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On the MixMax Model and Cepstral Features for
Noise-Robust Voice Recognition

Thilo Stadelmann and Bernd Freisleben*, Member, IEEE

Abstract—The MixMax model is a well-known technique to
build and evaluate statistical models of signals in the presence
of background noise. It has successfully been applied to noise-
robust voice recognition. The major drawback of the MixMax
model is that it can only be applied to (log-)filterbank features
that have been shown to be inferior to Mel-Frequency Cepstrum
Coefficients (MFCCs) in audio processing. Nevertheless, good
results using MixMax models for MFCC features have been
reported in the literature. This paper proves that the MixMax
model cannot work with MFCC features. Furthermore, it is
shown that the good results reported in the literature have been
obtained by a different method that has been used accidentally.
The other model’s formulation and its properties are discussed,
(re-)opening new research perspectives for noise-robust voice
modeling.

Index Terms—noise masking, MixMax model, mel-frequency
cepstral coefficients, singer identification, speaker identification

I. INTRODUCTION

IN supervised speech- or voice recognition tasks, several
existing approaches suffer from the mismatch between

training and evaluation conditions caused by interfering back-
ground signals, called noise. A prominent technique to deal
with such conditions in the modeling- or recognition stage is
the MixMax model. Nádas et al. [1] have introduced it as a
technique for speech recognition in the presence of noise. It
provides a way to build a statistical mixture model, normally
a Gaussian mixture model (GMM) [2], of a signal, while
simultaneously keeping a model of the accompanying noise.
Through the interaction of both models, noise compensation
is achieved via a statistical variant of noise masking [3]:
the noisy speech mixtures get ”masked“ by the background
mixtures rather than cleaned. In the likelihood computation,
the feature vectors are scored against the combined speaker-
background model. The more a speaker mixture is masked by
noise, the less it contributes to the final likelihood score. As a
consequence, testing previously unseen signals against models
built from training data under different noise conditions is
possible as long as a model for the current noise exists.

Varga and Moore [4] have developed the same idea inde-
pendently of Nádas et al. for the decomposition of speech and
noise to facilitate speech recognition. Rose et al. [5] have used
the MixMax model for robust speaker recognition and called
it the Gaussian mixture model with integrated background
(GMM-IB). They placed it in a framework of general signal–
noise interaction and modeling. Burshtein and Gannot [6]
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have used the approach for speech enhancement on embedded
devices, focusing on accelerating the necessary computations.
Tsai et al. [7] have employed the MixMax model for singer’s
voice modeling within music information retrieval in several
works [8]–[10]. Afify et al. [11] have derived upper and
lower bounds on the mean of noise-corrupted speech signals
using the MixMax’ modeling assumptions. Furthermore, the
MixMax equations have been used, extended and evaluated by
Deoras and Hasegawa-Johnson [12] for simultaneous speech
recognition (i.e., source separation) and Logan and Robinson
[13], Erell and Weintraub [14] as well as Erell and Burshtein
[15] for noisy speech recognition, enhancement and adapta-
tion, among others.

This paper investigates the applicability of the MixMax
model to cepstral features [16], inspired by contradicting views
expressed in several recent publications. On the one hand, the
MixMax’ definition confines its use to linear transformations
of the signal, such as, e.g., filterbank energies; on the other
hand, features like mel frequency cepstral coefficients (MFCC)
are generally deemed more powerful in voice recognition
tasks, yielding improvements of up to 10%. Exploiting this
advantage is clearly desirable, but not all authors agree on the
feasibility of being successful in conjunction with the MixMax
model. The contradictions in the literature are dissolved by
experiments, arguments and proofs in this paper. This shows
for the first time how noise compensation can be done on
cepstral features directly. Additionally, small errors in the
corpus of the MixMax model’s training equations are corrected
that have been repeated in the literature since their initial
publication in 1994.

The paper is organized as follows: Section II introduces the
idea behind the MixMax method, followed by the model’s for-
mal definition and an explication of its corpus of training- and
evaluation equations in Section III. Section IV then introduces
the problem of contradicting views about the MixMax model’s
suitability for cepstral features. They are investigated by
providing an alternative explanation for publications claiming
to use the MixMax model on MFCC features in Section V,
and a proof that the other publications refraining from doing
so are actually right in Section VI. Section VII concludes the
paper and outlines areas for future research.

II. THE MIXMAX IDEA

The principal idea behind the MixMax model is as follows:
given is an (unobserved) acoustic feature vector ~z′ that is
formed as the addition of independent pure signal and noise
vectors ~x′ and ~y′, i.e., ~z′ = ~x′+~y′, but the actual observations
are logarithms of (possibly linear transformations of) these
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vectors (~z = log t(~z′), ~x = log t(~x′), ~y= log t(~y′), where t()
is some linear transformation or the identity). Then, the fol-
lowing approximation can be used to model the signal–noise
interaction in the new (transformed, logarithmized) domain to
simplify and speed up subsequent modeling computations:

~z = log (t(~x′)+t(~y′)) = log (e~x+e~y) ≈ max (~x, ~y) (1)

Note that both the log -function and the max -function are
meant to operate component-wise if used with vector argu-
ments, i.e., (1) is a shorthand notation for all components
{zd|1 ≤ d ≤ D}, of ~z ∈ RD.

