguish between general actions taken by oper-
ators/Al and specific measures — concrete operational steps or plans addressing specific
events.

Action space complexity. The action space is large and comprises both discrete and
continuous elements. Its complexity grows with system size, such as the number of power
grid nodes, flights, or trains, making decision-making increasingly challenging.

Network capacity and external events. Operators manage constraints resulting from
disruptions, emergencies, or external factors such as maintenance activities and public
events. These constraints are influenced by uncertain observations and forecasts, including
weather conditions and human behavior variability.

Time resolution. Real-time analysis enables immediate responses to urgent issues, while
short-term analysis focuses on daily adjustments and preventive actions. Medium- to long-
term analysis supports strategic planning and forecasting, preparing the infrastructure for
future demands and challenges.

Trade-off analysis on conflicting objectives. Operators must navigate trade-offs between
competing objectives, such as meeting system needs while minimizing adverse impacts.
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Effective decision-making requires balancing these trade-offs, including weighing the proba-
bility and consequences of critical events to ensure safety and system integrity, or balancing
operational demands with environmental goals like reducing CO, emissions. Prioritizing
tasks effectively is crucial for maintaining operational efficiency.

The following subsection provides examples of current practices and use cases that illustrate
this decision-making process in action.

Challenges in Today’s Operation and Use Cases

In today’s operations, power grid engineers are highly specialized, requiring detailed studies, ac-
curate planning, and complex decision-making rather than merely following established protocols.
They rely heavily on simulation tools with real-time and forecast data but have limited access
to decision-support tools like automated assistants®2*, When addressing issues, engineers
manually explore solutions and verify them using simulations. They can adjust grid connectivity,
re-dispatch generation, limit consumption, or use battery storage to modify power flows, identifying
the best actions for each specific context. Despite the range of options, their process depends on
experience and manual simulation®.

An industry-driven Al use case proposes an Al assistant to support operators by recommending
actions and strategies for real-time congestion management2. The Al assistant should function
bidirectionally, learning continuously from operator feedback, as illustrated in Figure This use
case aligns with the schematic in Figure [Tal Network capacity constraints arise from thermal,
voltage, and stability limits of power grid lines. Thermal limits depend on the maximum current a
line can carry without exceeding its temperature rating, considering both instantaneous and short-
duration thresholds. System-wide limits, such as voltage control, dynamic stability, and inertia,
also restrict transfer capacity. Congestion occurs when these limits are exceeded, under both N
(all elements available) and N — k (up to k outages, typically £ = 1) conditions. Objectives include
managing overloads through remedial actions, maximizing renewable integration by reducing
emergency redispatch of thermal units, and easing operator workload. The trade-off involves
balancing the operational impact of an event, estimated via forecasts or real-time analysis, against
its probability, usually derived from ex-ante statistical studies of past events or forecasted by a
statistical learning model. Depending on problem complexity, multiple operators may coordinate,
such as control centers, field teams, market participants, or interconnected power grid operators.
A lead operator is designated ex-ante by operational rules (e.g., geographic responsibility or
escalation to management). Key observations include the current grid state — measurements
and topology (e.g., breaker positions) — used to assess loading and margin. Operators must
also know the availability of actions, especially real-time flexibilities (e.g., cooldown times before
switching). To forecast future conditions, inputs such as planned topological changes, generation
and demand forecasts, maintenance schedules (with criticality), and electricity market signals are
essential. Uncertainty can come from external factors such as storm or fire risks, major events
(e.g., the Olympics), or incidents (e.g., accidents or protests) that may disrupt grid operations.
Regarding time constraints, each decision, anticipatory or reactive, has a Last Time To Decide
(LTTD), the latest point when action must begin for its effect to occur before the deadline. LTTD
is computed by subtracting the action’s lead time from the deadline. For example, in response
to an overload alarm, LTTD ensures intervention before thermal expansion forces an automatic
line disconnection. Congestion management typically combines a) preventive actions, planned in
advance when constraints are foreseeable, lead time is critical, or risk is high; and b) remedial
actions, activated in real-time when fast-acting flexibilities are available. The choice depends on
trade-offs involving availability, LTTD, cost, and effectiveness.



