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Abstract—To go from (passive) process monitoring to active
process control, an effective AI system must learn about the
behavior of the complex system from very limited training
data, forming an ad-hoc “digital twin” with respect to process
inputs and outputs that captures the consequences of actions on
the process’s “world”. We propose a novel methodology based
on learning world models that disentangles process parameters
in the learned latent representation, allowing for fine-grained
control. Representation learning is driven by the latent factors
influencing the processes through contrastive learning within
a joint embedding predictive architecture. This makes changes
in representations predictable from changes in inputs and vice
versa, facilitating interpretability of key factors responsible for
process variations, paving the way for effective control actions
to keep the process within operational bounds. The effectiveness
of our method is validated on the example of plastic injection
molding, demonstrating practical relevance in proposing specific
control actions for a notoriously unstable process.

Index Terms—JEPA, contrastive learning, disentangled repre-
sentations

I. INTRODUCTION

Automatic process monitoring plays a central role in main-
taining repeatable and stable processes with high-quality prod-
ucts in industrial processes [1]. Commonly, the monitoring
task is formulated as an anomaly detection task, as it is
a priori unknown how exactly a process may deviate from
normal operations [2]. To restore the system to its normal
operational status once an anomaly is detected, it is necessary
to identify and remove the cause of any detected anomaly.
Existing approaches focus on anomaly detection [3] and lack
interpretability, making it difficult to identify the underly-
ing root causes. One reason is that real-world monitored
processes—such as plastic injection molding or air condition
flow—often lack an analytical or simulation model of the
relationship between measured process signals and control pa-
rameters (actions: physical signals, such as mold temperature
adjustments, directly applied to the system, e.g., an injection
molding machine, to regulate its behavior). This complicates
root cause analysis for control despite reliable algorithms
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Fig. 1. Overview of world model training and application for process control.
Top: World model training using recorded process signal pairs (x,y) that
have been generated in the same environment (world) but with changed
control parameters (actions) a = a1, ..., an. The encoder (Enc) generates
latent representations (zx,zy) used for predicting the actions â through the
action prediction module (Pa). The latent predictive module (Pz) guides the
learning of the latent representation by incorporating actions, ensuring the
representations zx and zy align with the process’s operational dynamics for
more accurate and interpretable predictions. Detailed modeling and training is
discussed in Sec. III. Bottom: Application of the trained world model in real-
time process control where the model predicts actions based on a reference
process signal plus an observed process signal to maintain stability despite
changing external conditions or influences.

for anomaly detection. Thus, understanding relations between
process signals and actions is crucial to transition from passive
monitoring to active control.

Machine learning (ML) systems have shown large potential
to predict process signal drifts or disturbances before they
impact operations, potentially replacing conventional con-
troller blocks by directly interpreting sensor values as process

https://orcid.org/0009-0006-0236-4707
https://orcid.org/0000-0003-4679-8081
https://orcid.org/0009-0002-5760-9346
https://orcid.org/0000-0001-6759-5270
https://orcid.org/0000-0003-1942-3866
https://orcid.org/0009-0005-9348-2137
https://orcid.org/0000-0002-7577-783X
https://orcid.org/0000-0003-2843-9878
https://orcid.org/0000-0001-8560-2120
https://orcid.org/0000-0002-3784-0420


feedback [4]. To become fully effective for process control
in complex, dynamic processes, world models appear as a
promising solution. Having become a branch of ML research
with notable progress in recent years [5]–[7], they are typically
referred to as a learned representation of the physical world,
capable of predicting the consequences of various actions on
the world’s state [8]. While many world models are built as
generative models of specific environments (“world” referring
to any relevant part of the environment) to serve as simulations
for AI agent training (such as [5], [7]), we are concerned here
with actionable world models that learn consequence-aware
representations of world states (process signals, e.g., time-
series data) and directly output control actions (e.g., scalars).

The integration of such world models into process moni-
toring and control systems presents a significant opportunity
to advance intelligent, adaptive, and highly efficient industrial
operations. Fig. 1 illustrates our proposed approach for process
control, where the world model is trained on recorded process
signal pairs and their control parameters and can later be
applied to a running process to bring it back to normal
operation if it deviates from a reference signal. This approach
enables real-time adjustments to control parameters based on
incoming process signals, ensuring stability and consistency
in the presence of anomalies such as noise or disturbances.
That the world model’s training integrates actions and states
enriches the system’s grasp of complex dynamics, enabling
robust performance across varying operational conditions.