Consider the following concrete situation: two frames of
speech signal ~x′ and noise ~y′ are purely additive in the
time-domain. This happens, for example, when two different
sound recordings are mixed together after they have been
recorded, as it is done within music (singing and diverse
instruments) or movies (soundtrack or effects and possibly
dubbed voices), or when different sound sources are recorded
with a single microphone. Therefore, signal and noise are also
additive in the FFT domain (i.e., t() = FFT ()), because the
FFT is linear with respect to addition. Thus, the signal is
really additive in the frequency domain. But when the power-
spectrum | |2 is then computed of some Fourier-transformed
signal a = b+c, it yields |a|2 = |b|2+ |c|2+2 · |b| · |c|, which
can be approximated by |a|2 ≈ |b|2+|c|2. This (approximate)
additivity in the power-spectral domain remains after passing
the power spectrum through a bank of (probably mel-scaled)
filters. But after taking the logarithm (~z = logFFT (~z′),
etc.) of these filterbank energies, the signal–noise interaction
function becomes log(e~x + e~y), which is approximated by
max (~x, ~y) for the sake of computational simplicity.

Thus, the MixMax model is appropriate, for example,
if signal and noise are additive in the time domain, but
the observations are log-filterbank energy (FBE) features.
The max()-approximation leads to manageable mathematical
expressions and good results, explaining its application to
numerous problems in the audio processing domain. It also
explains the name: via GMMs, mixtures of maxima of signal
and noise are modeled.

III. DEFINITION OF THE MIXMAX MODEL

A MixMax model λMM consists of two separate GMMs λs

and λb and specialized algorithms for training and testing. It
is defined as follows [5]:

λMM = {λs, λb} (2)

λs = {(wsi , ~µi
s, ~σ2

i

s
)|1 ≤ i ≤ I} (3)

λb = {(wbj , ~µj
b, ~σ2

j

b
)|1 ≤ j ≤ J} (4)

Here, λs is the signal model with I mixtures and λb is the
background model with J mixtures, each having a weight w,
a mean vector ~µ and a diagonal covariance matrix ~σ2 per
mixture.

A. Model Training

The background model has to be trained in advance using
samples of the expected noise and a standard GMM training

procedure [2]. Then, training the signal model via the EM
algorithm [17] and the specialized equations derived in the
literature [5] [6] can be accomplished independently for each
dimension, taking into account the diagonal covariance matrix
of the Gaussians:

wsi =
1

T

T∑
t=1

J∑
j=1

D∏
d=1

p(i, j|zt,d, λMM ) (5)

µsi,d =

∑T
t=1

∑J
j=1

E{xt,d|zt,d,i,j,λMM}
p(i,j|zt,d,λMM )−1∑T

t=1

∑J
j=1 p(i, j|zt,d, λMM )

(6)

σ2
i,d
s

=

∑T
t=1

∑J
j=1

E{x2
t,d|zt,d,i,j,λMM}

p(i,j|zt,d,λMM )−1∑T
t=1

∑J
j=1 p(i, j|zt,d, λMM )

− µ2
i,d
s (7)

where wsi , µsi,d and σ2
i,d
s are the new (reestimated) parameters

of the signal GMM λs for the next round of the EM algorithm.
D is again the dimensionality of the feature vectors ~z ∈ RD
and d the index for the dimension. Note the quotient and
corresponding −1 exponent in (6)–(7) for layout reasons. To
apply the formulas, several other terms must be defined:

p(i, j|zd, λMM ) =
p(zd|i, j, λMM ) · wsi · wbj∑I

i=1

∑J
j=1 p(zd|i, j, λMM )·wsi ·wbj

(8)

E{xd|zd, i, j, λMM} =
zd

p(xd=zd|i, j, λMM )−1

+
E{xd|xd<zd, i, j, λMM}

(1−p(xd=zd|i, j, λMM ))
−1

(9)

E{x2d|zd, i, j, λMM} =
z2d

p(xd=zd|i, j, λMM )−1

+
E{x2d|xd<zd, i, j, λMM}

(1−p(xd=zd|i, j, λMM ))
−1

(10)

Here, zt,d is the dth dimension of the tth observation vector in
the transformed, logarithmized domain, while xd is its implicit
clean signal estimate in the same domain. The meaning of
(9) is as follows: the expected value E{x|z, i, j} of a clean
speech component, given the noisy observation and a specific
foreground–background state combination, is the weighted
mean of the noisy observation z and the signal’s expected
value given that its amplitude is below the noisy observation’s
amplitude (E{x|x < z}). The weights are defined by the
probability that the current observation is already a clean sig-
nal (p(x= z)) and its complementary event. These equations
already make use of the max assumption (in the formulation
of the expected value for x, which needs its amplitude being
smaller than the amplitude of z), which becomes evident in
the following equations:

p(zd|i, j, λMM ) = bj(zd)·Si(zd)+si(zd)·Bj(zd)

(11)

p(xd=zd|i, j, λMM ) =
si(zd) ·Bj(zd)

bj(zd)·Si(zd)+si(zd)·Bj(zd)
(12)
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E{xd|xd < zd, i, j, λMM} = µsi,d − σ2
i,d
s · si(zd)
Si(zd)

(13)