In railway network operations, densely planned schedules are frequently disrupted by unex-
pected events like delays, infrastructure defects, or short-term maintenance. Maintaining smooth
operations requires skilled personnel in control centers to monitor traffic flow around the clock
and make quick re-scheduling decisions®. These measures include adjusting a train’s speed,
path, or platform. In densely used networks, local re-scheduling decisions can impact the entire
traffic flow and propagate effects into the future, making this a complex decision-making task
that integrates extensive context under time and network capacity constraints”, aligning with the
schematic in Figure[1al Network capacity constraints are shaped by train frequency, scheduling
density, and operational strategies such as prioritizing specific train types (e.g., high-speed or
freight). As for temporal constraints, emergency situations like accidents or technical failures
often demand real-time responses, with decisions needed within minutes (remedial actions).
Short-term operational adjustments (preventive actions), such as rerouting due to temporary
obstructions or adapting to demand fluctuations, may allow slightly longer time horizons, typically
from minutes to a few hours. The railway system requires the collaboration of multiple operators,
encompassing those managing infrastructure, train operations, maintenance, and integration with
other transport modes. This multiple environment is necessary to address the diverse constraints
and ensure efficient, safe railway operations, particularly when integrating Al technologies. It is
necessary to balance trade-offs for the punctuality of different trains, e.g., expanding capacity
to accommodate more trains or passengers might strain resources or degrade service quality,
affecting punctuality, comfort, and overall customer experience. Uncertainty arises from external
factors such as unpredictable timing and duration of maintenance or upgrade projects (e.g., due
to material shortages), extreme weather conditions requiring operational changes, and technical
failures like signal malfunctions or rolling stock breakdowns that cause unplanned delays and
disruptions.

Railway network operators explore different modes of human-Al interaction and different
degrees of automation to improve rescheduling performance. The different modes and degrees of
automation are: a) highly automated Al re-scheduling systems that monitor the real-time state of
trains and tracks, detect issues, decide automatically on actions, and execute them. Supervisors
review system’s performance, adjusting parameters like prioritization criteria, delay thresholds,
or recalculation algorithms as needed; b) human-Al joint decision-making systems, where an Al
assistant can support the exploration of alternative re-scheduling solutions or validate suggestions
by human operations. Human operators can also validate alternative Al re-scheduling solutions
based on operational priorities or additional contextual information not integrated into the Al
system. Humans and Al continuously monitor the ongoing traffic and both decide on actions for
rescheduling in a continuous exploration and validation loop (see Figure [1b).

Airspace sectorization divides airspace into manageable regions called sectors to ensure
safe and efficient air traffic management by reducing controller workload and optimizing traffic
flow=8. Currently, this task is solely managed by air traffic control supervisors, who decide when
and how to split or merge sectors based on situational demands and available personnel<?.
While scattered information is available across platforms, no integrated decision-support system
is available to assist supervisors or automate the sectorization process, considering trajectory
efficiency (e.g., flight time and fuel burn) and sector capacity limits. The long-term vision of the
Single European Sky ATM Research (SESAR) program anticipates that tasks will eventually
be performed collaboratively by hybrid human-Al teams=?. The industry Al-oriented use case
features an Al-based system that monitors real-time ATM data, predicts sectorization needs, and
implements plans either as recommendations or automatically.

Considering the schematic of Figure [1a] for this use case, network capacity is influenced
by airspace dimensions, route structure, the availability of aeronautical systems and equipment,
traffic demand, airport infrastructure, and staff availability. Constraints emerge from unpredictable
events that reduce nominal sector capacity, such as military airspace activation, adverse weather,
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disruptive incidents, dynamic sectorization, and controller workload. Collaborative decision-
making involves multiple stakeholders, including technical supervision and maintenance teams,
air traffic controllers, airlines, airport operators, the EUROCONTROL network manager, and
national air forces. Nonetheless, the final decision typically rests with a single operator, either a
supervisor or a tactical air traffic controller. Uncertainty results from a range of external factors,
such as partial airspace closures, operational disruptions (e.g., system failures, staff strikes,
corrective maintenance), adverse weather, sector overloads, cybersecurity incidents, and in-flight
emergencies. Some events, like military airspace activation, known weather systems, scheduled
maintenance of aeronautical systems, or anticipated staff shortages, can be forecasted in advance,
enabling partial mitigation. Air traffic management requires balancing multiple objectives, e.g, a)
safety vs. capacity, where increasing the number of aircraft in a sector or reducing separation may
strain controller workload and increase the risk of critical events, or b) flexibility vs. predictability,
where real-time adjustments (e.g., re-routing or trajectory changes) enhance responsiveness
but reduce the predictability required for coordinated planning across the network. Regarding
temporal constraints and decisions, the following categorization exists: a) pre-tactical, taken
up to 1-2 hours in advance, allowing planned measures such as re-sectorization in response
to expected constraints (e.g., military airspace activation, balloon launches); and b) tactical,
made within minutes to respond to real-time events like sudden staff shortages (e.g., illness,
fatigue), capacity overloads in adjacent sectors, emergencies, or last-minute activation of restricted
airspace, and may involve measures like flow adjustments, re-routing, or temporary changes to
sector boundaries.