In this paper, we introduce a novel world model for process
control, inspired by joint embedding predictive architectures
(JEPAs) and contrastive learning [6], [9]. Our world model
makes use of recorded process signals and corresponding
actions to learn an action-aware latent representation, facili-
tating disentangled action prediction in the presence of many
possible control parameter adjustments. Experimental results
on a real-world use case from plastic injection molding control
demonstrate that our world model achieves its goals with high
sample efficiency (limited industrial data of only 80 samples).
Our main contributions are: (a) a world model for process
control, based on a novel architecture, inspired by the JEPA
framework and contrastive learning; it conditions the learned
latent representation of the world’s state on the difference
in parameters evoking this state as compared to a reference
state; (b) experimental validation on a real-world injection
molding case, where the contrastive modeling of pressure
curve pairs and corresponding machine parameters allows the
model to better distinguish between subtle variations in the
data, showing disentanglement for different actions in the
embedding space for the first time as compared to the state
of the art; (c) a novel evaluation scheme for the quality
of disentanglement, based on angle and distance deviations
between ground truth and predicted actions and showing the
validity of our approach for real-world process control.

II. BACKGROUND AND RELATED WORK

Contrastive learning. In this form of self-supervised learn-
ing (SSL) [10], a model is trained to bring the embeddings

of a sample and a transformed version thereof close to each
other, while non-corresponding samples are pushed away from
each other. Early work includes Siamese networks [11]. Con-
trastive methods have been introduced for time-series analysis,
e.g., [12], [13], including work that disentangles variant and
invariant factors in a pair of observations [14].

Typically, contrastive learning relies heavily on large num-
bers of contrastive pairs, particularly negatives, to learn the
decision boundaries [6]. We take the intuition of contrastive
learning by learning from process signal pairs, but inform
them with the action information from the differences in the
corresponding control parameters. This allows our model to
better recognize and differentiate the nuanced effects of control
parameters with respect to variations in the process signal. We
further reduce the dependency on extensive contrastive pairs
by leveraging action-aware embeddings.

Generative and world modeling. Variational Auto-Encoders
(VAEs) learn regularized low-dimensional latent representation
by using a encoder-decoder architecture. Yan et al. adapt
a convolutional VAE to learn a general representation of
industrial time-series data, and add additional layers to predict
corresponding control (machine) parameters [3]. The model is
good in detecting anomalies by identifying data drift. However,
the learned representations cannot reliably disentangle the
factors that affect the time-series. Our work aims to improve
on this. Keurti et al. propose the homomorphism auto-encoder,
equipped with a group representation acting on its latent space
to learn internal representations of sensory information that are
consistent with actions that modify it [15].

This actionable representation represents a form of world
modeling. In general, world modeling approaches can be
distinguished by the kind of representations they learn. Mono-
lithic latent representations feature a single latent vector jointly
representing both states and actions [5], [16]–[19]. Structured
representations however can offer higher sample efficiency,
out-of-distribution efficiency and interpretability. Among such
approaches are those that allow compositionality with respect
to spatial [20] or temporal [21] factors. Learning structured
representations for action spaces is challenging due to the
combinatorial nature of actions (one can, e.g., go ‘up’ and
‘left’ at the same time). Hence, world models often fall back
on monolithic action space representations [22], [23]. We take
this approach as well.

Joint embedding representation learning. The quality of
input reconstruction from a generative model does not neces-
sarily correspond to the quality of the learned representations
[24]. JEPAs have emerged as a promising SSL approach for
representation learning, offering an alternative to generative
models: Instead of taking a loss in the reconstructed space,
they predict and compute the loss in latent space, conditioned
on a latent variable (e.g., actions) [6]. Recent JEPA variants (I-
JEPA [25] and V-JEPA [26]) predict masked parts of the input,
learning representations for computer vision tasks. We extend
the JEPA framework by moving away from an implicit mask-
ing action (x

masking−−−−−−→ y) to explicitly providing arbitrary



actions in a factored form (x a−→ y), facilitating learning a rich
latent representation of cause and effect economically. Thus,
we extend the typical SSL framework by not being agnostic
to external factors (like machine parameters).