E{x2d|xd < zd, i, j, λMM} =
(
µ2
i,d
s

+ σ2
i,d
s
)

− σ2
i,d
s ·
si(zd) · (zd + µsi,d)

Si(zd)
(14)

Here, bj() and si() are the univariate parametrized Gaussian
probability density functions (PDFs) φ(..) for mixtures j and
i of the background- and signal GMM, respectively. Bj()
and Si() are the corresponding cumulative density functions
(CDFs) as defined below. Note the squared form σ2

i,d
s in (13):

this has been incorrectly given un-squared in the original paper
[5] and in the subsequent literature.

bj(zd) = φ(zd, µ
b
j,d, σ

2
j,d
b
) (15)

φ(x, µ, σ2) =
1√

2πσ2
· e−

(x−µ)2

2σ2 (16)

Bj(zd) = Φ

(
zd − µbj,d
σbj,d

)
(17)

si(zd) = φ(zd, µ
s
i,d, σ

2
i,d
s
) (18)

Si(zd) = Φ

(
zd − µsi,d
σsj,d

)
(19)

The Gaussian CDF Φ() is defined in terms of the error
function erf as follows:

Φ(x) =
1

2
·
[
1 + erf

(
x√
2

)]
(20)

=
1√
2π
·
∫ x

−∞
φ(x, 0, 1)dt (21)

B. Model Evaluation

During training, the mixtures of the signal model λs in the
individual frequency bands (dimensions) get masked by the
background mixtures at the points where both distributions
overlap. During testing of the combined model against evalu-
ation data, the probability of noise corruption for each feature
vector, frequency band and state (mixture) in the combined
signal–background mixture lattice is computed. The higher this
probability is, the less does this component contribute to the
final log-likelihood score lMM in (22):

lMM = log p(Z|λMM )

=

T∑
t=1

log

 I∑
i=1

J∑
j=1

wsi · wbj ·
D∏
d=1

p(zt,d|i, j, λMM )


(22)

where Z = {~zt|1≤ t≤T ∧ ~zt ∈ RD} is the set of evaluation
feature vectors.

IV. MIXMAX AND MFCC FEATURE VECTORS

The MixMax model has shown its effectiveness in reducing
the influence of noise in the tasks mentioned above. Nev-
ertheless, it suffers from not using the best possible input:
by design, the MixMax assumption is not appropriate for

cepstral features like MFCCs that have many advantages
over conventional filterbank features. For example, they are
more voice specific, have a lower susceptibility to noise, are
completely decorrelated and more compact. These advantages
can typically cause a drop in the final error rate as high as
5–10% absolute reduction and must be left unexploited in the
case of the MixMax model.

Several researchers acknowledge this constraint, e.g., Nádas
et al. [1], Varga and Moore [4] and Rose et al. [5]. Never-
theless, in a series of publications on singer identification in
popular music databases, Tsai et al. have reported good results
using MixMax models in conjunction with MFCC feature
vectors [7]–[10].

As a motivating example, consider the power envelopes
depicted in Fig. 1: the good concordance of FBEs with the
max-assumption can be seen as well as its violation within
the MFCCs. Loosely speaking, the inappropriateness of the
MixMax model for MFCC features is due to the MFCC
vector being the discrete cosine transform (DCT) of a FBE
vector. Thus, every single component of a MFCC vector is
a weighted linear combination of all components of the FBE
observation (~z = DCT (max (~x, ~y))), such that a highly non-
linear coherence between ~x and ~y through the nested call to the
max (.) function is created. No good results can be expected
when this relationship is ignored.

V. EXPLAINING GOOD RESULTS USING “MIXMAX” AND
MFCCS

In this section, one part of the mentioned contradiction is
dissolved by explaining Tsai et al.’s good results. Our approach
is to show that in fact a different model (“the actual model
used”, AMU) has unawarely been applied by the authors,
and to discover what this AMU looks like. Subsection V-A
begins with the extraction of the AMU’s training and evalu-
ation equations from the authors’ source code. The equations
deviate strongly from the MixMax model’s formulation, and
the implementation suggests that they might have evolved
unintentionally. Then, Subsection V-B reports on extensive
experiments comparing the results using these equations with
the MixMax- and other models. The experiments allow us to
draw the following conclusions:

a The actual model used by Tsai et al. in conjunction
with MFCCs indeed performs significantly better than
MixMax & FBE, GMM & MFCC and (of course)
MixMax & MFCC on quite diverse data sets; this shows
its suitability (to some extent) for noise compensation in
the cepstral domain.

b The actual model used does not perform significantly
different than a particular extension of the GMM base-
line; this indicates that it is more related to this baseline
extension rather than to the MixMax model.

Based on this analysis, we suggest to dissolve the contra-
diction in the literature by arguing that Tsai et al. seem to
have used the model extracted here, but have described the
MixMax model in their publications. Publishing the actual
model used in the next section is meant to clarify which
method actually produces good results in compensating noise
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(a) FBE vectors on a linear frequency scale. (b) FBE vectors on a Mel frequency scale. (c) Corresponding MFCC vectors.

Fig. 1. Example of the power envelopes of FBE and MFCC vectors of some pure signal, pure noise and the corresponding combined observation.

and modeling voices in the cepstral domain. In straightens the
body of literature regarding the MixMax model and its area
of application: the MixMax model is not applicable in the
cepstral domain.