For this use case, Al provides visualized sector configurations on a map-like interface and
learns from logged interactions with human supervisors, as depicted in Figure [Tbl At lower
automation levels, humans evaluate Al recommendations, request explanations, and adjust
decisions. Higher automation levels range from “management by consent”, where Al acts
with human approval, to full automation with human oversight limited to post-implementation
revisions. In general, the role and feasibility of human oversight are still critical issues. While
adequate human oversight is increasingly required by current regulations (e.g., Al Act), it should
be acknowledged that the extent and way in which human oversight is actually feasible remains
an open question=12,

Human operators across these three infrastructures and use cases face a substantial cognitive
load, as effectively managing and learning from these tasks requires considerable mental effort.
This challenge, analyzed in®® for power grid control rooms under both normal and emergency
conditions, results from the inherent complexity and fragmentation of the systems they oversee.
Rather than increasing this burden, Al should aim to alleviate it by simplifying information process-
ing, reducing the number of screens and tools human operators need to monitor, and providing
contextual insights that enhance decision-making without overwhelming them. The reduction
in cognitive load should not come at the cost of decreased transparency or control for human
operators.

Finally, the Assessment List for Trustworthy Artificial Intelligence (ALTAI)** was applied to
perform an ex-ante evaluation of these use cases across multiple dimensions, with emphasis
on technical robustness and safety. This assessment (see?? for a detailed analysis) showed
that Al-based decision systems in safety-critical contexts must be resilient to cyberattacks, data
disruptions, and model uncertainties. Robustness metrics are essential during training and
operation to detect adversarial inputs and compromised outputs. A human-in-the-loop design is
essential to prevent critical failures, ensuring that final decisions remain under human supervision.
Adaptability should be supported through transfer and time-adaptive learning, while continuous
monitoring and stress testing help maintain reliability and reproducibility. Fault tolerance, technical
reviews, and falloack mechanisms are required to manage uncertainty, including clear operator
notifications and the ability to revert to manual control.
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PROPOSED DESIGN OF ENHANCED HUMAN-AI SYSTEMS

The interaction between humans and Al in safety-critical infrastructures presents a unique set of
challenges that remain not completely addressed by existing frameworks. These challenges stem
from the complex interplay of requirements for transparency, trust, and explainability, coupled with
the necessity for robust and safe decision-making. Approaches that holistically integrate human
and Al capabilities while addressing these concerns are notably uncommon (or even absent),
leaving critical gaps in designing, deploying, and maintaining safe and effective systems.

The Al Side of Human-Al Interaction

Black-box Al models®>, while capable of achieving remarkable accuracy, hinder the transparency
and explainability, important for promoting trust in safety-critical contexts=¢. Systems relying solely
on such models often fail to meet the demands of safety-critical operations, where human opera-
tors must understand and trust Al decisions. In addition to human operators, other stakeholders
(e.g., supervisors, managers, clients, regulators) need to understand the models either to decide
about their use or to retrospectively analyze their use (e.g., in case of an accident). To address
this, Al agents must be designed with components that can be understood by humans, ensuring
that the decision-making process aligns with human cognitive processes.

Transparency is a way to make understanding possible. In addition, it is an enabler for
effective collaboration between humans and Al and for promoting trustworthy Al®Z. Transparency
should be integrated into the four stages of the human learning cycle: (i) during concrete
experience, by explaining various factors of the process to encourage exploration; (ii) during
reflective observation, by prompting reflection and hypothesis formulation about interrelated
factors; (i7i) during abstract conceptualization, by providing data-based evidence for or against
the human’s hypotheses; and (iv) during active experimentation, by enabling safe real-world
exploration and immediate feedback on outcomes. Furthermore, ensuring this property in safety-
critical infrastructures requires capturing the characteristics of the corresponding decision-making
processes and properly exploiting them. Indeed, instead of implementing large black-box models,
one should exploit the known domain peculiarities of the use cases under analysis. Examples
of that are the integration of distributed, hierarchical, or knowledge-assisted approaches in
decision-making problems.

Distributed decision-making processes (Figure are methodologies where the responsibility
for making decisions is divided among multiple decision points, each controlled by a different Al
agent or subsystem=840_ This approach allows for the decomposition of a complex global decision
into a series of simpler, interconnected local decisions, which can also be better understood by
human agents. By distributing the decision-making process, the system can leverage localized
information, making it more adaptable, scalable, and resilient to changes or disruptions in
specific areas*. In complex systems based on a network structure, this paradigm is particularly
advantageous. For instance, in a railway network, the system is typically divided into regions,
each managed by a control center responsible for overseeing operations within its jurisdiction.
These regional centers make decisions regarding train scheduling, maintenance, and conflict
resolution for their specific area. However, the effectiveness of the overall railway system depends
on how well these regional decisions are coordinated to ensure a seamless flow of trains, minimize
delays, and maintain safety standards, and distributed methods were already applied to railway
systems“2. This structure also aligns closely with the way power grids operate. In power grids,
control centers are responsible for managing specific areas of the grid, such as balancing supply
and demand, ensuring grid stability, and addressing faults in their areas. Similar to the railway
network, decisions made at a local/regional level — such as topological changes to re-routing
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Figure 2: Comparison between distributed and hierarchical decision-making solutions.