Instead, our approach is action-aware self-supervised learn-
ing, combining the strengths of self-supervised feature ex-
traction with task-specific guidance from actions (control
parameters). Our world model uses them to directly guide
representation learning, ensuring that the learned embeddings
are actionable. This avoids the need for contrastive pairs or
negative sampling strategies, reducing computational overhead
and simplifying the training process. Control parameters (e.g.
machine parameters in injection molding) provide explicit
domain knowledge, making the representations interpretable
and well-suited for process control.

Furthermore, the supervisory signal through action condi-
tioning in our approach naturally prevents the collapse of the
learned representations, eliminating the need for additional
regularization techniques as otherwise common in SSL.

Disentangled representation learning for time-series. Deep
learning has been proposed to learn effective representations
of the time-series data for downstream applications [12], [27]–
[29]. To be useful for fine-grained process control, the learned
representations must be disentangled: A low-dimensional la-
tent representation z = {z1, z2, . . . , zn} is sought such that
all pairs of latent variables in Z are independent, i.e., the
change of the sequential patterns in the input corresponding to
variable zi is invariant to variable zj , denoted as zi ⊥⊥ zj , ∀i, j,
where i, j ∈ {1, 2, . . . , n} and i ̸= j. The disentanglement
can be extended to group disentanglement so that a group
of latent variables is independent of other different groups.
Most representation learning relies on unsupervised learning
due to label scarcity. However, unsupervised learning of dis-
entangled representations is fundamentally impossible without
inductive biases on both the models and the data [30]. While
interpretable semantic concepts often depend on the interaction
of multiple factors rather than individual components, Li et al.
argue that it is essential to interpret time-series data through
a single latent representation in industrial applications [31]. A
disentangled representation can be decomposed into separate
dimensions, where the change in each dimension reflects a
distinctive change in the real world. Li et al. propose to learn
interpretable time-series representations through encouraging
high mutual information between the latent codes and the orig-
inal time-series to achieve disentangled latent representations
[31]. Hamaguchi et al. [14] use contrastive learning to learn
common and specific features during representation learning.
Then, only the common features are used for downstream
tasks. In contrast, we address disentanglement through action-
conditioned world modeling.

III. METHODOLOGY

Given a dataset consisting of process signals (reference
x, observation y), and the corresponding actions a =
[a1, a2, ..., an], the objective of the modeling is to predict the
action that is responsible for transforming the reference signal

Fig. 2. Proposed actionable world model architecture (general case; inputs for
injection molding example shown, see Sec. IV). There are 3 main components
in the model, encoder Enc, latent predictor Pz , and action predictor Pa.
Losses are computed in representation space and for the action prediction.

into the observed one. To achieve this, the machine must build
a world model. We implement the world model using the deep
learning architecture depicted in Fig. 2. The elements of the
architecture are detailed below.

Encoder. The two encoders with shared weights map the
reference signal x = (x1, . . . , xn) and the observed signal
y = (y1, . . . , yn) into latent representations zx and zy ,
respectively. zx and zy capture the essential features of the
process signal and the process’s dynamics.

Latent predictor. The latent predictor Pz takes as input
the concatenation of the latent representation zx and the
transformed action f(a). In our implementation, f(·) is simply
the identity function.
Pz outputs ẑy , the prediction of the representation zy

that follows from repeating the process (that led to x) after
applying the change in control parameters (a), modeling the
transition between states caused by an action: x a−→ y.

Action predictor. The action predictor Pa takes the differ-
ence between the latent representations of the process signals
(zy − zx) as input and predicts the corresponding control
action â that induced the observed change. Formally, this is
expressed as: â = Pa(zy − zx).

To train the model effectively and improve the disentangle-
ment of action dimensions in the latent space, we define a loss
that integrates multiple components, as depicted in Fig. 2.

Latent consistency loss. It enforces consistency between the
predicted latent representation ẑy and the encoded representa-
tion zy . This is achieved by minimizing the distance between
these two representations, which can be expressed as:

L(zy, ẑy) = ||zy − ẑy||2 (1)

Action prediction loss. It penalizes the discrepancy between the
predicted action â, and the action a that is actually applied.
This is critical for disentangling the effect of each action
dimension. The loss is defined as:

L(a, â) = ∥a− â∥2 (2)



Overall objective. The complete loss function is a linear
combination of the above components:

Ltotal = λ1L(zy, ẑy) + λ2L(a, â) (3)

where λ1 and λ2 are hyper-parameters that balance the con-
tribution of each loss term.

