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Abstract. With great power comes great responsibility. The success of
machine learning, especially deep learning, in research and practice has
attracted a great deal of interest, which in turn necessitates increased
trust. Sources of mistrust include matters of model genesis (“Is this re-
ally the appropriate model?”) and interpretability (“Why did the model
come to this conclusion?”, “Is the model safe from being easily fooled
by adversaries?”). In this paper, two partners for the trustworthiness
tango are presented: recent advances and ideas, as well as practical ap-
plications in industry in (a) Automated machine learning (AutoML), a
powerful tool to optimize deep neural network architectures and fine-
tune hyperparameters, which promises to build models in a safer and
more comprehensive way; (b) Interpretability of neural network outputs,
which addresses the vital question regarding the reasoning behind model
predictions and provides insights to improve robustness against adver-
sarial attacks.
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1 Introduction

The recent success of machine learning (ML) and deep learning (DL) has trig-
gered enormous interest in practical applications of these algorithms in many or-
ganizations [23, 24]. The emergence of automated ML (AutoML), which includes
automated DL (AutoDL), further expands the horizons of such machine learn-
ing applications for non-experts and broadens the feasibility of exploring larger
search spaces during development. Establishing trust in ML and DL models is
thereby vital before they can be applied to real-world problems. Accordingly,
trustworthiness has been recognized as the core concept for the applicability of
ML algorithms during the first TAILOR workshop at the European Conference
on Machine Learning (ECML 20191).

1 https://ecmlpkdd2019.org
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One approach in recent years has been focused on understanding the behav-
ior of deep Convolutional Neural Networks (CNNs) by visualizing the network
response in order to boost its trustworthiness [1]. However, there has always been
a gap between state-of-the-art research in network architecture development and
interpretability, with interpretability often lagging behind. Only more recent at-
tempts incorporate interpretability into architecture design [30, 20, 21]. For ex-
ample, architectures for image classification have been proposed which produce
decisions in a more human-interpretable manner and hence shift the paradigm
from maximizing performance to learning “the right for the right reasons” [20].
Consequently, incorporating interpretable model design into the growing domain
of AutoML is likely to shorten its path towards practical applications.

In this paper, we present preliminary results that contribute to trustworthy
neural network development and application in two respects: First, we report
recent advances in AutoML and propose a unified architecture for multi-modal
input data (audio and video) through an automated and thus repeatable develop-
ment process, leading to safer architectures. Secondly, we introduce visualization
techniques that improve the interpretability of a model’s decision and show how
they allow detection of adversarial attacks, improving the model’s robustness
and design. We argue that the feasibility and effectiveness of deploying AutoML
methods contributes to improved trustworthiness. However, many challenges are
still to be addressed in order to solve the tension between algorithmic automation
and trustworthiness, especially in the case of algorithmic ensembles.

2 Automated Machine Learning

In this section, we present recent advances in automating the development and
deployment of machine learning models, in particular CNNs, which have im-
proved state-of-the-art performances by a significant margin in a wide range
of applications such as audio processing [17], image processing [4] and natural
language processing [8]. These successes come with the challenge of exploring
a broad search space for hyperparameters and model designs. Therefore, an ef-
ficient search is not only a challenge in practical applications for non-experts,
but also drives the need for automation in the research community. Under the
umbrella term of AutoML, respective methods have already shown to be fruit-
ful in hyperparameter optimization and model selection for traditional machine
learning models [11], as well as in optimizing deep neural network architectures
for computer vision [9].

Traditional AutoML aims at solving the Combined Algorithm Selection and
Hyperparameter (CASH) optimization problem [11] and to build an ensemble
of resulting models downstream to achieve the best possible performance with
minimum computational and time resources. An intuitive and effective solution
is random search. It reaches competitive results compared to more sophisticated
algorithms when those are not pretrained [27]. Using the performance of previous
runs on a given dataset to guide further model search motivates the idea of evolu-
tionary optimization of the preprocessing and training pipeline [18]. Additionally,
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Figure 1. Block diagram of proposed automated audio-visual deep learning approach.

Automated Computer Vision 2 Challenge Final
Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Rank

Winner (kakaobrain) 0.6277± 0.0628 0.9048± 0.0517 0.4076± 0.0139 0.4640± 0.0443 0.2091± 0.0122 1/20
Runner up (tanglang) 0.6231± 0.0449 0.8406± 0.0461 0.4527± 0.0270 0.3688± 0.0260 0.2363± 0.0130 2/20
Proposed (team zhaw) 0.5418± 0.0340 0.8355± 0.0915 0.4110± 0.0072 0.3970± 0.0298 0.1677± 0.0052 8/20

Table 1. Results for the automated computer vision challenge, comparing the proposed
idea to other approaches based on the area under the learning curve metric.

model selection and hyperparameter search can also benefit from the information
of previous experiments on similar datasets through meta-learning [6].

With respect to automating deep learning, using a unified architecture for
the automated design of CNNs in the context of computer vision for image and
video data is proposed in [2] as an attempt to overcome the wasteful practice in
ML to develop models independently for every new problem and data modality.
However, meta-learning [28] and multi-task learning [5] demonstrate that the
optimization process can profit even more from using many different tasks in
similar modalities. We thus propose here an extension of the multi-modal archi-
tecture that encompasses audio data as spectrograms [17]. The resulting generic
audio-visual architecture (Figure 1) is appealing due to the following aspects: 1)
it extends the state-of-the-art computer vision architectures to different modali-
ties of data besides images; 2) the core information processing block (backbone)
can profit from audio-visual information via multi-modal learning when the tasks
are related; 3) the information fusion block can learn to combine multi-modal
information using attention mechanisms.