electricity flows — must be integrated, due to cascading effects, into a coherent global strategy to
ensure the entire grid remains stable and efficient. Multi-agent RL has been applied to coordinate
both active and reactive power control in photovoltaic generation systems within power grids4.
Open challenges in this field involve integrating the existing network structure, which includes
control rooms and decision points functioning as decision-making nodes. These challenges
encompass associating distributed Al agents with these control nodes and determining the
optimal information sets for effective decision-making. Distributed approaches allow achieving
transparency since the decision process carried out in each decision point is simpler and, for this
reason, more interpretable and understandable by a human being.

Hierarchical decision-making solutions (Figure [2b) provide a structured approach to managing
complex problems by breaking them down into high-level decisions and corresponding sequences
of interconnected low-level actions*>“%. This hierarchical organization reflects the temporal
and logical dependencies among decisions, allowing the system to handle complexity while
maintaining clarity and understanding for human operators, who can better grasp the overall
system goals*”. For instance, an operator in the power grid might receive a directive to “reduce
the load in Region A by 20%”, along with an explanation of how the proposed low-level actions
— such as activating local generators and rerouting surplus power — will contribute to achieving
this goal. Hierarchical methods have been employed for optimal energy management and control
of distributed energy resources in power grids4®. Similarly, in railway management, an operator
might be advised to “alleviate congestion in Zone A by diverting trains to secondary routes”,
with the Al providing a breakdown of which trains to reroute and when. Methodologies with
hierarchical structures have been leveraged in railway networks“*?. Open challenges include
the development and analysis of effective hierarchical decision-making algorithms capable of
scaling to complex continuous states and action spaces®. Addressing these challenges is
crucial for enabling the application of such approaches to large-scale critical infrastructures.
Hierarchical methods promote transparency by clearly differentiating between high-level and
low-level decisions, enforcing a more understandable view of the decision process.



Knowledge-assisted Al reduces the learning complexity by combining conventional planning
approaches and human domain expertise with data-driven learning=". Hybrid methodologies
enable Al to focus on areas where human expertise is insufficient or incomplete while lever-
aging the strengths of established practices. For instance, integrating human-devised safety
constraints into Al models can provide a foundation of reliability upon which learning-based im-
provements can build, ensuring that Al contributions align with predefined safety and operational
goals. Knowledge-assisted methods, combining neural networks and symbolic structures, have
been employed in aircraft collision avoidance systems®2. Open challenges include exploring
less-studied representations, such as incorporating differential or algebraic equations directly
into policies or value functions. Additionally, underexplored design patterns, such as leverag-
ing symbolic methods as deliberative components within neural networks, present significant
opportunities for advancement®3. Another challenge lies in developing modern approaches that
integrate constraints directly into neural network architectures, analogous to** but adapted for
deep architectures®>. Knowledge-assisted approaches favor transparency since they integrate
learning elements with human knowledge, which is typically more explainable.

The Human Side of Human-Al Interaction

Human decision-making is integral to the functioning of critical infrastructure. Consequently, Al
needs to support corresponding macrocognitive processes (cf. Figure [3) such as monitoring and
situation awareness®*®’, However, ideally, Al also supports learning, motivation, and trust to
allow continuous improvement and to avoid over-reliance. In this context, human learning entails
developing an accurate mental model>® of the Al, encompassing its capabilities, limitations, and
behaviors. Such understanding enables operators to anticipate Al actions, interpret its outputs
effectively, and collaborate seamlessly. Without a well-formed mental model, human performance
may degrade, particularly in high-stress or dynamic scenarios®?. To achieve this, operators must
continuously update their mental models®’. This involves incorporating new information and
experiences®®2 facilitating the dynamic learning process necessary for generating accurate
mental representations of Al.

Trust is another pivotal factor in human-Al interaction. Trust in Al must align with the Al's
actual capabilities and scope of application”. Mismatched trust levels, whether undertrust or
overtrust, can lead to significant issues. Undertrust restricts the utilization of Al's full potential,
whereas overtrust — when human reliance on Al exceeds its reliability — can result in critical
failures, which are particularly undesirable in safety-sensitive environments. For instance, during
a power grid emergency, an operator placing excessive trust in Al recommendations might neglect
manual interventions essential to mitigating a congested power line, potentially causing cascading
failures and widespread outages. To support appropriate trust, Al agents must transparently
communicate their capabilities and limitations. Simple explanations often fall short, as they require
blind trust from users. Instead, Al agents should enable exploratory interactions, allowing users to
investigate and refine their understanding of the system. This process leads to an informed trust
grounded in experience and a thorough comprehension of the Al, thereby enhancing human-Al
collaboration.