By jointly optimizing both objectives, the model learns
action-aware latent representations guided by observing com-
binations of action and corresponding signals. Eventually, it
learns to predict the effect of a continuum of actions on the
signal. This framework ensures consistency in latent space,
disentangled action dimensions, and supports downstream
tasks like anomaly detection and domain shift identification
besides process control.

IV. APPLICATION TO INJECTION MOLDING

A. Use case

Plastic injection molding. This is a widely utilized industrial
process in which granular plastic is melted, injected into a
mold, and cooled to produce components for various appli-
cations [32]. The repetitive nature of this process makes it
particularly suitable for automation, but process monitoring
and control is essential to ensure high product quality. Pressure
sensors installed in mold cavities collect the pressure footprint
of manufactured parts over production time, providing crit-
ical insight into process and product quality while enabling
detection of potential anomalies [33]. Although systems exist
that automatically detect such anomalies [34], identifying their
root causes remains a significant challenge [3]. Root causes
are difficult to replicate in a controlled experimental setup.
However, their effect on pressure signals can be mimicked
by adjusting machine parameters, such as injection speed or
holding pressure, which influence curve shape, scale and time
shifting. For example, excess of plastic in a produced part that
distorts its shape and reduces its quality, also known as flash
defect, may appear as a pressure curve with higher peak than
the original stable process, similar to the effect of increasing
holding pressure [33]. Therefore, predicting variations in these
parameters can help technicians quickly identify potential
sources of anomalies and resolve them. Full automatic process
control in a closed-loop fashion is however not possible in
this setting for the reason that (staying in the aforementioned
example) if the model predicts that pressure needs to be
reduced, the correct control action is not to reduce the pressure
(adjust the machine parameter), but to clean the sensor.

World modeling. We implement our methodology by adopt-
ing the deep learning architecture illustrated in Fig. 2 and
detailed in Sec. III to an injection molding use case. The
observed signals are transient pressure curves (time-series).
The action space represents changes in machine parameters
with respect to a reference setting (vector with a scalar per
parameter). It is important to note that in this framework,
the world is specific to each product being produced, as the
mold, the location of the sensor, and other variables impact the
signal. Thus, the model must learn an ad-hoc representation of
its specific world for each different production setting, based

TABLE I
PRE-TRAINING/FINE-TUNING DATASET CHARACTERISTICS

Dataset N Cycle duration [s] No. of actions Action dim.
D1 270 10 27 3
D2 270 10 27 3
D3 460 20 23 6

on a few observations. It may rely on transfer learning from
previous productions to deal with data needs economically.

B. Datasets

Data collection. We collect pressure signals from injection
molding processes, following a methodology similar to [3],
using Kistler cavity pressure sensors. Details of the 3 datasets
can be seen in Tab. I.

Datasets D1 and D2 differ in the specific products (plastic
parts) produced. Otherwise, we follow the same systematic
design of experiments (DOE), in which we sparsely sample
signals obtained by varying a small number of machine
parameters, namely holding pressure, injection speed, and
mold temperature. Specifically, we systematically set each
machine parameter to one of 3 levels, resulting in a total
of 33 = 27 unique parameter combinations. We record 10
production cycles for each machine parameter combination
after reaching a steady production state, yielding in total
27 × 10 = 270 samples in each of these two datasets.
The 10 cycles per parameter combination are expected to
yield almost similar pressure curves during stable production
conditions, hence serving as a form of data augmentation of
the 27 fundamentally different settings. An input to the model
(x,y,a) consists of a reference signal x, an observation
y, and the action a (the difference between the machine
parameters of the observed and the reference signal).

Fig. 3 illustrates the DOE behind D1 and D2. Visualizing the
3D structure of the resulting machine parameter space helps in
comprehending the considerations behind dataset construction.

Dataset D3 represents data from the production of a third
product and includes 3 more machine parameters in addition
to the previous 3: hot runner temperature, dosing speed,
and holding time. The parameters vary less systematically,
resembling more a collection “in the wild” as it would happen
during normal operations.