A. The Actual Model Used

Tsai et al. thankfully provided the source code of their
published singer recognition system in order to pursue the
question why it shows good results in a context where it
is not supposed to do so. Careful analysis revealed a set of
equations for the actual model used that deviates from the
MixMax equations given in (5)–(22).

Let λAMU denote the actual model used, defined as in (2)–
(4). The following expressions are used to train its integrated
signal model λs as revealed by reverse engineering:

µsi,d = µsi,d (23)

σsi,d = σsi,d (24)

wsi =
1

T
·
T∑
t=1

wsi ·
∑J
j=1 w

b
j · ptrain(~zt|i, j, λAMU )∑I

u=1 w
s
u ·
∑J
v=1 w

b
v · ptrain(~zt|u, v, λAMU )

(25)

ptrain(~zt|i, j, λAMU ) =

D∏
d=1

p(zt,d|i, j, λAMU )

=

D∏
d=1

(bj(zt,d) · Si(zt,d)

+si(zt,d) ·Bj(zt,d)) (26)

Here, p(zt,d|i, j, λAMU ) is defined as in (11). The difference
(apart from the domain of the observation vector, which is
MFCC here) to the equations given by [5] and in Section III
for the MixMax model is that the means and variances are
not re-estimated, i.e., they remain as initialized prior to EM
training. The expression for the log-likelihood function lAMU

has been determined to be

lAMU = log p(Z|λAMU )

=

T∑
t=1

log

 I∑
i=1

J∑
j=1

wsi · wbj · peval(~zt|i, j, λAMU )


(27)

with

peval(~zt|i, j, λAMU ) =(
D∏
d=1

bj,d(zt,d)

)
·

(∑D
d=1 Si,d(zt,d)

D

)

+

(
D∏
d=1

si,d(zt,d)

)
·

(∑D
d=1Bj,d(zt,d)

D

)
(28)

Note that different equations are used during training and eval-
uation to compute the “likelihood” ptrain/eval(~z|i, j, λAMU )
of the current vector to a given state of the model. The
equation for peval() differs from (26) in that it gives up the
component-wise max() assumption. Instead, its meaning is
“the probability that the components of the signal are on
the average greater than the components of the noise or
vice versa”. Though this “average maximum” signal–noise
interaction is also not generally true for the coherence of signal
and noise in the MFCC domain, it might approximate the
strongly non-linear behavior.

B. Experimentation

In this section, we
a show that the equations nevertheless point to an effective

method for noise compensation in the cepstral domain
as indicated by the positive results;

b give evidence about what this effective method might
look like.

First, we report on the datasets used in our experiments that
partly resemble those presented in Tsai et al.’s publications,
but largely exceed them. Then, experiments are presented
supporting the view that the AMU is in fact an effective model,
before another set of experiments is performed that aims at
revealing its “true” identity. All experiments follow the setup
that Tsai et al. used, i.e., closed set singer/speaker identifica-
tion experiments are conducted in the spirit of Reynolds [18].

1) Databases: Three different datasets are used to provide
a broad basis for extensive computational simulations. There-
fore, each dataset has a distinct focus: singing voice with
music, spontaneous conversations or noisy telephone quality
speech. In particular, the following datasets are utilized:

The DB-S-1 database introduced by Tsai et al. has been
primarily designed for singer recognition experiments. It splits
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into the training set DB-S-1-T and the evaluation set DB-S-
1-E, each consisting of a total of 100 Mandarin pop songs, 5
by each of 10 male and 10 female distinct solo singers. The
data has been downsampled from CD quality to 22 kHz. Each
song is between 2:15 and 6:30 minutes in length. However, in
case of FBE features, only 7 male and 8 female distinct artists
with 4 to 5 songs each are present in the database as provided
by the authors, resulting in 72 songs per subset.

The Portuguese TV soap opera “Riscos SL” is part of
the “MPEG-7 Content Set” [19]. All speech from speakers
occurring more than once has been extracted, resulting in a
population of 5 male and 6 female speakers in the set called
MPEG7 in the rest of this section. It is further divided such
that each speaker has an equal number of utterances in his/her
training- and evaluation set, resulting in 3–47 seconds of train-
ing speech per speaker from 1–10 utterances (18.4 seconds in
4.3 utterances on the average) and 2–28 seconds of test data
from 1–10 utterances (15.3 seconds in 4.2 utterances on the
average). The speech within this database can be characterized
as short, spontaneous and emotional in nature, accompanied by
background noise such as speech babble and ambient sounds
as well as music. This forms a challenging scenario for speaker
identification experiments. The data is converted from an 44
kHz 192Kbps MPEG-1 layer II compressed audio stream to a
16 kHz waveform before further processing.

The NOIZEUS corpus has been introduced by Hu and
Loizou [20] for the comparison of speech enhancement al-
gorithms. It consists of read speech from 3 male and 3 female
speakers. Each of them uttered 5 phonetically rich sentences
that were later mixed with 5 different noise types from the
AURORA database at 4 different SNRs from 15 dB to 0 dB.
These studio-quality recordings were further processed to have
telephone speech quality at 8 kHz sample rate. To use this data
for voice recognition, it is split into a training and evaluation
set as follows: the first two sentences of all speakers with
accompanying restaurant ambient noise at 15 dB and 0 dB are
used for model training, while the last 3 sentences with airport-
/station-/train- and exhibition-noise at SNRs of 10 dB and 5
dB are used for testing. This way, there is no co-occurrence
of sentences, SNRs or noise-types in both training and testing,
making the task of speaker identification more difficult due to
unforeseen circumstances.