Intrinsic motivation® is closely linked to an operator’s perception of the value and impact
of their contributions. Without clear feedback on outcomes, operators risk disengagement,
compromising the effectiveness of human-Al partnerships. Feedback mechanisms that clearly
communicate the results of collaborative decisions are vital for maintaining motivation, promoting
proactive behavior, and enabling calibrated trust™”. Both are critical in safety-critical systems, as
they support anticipation of future events®. However, current Al decision-support systems often
increase monotonous monitoring tasks, reducing user engagement and overstraining human
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Figure 3: Model of human decision-making where Al can provide transparency to human-Al
collaborative decision-making in the following forms: (i) explanation (i.e., Al explains a subject
matter), (:i) exploration (i.e., Al supports the human to explore/learn a subject matter), (iiz)
animation (i.e., Al animates the human to reflect on a subject matter), (iv) mirroring (i.e., Al mirrors
individualized patterns in human behavior to make the human aware of own biases and variabilities
in decision-making), or (v) intuitive interface design. For effective and efficient decisions, Al
must support situation awareness by assisting humans in monitoring networks and identifying
critical points, enabling focused attention. This process relies on mental models encompassing
representations of the environment (network knowledge), human-human collaboration model
(understanding decision impacts on others), Al capabilities (trust and effective interaction), and
self-models (awareness of decision patterns and biases). These models must be developed
and continuously improved through Al-supported human learning. Moreover, Al should promote
human motivation by complementing operators rather than overwhelming them.

capabilities?®%°. To address these challenges, Al design must integrate principles of intrinsic work
motivation, ensuring that human operators retain an active and meaningful role in decision-making.

In human-Al collaboration, it is suggested that function allocation should not only rely on
the humans’ abilities and performance. Rather, functions allocated to the human need to be
perceived as meaningful®. Consequently, not only the what and the how of task execution need
to be addressed, but especially the why. Therefore, all interaction elements on the Al side, such
as providing information or asking for information, must have a comprehensible purpose for the
human. Furthermore, humans experience meaningfulness when the interrelations between their
own activities and the activities of others (including the Al’s activities) are comprehensible and
well-reasoned.

Describing and Designing Human-Al Interactions

For describing and designing human-Al interactions, lessons can be learned from human-
automation interaction studies in Cognitive Systems Engineering (CSE). These studies do not
focus exclusively on Al, but on any form of technology with which human operators need to
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collaborate. In cognitive engineering, the gist of human-automation teamwork is centered around
a) team collaborations, with an emphasis on sharing and allocating control authority and autonomy
between humans and automation, and b) automation transparency, aimed at providing deeper
system insights for fostering understanding, trust, and acceptance.

Currently, a generic design “cookbook” for human-automation interaction does not (yet) exist.
Instead, we advocate for the integration of two promising and related frameworks that can be
used for both analyzing and designing human-automation interaction: Joint Control Framework
(JCF)* and Ecological Interface Design (EID)®Z. In its most succinct form, JCF focuses on team
collaborations by describing the execution and planning of activities (e.g., sensing, deciding,
and action implementation) when those are distributed over different agents. EID focuses more
on achieving system transparency by visualizing the (physical and intentional) constraints on
activities, which determine, in large part, the content, structure, and form of a human-machine
interface. Integrating these two frameworks is possible due to their shared common ground, i.e.,
the CSE. CSE adopts an approach to human-machine interaction, where the design emphasis
is first and foremost put on the work environment in which agents operate and activities take
place, whereas EID puts the emphasis on transparency by visualizing the constraints on activities,
whereas JCF focuses on the execution and planning of activities (between elements). The work
environment describes the boundaries for actions governed by physical laws, intentional principles,
and processes. It essentially defines a safe envelope within which actions can take place, initially
irrespective of who is executing the actions (e.g., human or automated agents). At later (design
and analysis) stages, agent-specific constraints are included (e.g., capabilities and limitations of
both human operators and machines).

Given the shared CSE common ground, JCF’s emphasis on team collaborations, and EID’s
focus on transparency, JCF and EID are complementary22. EID visually reveals the constraints,
relations, and action opportunities at all functional abstraction levels, and JCF modulates human-
automation coordination on the activity level by putting (a sequence of) activities on a timeline
describing on what abstraction level the system needs to be perceived, warranted by situational
demands. In other words, EID prescribes what information should be portrayed and how, whereas
JCF provides guidance on when to show information and how that links to specific activities (e.g.,
perceiving system information, formulating a decision, performing an action, among others).