The proposed approach aims at finding efficient models for a wide range of
tasks on diverse datasets as fast as possible. Therefore, the generic architec-
ture is accompanied with task-specific pre- and post-processing per modality
to reduce architecture design burdens in practical applications. An earlier ver-
sion of the approach competed promisingly in parts of the recent AutoDL 20192

challenge. This approach demonstrated a competitive performance compared to
state-of-the-art in terms of training speed and generalizing to unseen data. Table
1 presents the performance of the proposed method compared to the winning ap-
proaches on unseen datasets for automated computer vision where we achieved
the 8th position out of final 20 entries. Similarly, the proposed architecture in
Figure 1 achieved the 4th rank amongst 9 entries in the AutoSpeech challenge
for general automated audio processing. The proposed method is described in
more detail and well investigate with extensive experimental results in [26].

2 https://autodl.chalearn.org/
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Original Adversarial Original Adversarial

Image:

Feature response:

Local spatial entropy:

Figure 2. Original and adversarially perturbed images from the ImageNet dataset [7],
with attacks being clearly visible in entropy space but not yet in image space.

Method Dataset Network Attack
Performance

Recall Precision AUC

Uncertainty density estimation [10] SVHN [14] LeNet [15] FGSM - - 0.890
Adaptive noise reduction [16] ImageNet (4 classes) CaffeNet DeepFool 0.956 0.911 -
Feature squeezing [29] ImageNet-1000 VGG19 Several attacks 0.859 0.917 0.942
Statistical analysis [12] MNIST Self-designed FGSM (ε = 0.3) 0.999 0.940 -
Feature response (our approach) ImageNet validation VGG19 Several attacks 0.979 0.920 0.990

Table 2. Performance of similar adversarial attack detection methods. The Area Under
Curve (AUC) is the average value of all attacks in the third and last row (this table is
adopted from our previous research presented in [3]).

3 Interpretable and Robust Deep Learning

In this section, we present recent advances towards more interpretable deep
neural networks, leading to increased robustness. One key in building trust in
ML algorithms is to develop methods that explain the inner workings in a human-
interpretable manner. Understanding the reasoning behind decisions of a trained
model invariably improve the trust of domain experts. To achieve this for CNNs,
several methods have been proposed [1] which can be used as guidelines to modify
CNN architectures in order to obtain human interpretable decisions [30]. One of
the best understood methods is the analysis of feature response maps computed
using e.g. guided backpropagation [22]. Figure 2 illustrates how feature responses
of CNNs, computed by guided backpropagation, can be used to visualize the
regions where the network focuses at to take a decision.

Such methods to visualize the behavior of CNNs are mostly used to evaluate
and compare the decision-making process of networks. Additionally, they also
provide key insights to improve model design and robustness. For example, pre-
vious research demonstrate [3] that feature response maps are quite informative
to detect adversarial attacks [25], which is an essential threat to the robustness
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Figure 3. Block diagram for a feature response-based adaptive zooming-in classifier.

and security of deep learning (Figure 2). The feature maps depict the regions in
the original image that contribute to the final decision of CNN, while the local
spatial entropy images visualize the entropy of feature map activations in every
3 × 3 image patch. Simple thresholding of the latter yields a veritable detector
for otherwise invisibly perturbed adversarial examples. The average local spatial
entropy depicted in Figure 2 provides a measure to detect adversarial attacks
with competitive results compared to the state-of-the-art (compare Table 2).

Interpreting the decisions of CNNs can be applied beyond ensuring robust-
ness and enabling trust to facilitate novel classifier architecture designs. As a
demonstrator, we propose here the following multi-resolution classifier based on
two CNN models (Figure 3): Both models have the same input size but operate
on the same image in different resolutions. The low-resolution model is trained
first for an anomaly detection task based on the original full images. The high-
resolution model then learns the finer details of detected anomalies based on
a high-resolution crop of the region of interest around the first model’s center
of feature response. An ensemble of the two models can achieve promising per-
formance in anomaly detection on the MURA dataset [19] of medical images.
Guan et al. present an alternative implementation of this idea, thereby improv-
ing the performance of thorax disease classification accuracy by using multi-scale
information fusion [13].

4 Conclusion

When considering the future impact of deep learning in practical scenarios like
medical image processing for diagnosis support, the issue of trust is paramount:
Trust of the user/expert in the generated decision, and trust of the developer
in the engineering process that currently is often unsystematic and difficult to
repeat due to manual “grad student descent”. We propose combining these two
emerging ideas to address this trustworthiness tango, and present the follow-
ing corresponding ideas: (a) AutoML to automate the model building process,
thus making the vast design space searchable in a systematic manner. Our ad-
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dition suggests a unified multi-modal architecture could be trusted for any au-
dio/video/image classification task. (b) Visualizing feature responses of neural
networks to give insight into the reasons behind classification results, thus help-
ing concerned parties with the interpretation of a result in addition to provid-
ing robustness against adversarial attacks. Our addition shows that such in-
terpretability measures can furthermore be beneficial to build novel classifier
architectures by adaptively focusing attention on relevant portions of the input
in a user-interpretable manner.

We see potential in further exploring this idea of combining the benefits of
interpretability and automation in deep learning. Instead of building manually
tweaked model architectures and attempting to interpret them afterward, let
an AutoDL system optimize the hyperparameters of a more general architecture
with built-in interpretability. This interpretability may also result from designing
model-based methods that learn explainable representations [30, 20, 21].
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