The datasets are not proprietary and are also used by other
works or are actually available to the public (in case of MPEG7
and NOIZEUS), so that the experiments are repeatable. For the
purpose of noise model training, each set also contains samples
of pure interfering noise, collected from the parts before, in
between and after the speech in case of DB-S-1 and MPEG7,
and from the pure noise samples in case of NOIZEUS.

2) Experiments Confirming the AMU’s General Suitability:
These experiments are designed to assess the performance
of the MixMax model and the AMU on both log-filterbank
energy- and cepstral features and to give evidence of their
respective strengths and weaknesses. Following the setup of
Tsai et al. the input data is first processed by HTK [21]
to produce 20 MFCCs or 28 FBEs per frame. Each frame
is preemphasized with a factor of α = 0.97 and Hamming-
windowed, with a frame length of 32 ms and a frame step of

10 ms. All voice (singer, speaker) models comprise 32 mixture
components, while in case of noise models 8 mixtures are
used. All models are initialized via 10 iterations of the k-means
algorithm and trained using 20 iterations of the EM algorithm.
As a baseline for comparison, scores for a standard GMM
recognition system (EM-trained, without universal background
model (UBM) score normalization) are also reported.

TABLE I
SINGER/SPEAKER IDENTIFICATION RATE ON ALL THREE DATABASES.

Features Model Recognition rate
DB-S-1 [%] MPEG7 [%] NOIZEUS [%]

FBE GMM 88.89 54.35 45.83
MixMax 91.67 56.52 64.58

AMU 91.67 60.87 47.22
MFCC GMM 93.00 63.04 70.13

MixMax 75.00 39.13 68.05
AMU 98.00 73.91 71.53

The first recognition rate column of Table I shows the results
of voice recognition (in fact: closed set singer identification)
on the DB-S-1 database. Several facts can be noted: looking
at the performance of the GMM system with the different
features, the superiority of MFCCs over FBEs can be seen.
For the MixMax model, the predicted drop in recognition
rate when using MFCCs is quite obvious. The AMU scores
equal to the MixMax model when used with FBEs, but
scores best in conjunction with MFCC features. This last
result is comparable (except for small variations due to model
initialization, score normalization etc.) to the one reported
by Tsai et al. for the solo modeling case with automatic
segmentation, validating our implementation as well as the
experimental setup.

In the second recognition rate column of Table I, the results
for the MPEG7 test set are reported. They are qualitatively
equal to those on the DB-S-1 database, though the recognition
rates are consistently shifted down by 20–30 percentage points.
This may be due to very short training and evaluation utterance
lengths as well as highly non-stationary noise, as reported
earlier.

Finally, the results for the NOIZEUS corpus are shown in
the last column of Table I. There are two differences to the
previous results: The MixMax model, in combination with
MFCC features, works better than with FBE features, though
it is still the worst classifier on MFCCs. Also, the AMU is
clearly outperformed on FBEs by the MixMax model. Again,
note that the utterances here consist of only one short sentence.

In general, the new AMU & MFCC combination always
performs best. Compared to the results of the formerly best
combination, MixMax & FBE, an average relative improve-
ment in identification rate of 16.14% is achieved (6.19%
on DB-S-1, 30.77% on MPEG7 and 10.76% on NOIZEUS,
respectively). This corresponds to an average increase of the
scores as high as 10.22 percentage points. Table II gives the
raw identification results for these two systems and all three
databases.

These experiments support already expressed arguments:
the MixMax model’s inappropriateness in case of MFCCs is
demonstrated by means of low recognition rates, and the gen-
eral preference of cepstral features over log-filterbank energies
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TABLE II
CONTINGENCY TABLE OF RAW IDENTIFICATION RESULTS ON ALL THREE

DATABASES.

System Correct ID Wrong ID Σ
[#] [#] [#]

MixMax & FBE 185 77 262
AMU & MFCC 235 55 290

Σ 420 132 552

can be seen. The results are novel with regard to the AMU.
Here, empirical evidence is given for a certain suitability of the
specific model formulation in Section V-A in conjunction with
MFCC features by means of high recognition rates in difficult
voice recognition scenarios. A χ2-test based on the values
of Table II suggests that the H0 hypothesis of these results
being not significantly better than those of the MixMax &
FBE approach has to be rejected with 99.5% confidence. This
and the qualitative homogeneity of the results over all three
highly different databases also gives evidence that the outcome
is not data-dependent or random, but somewhat models the
non-linear interaction of signal and noise in the transformed
domain.

On the other hand, (23)–(28) or in fact the AMU’s model
formulation look too contrary to reason (i.e., too random) at
some points. There seems to be another—yet hidden—model
that still needs to be discovered, as described below.