Perspectives

Building on the challenges and opportunities outlined in the previous sections, this part explores
critical research directions for advancing human-Al collaboration in safety-critical environments.
By addressing the interplay between human cognitive processes and Al capabilities, these
directions aim to enhance transparency, trust, and mutual learning. Structured as six key theses,
these perspectives provide a multidisciplinary framework to guide the development of human-Al
systems that are not only effective and trustworthy but also adaptable to the complexities of
real-world decision-making scenarios.

The Role of Function Allocation in Al-Enhanced Decision-Making. The integration of Al
into safety-critical systems requires a deliberate and systematic allocation of functions between
humans and Al. This allocation should optimize the strengths of both entities, achieving synergies
that neither humans nor Al could accomplish independently. For example, Al excels at processing
large datasets and identifying patterns, while humans bring contextual understanding, normative
and ethical reasoning, and adaptability to novel situations. Function allocation should ensure
that Al handles tasks requiring speed and precision while humans retain control over decisions
requiring judgment, ethical considerations, and situation awareness. However, the functions
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assigned to the human must combine to form a psychologically sensible role, which is adequately
supported by the Al. For example, it is a prerequisite for people to be committed to their role
that they experience meaningfulness®. Automation transparency must therefore ensure this and
provide corresponding insights for the human.

The Importance of Cognitive Transparency and Explainability in Human-Al Collaboration.
Human-Al collaboration extends beyond the explainability of Al to include mechanisms that
enhance human cognitive processes. To achieve adequate situation awareness, humans need
to monitor the network. This must also be supported by Al, for example, by helping humans
identify critical points in the network so they can manage their attention accordingly. Cognitive
transparency, which involves aligning Al outputs with human reasoning processes (described in
Figure [3), is essential for effective collaboration. For instance, an Al agent assisting in controlling
an air traffic system should not only present its conclusions but also explain the rationale behind
them in a manner that aligns with the operator’s expertise and reasoning.

The aspects that are more about the mechanics of the situation can be explained to build up
operator mental models, whereas the aspects that are dynamic and situation-dependent must
be constantly renewed in a process of gaining situation awareness®’. We must thus distinguish
between the explainer approach, which looks backward to motivate system activity, versus the
transparency approach that shows the current status of the process®®. Considering the dynamics
of network infrastructure operations, the temporal dimension is a key aspect. Taking time into
account, the Construal Level Theory (CLT) framework departs from a normative perspective,
considering aspects such as time available to make a decision versus the level of detail. At
the extremes, there is the executive overview level (CLT 1) versus the detailed logs level (CLT
6)%9. The CLT has been applied, e.g., to aviation”?. Turning toward cognition, decision-centric
perspectives can be used to determine what needs explaining. Modeling then aims to describe a
process of perceptions and actions surrounding a decision in critical episodes in more detail, on
an event horizon. Abstraction here regards the external process, in terms of Levels of Autonomy
in Cognitive Control (LACC). At the boundaries, to keep track of assets status or actions (LACC
Level 1), versus to determine the situation and context (LACC level 6)%. The aspects that may
require explaining are those that are not always shown to the operator, e.g., if a plan (level 3) is
presented to an operator, then in an explanation, the relevant goals (level 5), any trade-offs (level
4), or implementation-based constraints (level 2) may be relevant to explain. For an operator to
intervene or collaborate with an Al in control, transparency of these same aspects may instead be
needed, perhaps with the means of adjusting the aspects. This transparency aims to promote
trust, facilitate learning, and support motivation by enabling humans to understand, validate, and
effectively interact with Al agents. However, empirical evidence on the impact of increased Al
transparency on human performance (e.g., response time, workload, situation awareness) is
limited and demands further research. Some exploratory studies advocate the use of hierarchical
information presentation, such as “progressive disclosure”, to deliver explanatory information in
a phased manner to avoid cognitive overload and display clutter.

Cognitive System Engineering for Human-Al Design. Effective human-Al collaboration
requires the application of cognitive system engineering principles to model decision-making
processes and define system requirements. These models should account for human cognitive
capacities and limitations, ensuring that Al agents are designed to complement, rather than
overwhelm, human operators. Methods such as Ecological Interface Design®”“’2 and the Joint
Control Framework“ are particularly valuable for modeling decision-making processes and defining
requirements for function allocation and visual elements portrayed on an interface that align with
human cognitive processes, including decision making, learning, trust, and motivation. For
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example, in railway network management, designing an Al agent to assist with train scheduling
and traffic control involves understanding how operators process information and make decisions
under time pressure. By aligning the Al agent’s functionalities with these cognitive processes —
such as prioritizing trains based on their schedules and managing potential conflicts at junctions —
engineers can significantly enhance systems’ safety, efficiency, and reliability.