This results in a total of 46 different actions, with 20 cycles
repeated per setting. By carefully analyzing the resulting
pressure curves manually, we filter out 23 of these actions
that do not result in a stable process (i.e., their 20 cycles vary
significantly). Overall, this yields 23 × 20 = 460 pressure
curves (that are primarily explained by varying the original 3
parameters, with the additional 3 playing a noise-like function
for our purposes).

Data preprocessing. The pressure time-series represent the
dynamic changes in pressure over time, which are critical for
understanding the process’s behavior. As the original time-
series data is sampled with irregular time intervals, we pre-
process the data by resampling the data uniformly to 500 time



Fig. 3. Illustration of the three-dimensional machine parameter space of
D1/D2 with a normalized scale. The gray points represent 27 different
machine parameters settings. The green and red points represent the most
extreme settings in the corners of the cube (outline indicated by blue lines for
clarity), in which individual parameters take on either minimal or maximal
values. The pressure curves shown in the dashed rectangles show one example
of a reference signal x (green) and two observed signal y (red), each
corresponding to different machine parameter settings; the arrows represent
an action to transition from x

a−→ y.

points between 0 and 10 seconds. This interpolation ensures
uniformity across all pressure curve samples. Additionally, we
normalize pressure data by dividing by 1000, roughly rescaling
the observed data to a range between 0 and 1.

C. Training details

The encoder Enc consists of 6 convolutional layers and
1 fully connected layer (FCL), outputting a 10d latent space.
The latent predictor Pz consists of a single FCL, mapping 13d
input to 10d output, while the action predictor Pa maps the
10d latent space into 3d using a single FCL with zero bias, so
its weights can directly represent the relation between latent
variables and actions, facilitating disentanglement analysis.

We train the world model using stochastic gradient descent
with batch size 32 for 500 epochs using the Adam optimizer
[35] with learning rate α = 3× 10−4 and the default settings
otherwise. For fine-tuning, the model is first pre-trained for 10
epochs. Then, all parameters of Pz , Pa and the last layer of
Enc are fine-tuned for 500 epochs. The coefficients for the
loss function in Eq. (4) are set as λ1 = 1, λ2 = 10, balancing
the terms such that they are of roughly equal magnitude.

V. EXPERIMENTAL SETUP AND EVALUATION

A. Experiments

We design 4 experiments to assess the ability of our world
model to suggest process control actions in a real-world
setting, trained in an economically viable fashion.

Experiment 1: Action space coverage. The goal is to learn
to what extent the world model can learn the effects of actions

across the whole action space, based on a sparse sampling of
all possible actions. We conduct this analysis individually on
datasets D1 and D2 that offer a systematic coverage of the ac-
tion space. We use as training data the samples corresponding
with the machine parameters in the 8 corners of the cube of
Fig. 3. Specifically, we pair each of the 8× 10 samples with
every other, resulting in 6400 training samples. For testing,
we take the remaining 19×10 samples (representing the inner
area of the cube and thus allowing a comprehensive analysis)
and pair them in turn with each sample corresponding with
machine parameters from the 8 corners as references. This
results in (19 × 10) × (8 × 10) = 15200 test inputs. The
use of training data in testing here does not constitute data
leakage, as the references (that are used in training data) are
an inherent ingredient of the world model as the observed
signal that is not included in the training is used to predict
the actions in reference to x. We average over the results
per individual reference vertex to calculate our evaluation
metrics. Additionally, to ensure reliable results, we repeat each
experiment 6 times with different random seeds for model
initialization and finally report the mean value derived from
these evaluations.

Experiment 2: Sample efficiency. We are interested in learn-
ing the model’s performance when only granted minimal
training data, considering the time and cost constraints for
the DOE in industry. Specifically, we adapt the training setup
of Exp. 1 to use only 50% of the training samples, namely, all
samples with machine parameter settings corresponding to the
origin and its 3 directly connected corners (where only one
machine parameter varies). This results in (4 × 10)2 = 1600
training inputs when pairing each sample with any other. For
evaluation, we take all remaining 23× 10 = 230 samples not
used for testing and pair them with the signals resulting from
the parameters at the origin as the reference signal, resulting in
(23× 10)× (1× 10) = 2300. Again, we repeat the evaluation
6 times and report the mean figures of merit.