3) Experiments Indicating the AMU’s “True” Identity: A
closer look at the AMU equations reveals that in the training
part (23)–(26), only the weights are changed during subsequent
EM iterations. Equation (25) uses (26), the probability that
an observation vector at time t is reflected by the state (i, j)
under the component-wise maximum assumption of signal–
noise interaction, which is an unchanged adoption from the
corresponding MixMax equation in (11). Two conclusions can
be drawn:

a since this assumption is wrong for MFCC features, the
meaning of (25) is questionable;

b since (26) is also used in the MixMax training equations
for reestimating the mean- and variance-vectors, it is
obvious that the omitted training of the means and vari-
ances in the AMU should be beneficial to the model’s
performance (in the sense of rather doing nothing than
doing something wrong).

These findings directly suggest two changes in the AMU
formulation with respect to training:

First, adjusting the means and variances of the model in
a non noise-specific, standard GMM sense should further
amplify the effect gained by leaving them as initialized by
k-means (because initializing the parameters via k-means
roughly clusters the training data by using a distance measure;
EM training refines this clustering in a maximum likelihood
sense, so reestimating ~µi

s and ~σi
s via non noise-compensating

equations should just improve the initialization). This direction
has not yielded promising results in preliminary experiments,
so it is excluded from further analysis.

Second, the use of ptrain (26) in the reestimation of
the weights (25) should be exchanged by a more suitable

TABLE III
SINGER/SPEAKER IDENTIFICATION RATES FOR AMU VARIANTS AND

BASELINES USING MFCC FEATURES ON ALL THREE DATABASES.

Model Recognition rate
DB-S-1 [%] MPEG7 [%] NOIZEUS [%]

GMM (32) 93.00 63.04 70.14
GMM (40) 92.00 58.70 73.61
GMM (32/8, per dim.) 78.00 58.70 63.19
GMM (32/8, per frame) 95.00 65.22 73.61
MixMax (32/8) 75.00 39.13 68.05
AMU (32/8) 98.00 73.91 71.53

w/o eval. CDFs 94.00 69.57 71.53
w/o both CDFs 97.00 65.22 74.31
w/o both CDFs, ∨ 97.00 65.22 74.31
w/o both CDFs, ∨, dim. 92.00 65.22 71.53
w/o both CDFs, ∨, frame 97.00 65.22 71.53

formulation. An option is to use (variants of) the adapted form
peval (28) applied during the evaluation of an AMU. Results
are reported in Table III for MFCC feature vectors and several
reasonable baselines (the MixMax model, too, for comparison)
and a couple of such variants, as described below:

“GMM (32)” indicates voice modeling with a 32-mixture
GMM without regarding the background noise. “GMM (40)”
describes the same system using 40 mixtures, thereby reaching
the same number of used parameters as a model with 32
foreground- and 8 background mixtures. Thus, the statistical
expressibility (in terms of number of parameters) is equal
to all background-modeling techniques, and any difference
in performance must be attributed to the expressive power
(i.e., goodness of fit) of the specific model under consideration
rather than to the model’s size. “GMM (32/8, per dim.)” stands
for a system comprising two separate standard GMMs, a 32-
mixture GMM trained on the noisy speech samples, and an 8-
mixture one trained on the pure noise. During recognition, for
each dimension in each vector it is decided if it is better fitted
by the noise- or the voice model, and only scores from a better
fitting voice model contribute to the final likelihood; thus, it
can be viewed as a non-probabilistic, on/off-like noise masking
scheme per dimension. ‘GMM (32/8, per frame)” makes the
same decision based on a complete vector (all its dimensions).
The MixMax model and AMU are already known from above.

The six variants of the AMU are all chosen with respect
to finding “the original formulation” to (28), i.e., to find
an improvement. Because of the mathematically questionable
“average maximum” assumption expressed in the equation via
the CDFs, the variants depict several approaches to reformulate
the CDF part of the equation. First, “w/o eval. CDFs” describes
the variant that eliminates all calls to CDFs in peval, i.e. they
are replaced with a factor of 1. Second, “w/o both CDFs”
stands for the variant without any CDFs in both ptrain and
peval. Third, “w/o both CDFs, ∨” describes the alternative that
both in training and evaluation, the CDFs are omitted and the
remaining two PDFs are joined not just via addition (meaning
a probabilistic “or”, denoted ∨, in the case of mutually exclu-
sive events). Instead, the formulation models the probability
that the vector ~z is speech or noise given that the two events
are not mutually exclusive: b(z)+s(z) − b(z) ·(z) (dropping
all indices). The remaining difference between training and
evaluation equations is now only the fact that during training,
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the equation correctly regards the multivariate nature of ~z by
calculating the product over all dimensions of the diagonal-
covariance Gaussians; during evaluation, however, the multi-
variate nature is oddly treated by building the product of the
individual terms independently. This difference is resolved in
the cases “w/o both CDFs, ∨, dim.” and “w/o both CDFs, ∨,
frame”, where in the former case both training and evaluation
equations work truly multivariate; in the latter case, both
equations adopt the formulation of (28).

C. Discussion

From Table III, several conclusions can be drawn:
First, all variants explored to improve the AMU and to

discover a hidden meaning fail, yielding worse results than
the originally found equations. This suggests that both parts,
the equations for model training and evaluation, interact in
their specific form to create the good results: the training
stage contributes mixture means and variances resulting from
pure k-means clustering, and weights that are adjusted in a
manner that tends to increase the impact of few mixtures
while simultaneously dropping most others to have very low
impact on the result. The likelihood computation stage is
built on the assumption of signal and background interaction
that has previously been called the “average maximum”.
It departs from the paradigm of component-wise likelihood
computation by operating on the whole vectors at once (which
can be implemented component-wise again, as suggested by
the equations, through independence of the individual MFC
coefficients). It appears that the approach of “optimizing” the
AMU equations failed.