Beyond the discussion of task and interface requirements, a more fundamental aspect of
human-Al teaming is determining the extent to which human operators can— and should— under-
stand machine-generated recommendations and actions. Stakeholder perspectives play a crucial
role in shaping this understanding. For instance, tactical operators are typically not computer
scientists and may neither need nor be expected to grasp the underlying algorithms, provided that
the Al's actions ensure safety. In contrast, policy-makers and technical personnel may require
deeper insights to assess how specific algorithm configurations and trained policies affect overall
system performance. Ongoing debates within the Al community — particularly between advocates
of interpretability versus explainability”® — highlight the lack of consensus on what humans should
understand about Al systems and how that understanding should be achieved. Holzinger and
Muller” propose the concept of causability as an alternative, and potentially better, way of
determining to what extent humans can understand a given machine explanation.

Ensuring Safety in Al Agents Design. Safety is a primary concern in the design of Al agents
for safety-critical environments. These systems must incorporate robust risk management mech-
anisms and provide quantitative guarantees of minimal performance, particularly in rare or
corner-case scenarios. Such guarantees are essential to mitigating the negative perception of Al
errors and promoting human trust in the system’s reliability. For instance, in electrical network
management, Al agents must undergo rigorous testing to address scenarios such as sudden
power surges, equipment failures, or unexpected demand fluctuation. By ensuring that the Al
can reliably recommend actions, such as rerouting power or isolating affected sections of the
grid, even under extreme conditions, operators can trust the system to maintain network stability
and safety. For railway systems, the system design ensures that no safety-critical situations
can occur for rescheduling decisions because the signalization is independent of the human-Al
decision-making system. Adoption of ethics-by-design approaches that allow identification and
management of trustworthiness-related properties (including safety) of the system since early
stages of development is fundamental. This means methodologies for early identification of func-
tional and non-functional requirements and key performance indicators that are explicitly linked to
trustworthiness'?, as well as suitable strategies for continuous risk management”'’¢. Importantly,
while the development of Al-specific processes for achieving and verifying regulatory compliance
may be necessary, it is crucial that these processes are consistent with domain-specific methods
and standards adopted by the operators and users of critical infrastructures.

Human-Al Co-learning for Enhanced Decision-Making. Human-Al co-learning involves a dy-
namic process where humans and Al evolve through mutual interaction. In safety-critical network
control, these mental models involve representations of the environment (knowledge about the
network to be controlled), human-human collaboration (understanding how one’s decisions impact
others managing other areas of the network), representations of Al (understanding its capabilities
and limitations to build trust and interact effectively), and representations of oneself (awareness
of decision-making patterns and biases). Mental models must be developed and continuously
improved through a human learning process supported by Al. This collaboration enables humans
to refine their skills and understanding, while Al adapts its models based on human feedback. In
safety-critical systems, co-learning enhances decision-making by leveraging the complementary
strengths of humans and Al. For example, in air traffic management, Al can process vast amounts
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of real-time data from multiple sensors to optimize flight paths and prevent potential conflicts.
Meanwhile, human air traffic controllers provide contextual knowledge, situation awareness, and
normative judgment to address complex or unforeseen scenarios. This iterative process builds
trust, improves performance, and enables safe and efficient airspace management that neither
humans nor Al could achieve independently.

Human-Al Collaboration Under Increasing Autonomy. Increased automation and even full
autonomy may be desirable for certain tasks. However, when full automation is not possible, i.e.,
when the human still needs to take a critical role in operations, it remains essential to integrate
human needs into the design process. Research in human factors has been instrumental in
addressing the limitations associated with assigning humans the role of a passive supervisory
agent. In this role, human vigilance decreases quickly while fatigue increases. Furthermore,
skills not used over longer periods are being lost. From this standpoint, for having the human-
in-the-loop, it is a prerequisite to assign them an active role. One possible way to do so is to
assign the human the role of a “director”, interacting with and giving directions to one or more Al
agents, which in turn can manage and allocate subtasks either hierarchically or in a distributed
fashion. It is argued that this fulfills human factors’ foundational requirements for interested human
engagement as it supports an adequate human autonomy and situation awareness, which is
not given in a standard supervisory role. In essence, the key to cultivating appropriate trust
lies in designing Al systems that are not only advanced in their technical capabilities but also in
their ability to engage with humans, promoting transparency, exploration, and feedback about
performance and error boundaries. Such an approach ensures that trust in Al-based tools is
informed by direct experience and a comprehensive understanding of Al’'s error boundaries,
leading to more effective and nuanced human-Al collaborations.

The Role of Al-friendly Digital Environments

To develop and benchmark novel human-Al systems, Al-friendly simulation environments —
designed to support seamless Al integration, training, and interaction while replicating realistic
operating scenarios of critical infrastructures — are essential. Examples of such open-source
environments include: a) Grid20p, which enables the development and evaluation of power
grid operations agents?*; b) Flatland for developing and testing solutions to train rescheduling
problems®’; and c) BlueSky for validation of Al-driven solutions in realistic air traffic management
scenarios using open data’””.