Experiment 3: Ablation of the latent predictor Pz . We assess
the effect of the latent predictor Pz on the results by comparing
the performance of two model variants: one without Pz (mak-
ing the model effectively a direct action regressor) and one
with it (identical to the model in the previous experiments).
The training and test setup are identical to Exp. 1. This ablation
study clarifies whether joint embedding predictive modeling is
critical for learning an action-aware representation, leading to
improved control.

Experiment 4: Transfer learning. We evaluate the world
model’s ability, without (4.1) and with (4.2) Pz , to learn
economically by leveraging prior knowledge.

First, we pre-train the model on dataset D3, forming training
samples by pairing each signal with any other, yielding 4602 =
211.6k inputs. Second, we fine-tune with the setup of Exp. 1,
starting from the pre-trained model, to test adaptation from
one process to another.



B. Quantitative evaluation

We aim at evaluating model performance regarding its
ability to issue correct control actions, determined by its ability
to predict the actions leading from reference signal to obser-
vation. This in turn hinges on the model’s ability to accurately
disentangle the effects of the individual components (change
of one machine parameters) of each action. We quantify this
by means of three metrics, detailed below: The action direction
θ, action magnitude d, and overall prediction quality q.

Action direction θ. Does a predicted action point into the
correct direction? We consider the ground truth and predicted
action vectors a and â, and calculate the angle θ(a, â) =

arccos
(

a·â
∥a∥·∥â∥

)
between a and â (on a scale between 0°

to 180°). A smaller angle indicates better disentanglement,
implying that the model can effectively represent the action’s
direction in the latent space.

Action magnitude d. Does a prediction accurately quantify
the magnitude of the needed adjustment? This is answered
by the distance between a and â. We compute the absolute
distance, where smaller distances indicate more accurate pre-
dictions. Specifically, d(a, â) =

√∑n
i=1(ai − âi)2, where n

denotes the dimension of the vectors.
Overall prediction quality q. We combine the angle (normal-

ized to [0, 1]) and distance metrics into a single scalar evalua-
tion score to provide a balanced measure of right direction
(disentanglement) and magnitude. Specifically, we compute

their harmonic mean as q(a, â) = 1
2

(
1

θ(a,â) +
1

d(a,â)

)−1

. It
is well suited as it necessitates the simultaneous minimization
of all criteria for good scores.

2D and 3D analysis. Our evaluation employs comple-
mentary 2D and 3D analyses to examine the model’s ac-
tion prediction capabilities at different levels of complex-
ity. We are first interested to see pairwise comparisons be-
tween any 2 action dimensions individually (2D) for fine-
grained analysis as this shows how the latent representa-
tion responds to changes in individual machine parameters.
Specifically, for action dimensions i and j, let ai,j =
[ai, aj ], âi,j = [âi, âj ], and the 2D angle between them be
θ(ai,j , âi,j) = arccos

(
a(i,j)·â(i,j)

∥a(i,j)∥·∥â(i,j)∥

)
. Then, we calculate

the average angle over all possible 2D pairs as θ2D(a, â) =
1
m

∑
i,j∈n,i ̸=j θ(ai,j , âi,j), where m is the total number of

unique pairs (i.e., m = n(n−1)
2 = 3 in our case). The

resulting average angle θ2D serves as a measure of the model’s
capacity to disentangle the action dimensions. Correspond-
ingly, 2D distances can be calculated as d(ai,j , âi,j) =√

1
2 [(ai − âi)2 + (aj − âj)2] and the average distance over all

possible 2D pairs as d2D(a, â) = 1
m

∑
i,j∈n,i ̸=j d(ai,j , âi,j).

All 3 2D metrics assess the prediction quality of the individ-
ual parameter combinations and the model’s performance in
isolating individual parameter changes. Then, the evaluations
are extended to all action dimensions simultaneously (3D),
analyzing the model’s ability to generalize disentanglement
across the full action space. Specifically, we compute θ(a, â),
d(a, â) and q(a, â) by extending the vectors in 3D using the

Fig. 4. Visualization of differences between embeddings (either directly
as encoded, blue; or as encoded by Enc for x and predicted by Pz for y,
orange) in the 10-dimensional embedding space. The red dashed lines indicate
a threshold for significantly different activity between the two embeddings.
Four different signal pairs are shown: One with a no action (top left), and
one each for a change only in mold temperature, injection speed or holding
pressure (top right, bottom left and bottom right).

formulas from above. This provides insight on how the model
handles multi-parameter changes.