Second, Table III interestingly shows that the top-scoring
original AMU formulation is not far away (in terms of identi-
fication rates) from the simple but effective “GMM (32/8, per
frame)” approach (denoted as the “baseline” below). In fact,
a detailed analysis of the two models’ individual scores of all
test utterances versus the enrolled speaker models reveals that
the produced scores are very similar to each other. A simple
value of concordance, c, reaches 94.70% agreement according
to (29):

c =

∑T
t=1

∑S
s1=1

∑S
s2=s1+1 rt,s1,s2

T · S · S−12

(29)

rt,s1,s2 = r(Xt, λ
s1
AMU , λ

s2
AMU , λ

s1
baseline, λ

s2
baseline) (30)

where Xt is the tth feature vector set out of T test utterances
and λsAMU/baseline the sth enrolled speaker model out of a
total of S trained models. The function r(....) returns 1 if
and only if the two models agree on the relative rank of two
trained models (as produced by ordering them according to
the achieved likelihood) for a specific test utterance.

r(X,λu1 , λ
v
1, λ

u
2 , λ

v
2) =


1 if

(l1(X|λu1 )<l1(X|λv1)∧
l2(X|λu2 )<l2(X|λv2))∨

(l1(X|λu1 )>l1(X|λv1)∧
l2(X|λu2 )>l2(X|λv2))

0 otherwise
(31)

Here, l1/2 are the respective likelihood functions of the two
speaker models λ1/2.

TABLE IV
IDENTIFICATION SCATTER MATRIX FOR THE “GMM (32/8, PER FRAME)”

MODEL ON MPEG7 DATA.

F1 F2 F3 F4 F5 F6 M1 M2 M3 M4 M5
[#] [#] [#] [#] [#] [#] [#] [#] [#] [#] [#]

F1 [#]
F2 [#] 4 1 1
F3 [#] 2
F4 [#] 3 2
F5 [#]
F6 [#] 1 3 8
M1 [#] 3
M2 [#] 1 7 2 1 1
M3 [#] 1 3 1 1
M4 [#]
M5 [#]

TABLE V
IDENTIFICATION SCATTER MATRIX FOR THE AMU MODEL ON MPEG7

DATA.

F1 F2 F3 F4 F5 F6 M1 M2 M3 M4 M5
[#] [#] [#] [#] [#] [#] [#] [#] [#] [#] [#]

F1 [#] 1
F2 [#] 4 1 1
F3 [#] 2
F4 [#] 3 1
F5 [#]
F6 [#] 3 9
M1 [#] 4
M2 [#] 7 1 1 2
M3 [#] 4 1 1
M4 [#]
M5 [#]

The high agreement expressed by c as given above is further
demonstrated in Tables IV–V and Fig. 2. The tables give scat-
ter matrices for the baseline model and AMU. The numbers
indicate how often utterances from specific speakers (indicated
by the IDs in the column headers) are identified as coming
form certain speaker models as indicated by the speaker ID in
front of the rows. Correct identifications are found along the
main diagonal, marked in green, while errors are individually
marked in red. A coarse visual analysis of the graphical pattern
created by the correct and incorrect identifications shows how
similar both models work in terms of identification results and
errors. This trend is further expressed in Fig. 2, where all six
cases are depicted where the two models do not agree in their
final identification decision on MPEG7 data. The envelopes of
the likelihood scores of both models are very similar, letting
the AMU’s scores appear merely as scaled versions of the
baseline’s results. Furthermore, as indicated by the circles, in
all six (out of 46 overall) cases of non-agreement, the second
best score of one of the models always resembles the winner
of the other model. Additionally, quite often the difference
from the best to second best score is marginally small: nearly
invisible departures decide over correct identification (in a
nearest neighbor sense) in case of AMU and a false positive
in case of the baseline several times.

Is the difference between the identification rates of the two
models just random? Using a statistical χ2 test (with and
without Yates’ correction for 1 degree of freedom [22]), no
significant evidence speaks against the hypothesis H0 that “the
AMU does not perform differently than the baseline model”.
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(a) Test utterance F1/1. (b) Test utterance F5/1. (c) Test utterance F6/9.

(d) Test utterance M1/4. (e) Test utterance M3/5. (f) Test utterance M5/3.

Fig. 2. Log-likelihood scores for all misidentified test utterances from MPEG7 versus the enrolled speaker models, calculated using the AMU and baseline
model. Data points encircled in red mark the highest overall score, in each case achieved by the wrong enrolled model; yellow circles mark the second-best
score.

This test result is true for the combined identification results
of all three databases (α-level of α = 0.610), and also for
each single database alone (α = 0.250, α = 0.279 and
α = 0.639 for DB-S-1, MPEG7 and NOIZEUS, respectively).
Not rejecting H0 is not in general an evidence in support of
H0, and the resulting α-levels of this particular test result are
too low to be used as counter-arguments of the test’s intention.
But evaluating all the available facts carefully, we conclude
that the AMU is best explained as being a distorted variant of
the baseline approach “GMM (32/8, per frame)”.