Leveraging these digital environments allows organizations to promote internal Al innovation
through in-house Al communities while facilitating collaboration and co-development with external
Al networks”®. This approach promotes a cultural shift toward data sharing and collaborative
construction of digital platforms for human-Al development and testing. It also promotes transform-
ing traditionally rigid critical infrastructure business models into dynamic networks that integrate
technological platforms, mobility and energy providers, and end-users, potentially as Testing
and Experimentation Facilities (TEFs) for Al”®. Moreover, these efforts help address emerging
legal and ethical challenges, including liability issues, which are particularly relevant given that
energy and mobility are classified as high-risk sectors under the EU Al Act'®. These environments
can also improve human operators’ training efficiency and effectiveness, especially when new
technologies such as Al are available to support decisions'”.

The development trajectory should aim for maximum generality by creating a multi-domain
environment that integrates domain-specific digital environments while offering a suite of generic
functionalities applicable across a vast majority of domains and use cases. These functionalities
should include network and data representation, interaction mechanisms between controllers and
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simulations, user-system interfaces, training of learning controllers, evaluation tools, and support
for reproducibility. Moreover, another research direction is towards creating experimentation capa-
bilities of bi-directional virtual assistants for joint decision making. This will provide the opportunity
to evaluate the forms of exchange between the human expert and an Al that continuously learns
from the received information flows and the decisions made by humans, e.g., how to visualize
the status, how to describe the explanations, and how to interact with the interface. A notable
example in this direction is the Cockpit and Bidirectional Assistant (CAB) project, which created an
open-source prototype®® with four key panels (a simplified representation is provided in Figure ,
which is being further enhanced within the AI4REALNET European project®! and available to
various industrial applications such as power grids, railway networks and air traffic management.
This prototype allows monitoring and evaluating the interactions between human operators and
an Al that continuously learns from both incoming information flows and human decisions®?. The
explanatory aspect of the Al's recommendations is also central, adding value to the operator’s
decision-making process. This has the potential to change the normal operation of an Al agent
that supports decision-making by making a direct link between the human and the Al, making
use of the operator’s implicit information to enhance its empathy with the operator. For instance,
by using psychophysiological data from the operator®® and personalized models to retrieve in
real-time the estimation levels of stress and cognitive performance, Al assistants will be able
to make decisions not only based on the operational context, but also taking into account the
status of the human operator, adapting the complexity, information and interaction of tasks with
the user. We advocate this implicit symbiosis as a research line focused on creating Al assistants
that look friendlier without the human explicit perception. In the future, virtual assistants will be
able to determine the profile of the operator and their level of cognitive workload and adapt the
information flows uploaded to the operator to manage a complex and/or atypical situation in the
best conditions.

CONCLUSIONS

For Al-based decision systems operating critical infrastructures, this work claims that more
focus should be placed on optimizing the degree of decision support of Al to humans, aiming at
achieving the best possible interaction between humans and Al (rather than simply deploying
Al-based systems). To accomplish this, the goal should be to align system design with human
cognitive processes and limitations and incorporate rigorous safety protocols rather than merely
implement automation or Al. This vision of human-Al interaction not only addresses technical
challenges but also offers an opportunity to redefine the role of Al as a collaborative partner in
safeguarding critical systems.

In this vision, the explainability of Al is crucial for developing an accurate mental model, as it
clarifies the Al’'s decision-making process. However, it alone does not ensure effective human
learning. Therefore, transparency is fundamental to understanding Al and provides clear, real-time
insights into an Al’'s activities, which is essential for profitable interaction in dynamic contexts.
However, Al decision support can also go beyond the provision of comprehensible suggestions.
This is the case when Al specifically supports cognitive processes of human decision-making (e.g.,
the ability of humans to develop situation awareness, recognize problems, or identify leverage
points) with the aim of continuously increasing corresponding human capabilities. In this way,
humans and Al act as a joint cognitive system and create true hybrid intelligence, leveraging the
strengths of both humans and Al.
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Figure 4: Experimentation of bi-directional virtual assistants for joint decision-making using the
CAB framework’s prototype and its instantiation for the power grid use case. It consists of four key
panels: the Context Panel, displaying a real-time view of the environment (e.g., the power grid and
its components) with tools like zooming; the Timeline Panel, tracking time steps and event history
for analysis; the Alerts Panel, listing notifications about risks and events (e.g., power line overloads
and contingency risks); and the Recommendations Panel, offering Al-based suggestions that
operators can adopt based on their expertise and the complexity of the situation (e.g., topological
or redispatching actions with KPIs on the impact).
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