Thus, the explanation for the good results in Tsai et al.’s
works is that not the MixMax, but a different model has
been used by them; this different model appears deformed
as extracted from their source code, but is best explained
as resembling a non-probabilistic, multivariate noise masking
scheme called “GMM (32/8, per frame)”: for each feature
vector of a test utterance, its likelihood to the voice model and
to the noise model is computed; only those frames contribute
to the final likelihood score of the integrated voice–noise
model that are more likely to be modeled by the voice model.

VI. PROVING THE MIXMAX’ INEPTNESS FOR CEPSTRAL
FEATURES

In this section, we prove the following theorem:
Theorem 6.1: The MixMax model is inappropriate for

modeling signal–noise interaction in the cepstral domain.
Proof: Let ~x and ~y be the FBE features of pure signal

and pure noise as in Section II and let D be the dimensionality
of these vectors, respectively. By reductio ad absurdum, it is
shown that the following equation does not hold ∀~x, ~y ∈ RD
and ∀D ∈ N\{0, 1} (for D = 1, it is easy to see):

DCT (max (~x, ~y)) = max (DCT (~x), DCT (~y)) (32)

i.e., that the component-wise max-coherence between the
FBEs does not remain after DCT computation, such that
the MixMax-model is not applicable to MFCCs in general.
Knowing that the kth component sk, 1≤k≤D, of the DCT’s
resulting vector is computed as

sk = αk ·
D∑
d=1

sd · cos

[
π

D
· k ·

(
(d−1) +

1

2

)]
(33)

with ~s being the vector to be transformed and αk a factor,
the specific form (32) takes for the kth coefficient (MFC
coefficient, if ~s is a FBE vector) can now be considered:

D∑
d=1

max (xd, yd) · cd,k = max

(
D∑
d=1

xd · cd,k,
D∑
d=1

yd · cd,k

)
(34)

where cd,k = cos
[
π
D · k ·

(
(d−1) + 1

2

)]
and the αk is dropped

for simplicity.

Let D > 1 be arbitrary and fixed, and let xl < yl be
for l arbitrary but fixed in {1, . . . , D} but xd ≥ yd ∀d ∈
{1, . . . , D}\{l}. With this setting, (34) becomes

D∑
d=1

d6=l

xd · cd,k + yl · cl,k = max

(
D∑
d=1

xd · cd,k,
D∑
d=1

yd · cd,k

)
(35)

Consider the case that
∑D
d=1 xd · cd,k >

∑D
d=1 yd · cd,k to

resolve the max()-function on the right hand side of (35).
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Then, (35) becomes

D∑
d=1

d6=l

xd · cd,k + yl · cl,k =

D∑
d=1

xd · cd,k

⇔
D∑
d=1

d6=l

xd · cd,k + yl · cl,k =

D∑
d=1

d6=l

xd · cd,k + xl · cl,k

⇔yl · cl,k = xl · cl,k
⇔yl = xl (36)

This contradicts the previous postulation that xl < yl and
therefore proves that (32) does not hold in general.

In fact, the claim in (32) only holds in the following
two unlikely cases: first, if all components of ~x are greater
(smaller, equal) than all components of ~y. Second, although
each component xd is related (possibly) differently to the
corresponding yd, equation (34) holds anyway. This means
that summing up only components of ~x or ~y has always to
equal the sum of a mixture of components of ~x and ~y. Both
cases are not existing in practice.

Thus, it is evident that the MixMax model is inapplicable
to modeling the signal–noise interaction present in the MFCC
domain.

Two attempts have been made in the past to overcome the
MixMax’ weakness of being confined to filterbank features:
Gales and Young [23] have developed an approach where
the parameters of the signal model in the MFCC domain
are inversely transformed to the linear spectral domain. Here,
noise masking is carried out using the noise model, and the
parameters are transformed back to the MFCC domain. Mellor
and Varga [24] have introduced a similar attempt, inversely
transforming signal model parameters and observation vectors
to the log-spectral domain for masking and back again. Both
systems have the disadvantage of not directly operating on
the MFCC vectors. Instead, computationally expensive bi-
directional transformations or the maintenance of both MFCC-
and FBE versions of the models and observations are nec-
essary, resulting in higher memory and maintenance require-
ments. In the absence of a solution to these shortcomings, the
method of Gales [25] is still applied today, for example, in the
recent work of Tufekci et al. [26] on robust speech recognition.

VII. CONCLUSIONS

In this paper, the debate in the literature whether to use
MFCC feature vectors in conjunction with the MixMax model
or not has been enriched by new arguments: on the one
hand, by providing a mathematical proof that shows its in-
appropriateness in the presented context from a theoretical
point of view; on the other hand, by providing extensive
experiments and a discussion explaining how published good
results on MixMax & MFCC can be explained. The result
of this explanation is also to explicitly report for the first
time which methods really do work as part of one of the best
current systems in automatic singer recognition. Additionally,
a correction of the MixMax model’s training equation (13) has
been given.

Areas for further research lie within exploring more sophis-
ticated methods for singing voice modeling within popular
music, now that the effective baseline is explicitly known,
obviously offering room for improvement.
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