VI. RESULTS

A. Exploring the latent space

Action-awareness in the latent representation. The model
resulting from Exp. 1 on dataset D1 is analyzed regarding
properties of its learned latent space. Fig. 4 first shows
(all 4 panels) that the differences between the actual latents
(zy −zx) are well aligned with the same differences between
the reference’s latent and the prediction of the observation’s
latent (ẑy − zx). This demonstrates the model’s ability to
accurately predict activations in latent space based on actions,
enabling simulation of the latent space for arbitrary actions.
Moreover, the variation in specific latent dimensions with
respect to different actions (all but top-left panel) highlights the
interpretability of the latent space and its sensitivity to action-
specific behaviors: It appears action-aware. For example, as
depicted in the bottom left corner of Fig. 4, when action
is only taken regarding injection speed, the 0th, 2nd and
9th dimension change. On the other hand, when the mold
temperature is adjusted, only the 1st dimension is significantly
affected. These effects are mutually exclusive.

Clustering in the latent space. We map our 10-dimensional
latent space into 2 dimensions using PCA to gain perceptual
insight. Fig. 5 shows how representations from Exp. 1 on
dataset D1 cluster. It clearly indicates the separation of signals
originating from 4 different machine parameter settings. Such
representations can be further used for downstream tasks like
anomaly detection and domain shift identification.

B. Action prediction

The evaluation results of Exp. 1–4 on the experiment-
specific test sets from datasets D1 and D2 are presented in
Tab. II. The experimental setup is briefly summarized in col. 2
(with or without Pz or transfer learning, number of machine



Fig. 5. Visualization of embeddings from D1’s test set for Exp. 1 in 2
dimensions using PCA, colored by the actions that led to the underlying
signals. Red dots represent embeddings with no action taken, serving as the
reference for the other signals; green, blue and purple dots are created by
changing only injection speed, molding temperature or holding pressure.

parameter settings in training set). The next 3 columns give
the final metrics for the 2D evaluations, followed by the last
3 columns for the 3D evaluations.

Evaluating Exp. 1–4 on D1. The following results highlight
the impact of pre-training, the latent predictor, and training
setting numbers on performance. Best results are observed in
Exp. 4.2 (leveraging maximum training data, transfer learn-
ing and Pz), achieving the lowest 2D and 3D angle errors
(8.53° and 10.61°) and the best harmonic mean values. Pre-
training (Exp. 4.2 vs. Exp. 1) significantly reduces errors by
nearly a factor of two. The latent predictor further improves
performance, for example, when combined with pre-training
(Exp. 4.2 vs. Exp. 4.1). However, the latent predictor alone
(Exp. 1 vs. Exp. 3) shows only a slight improvement (2−5%).
Increasing the training settings (Exp. 1 vs. Exp. 2) boosts
accuracy, reinforcing that more data leads to better results.

Fig. 6. 2D pairwise parameter predictions. From left to right: Holding pressure
(HP) vs injection speed (IS), HP vs mold temperature (MT), IS vs MT.
Red stars represents 3 training settings, with the bottom left ones serving
as reference parameters. Test data with actions changing IS, HP, and MT are
labeled in green, purple, and orange, respectively. Hollow cycles represent
ground-truth while the predicted actions are indicated by dots.

Evaluating Exp. 1–4 on D2. Similar to D1, the model
demonstrates poor performance using only 4 training settings
(Exp. 2 vs Exp. 1), as reflected in big angle to and long
distance from the ground truth. Increasing the number of
settings to 8 improves performance significantly, showing the
importance of geometric context. A slight improvement can
be observed when the latent predictor is added (Exp. 3 vs
Exp. 1). However, pre-training is harmful no matter if latent
predictors are absent or not. For instance, Exp. 4.1 shows a
degradation in average θ from 12.14° (Exp. 1) to 23.89° and

in average d from 0.20 to 0.34. This result is understandable
and aligns with the discussion in Sec. IV-B: The limited and
noisy pre-training data is from a single source, leading to
the learned representation not being generalizable to all cases,
specifically when the new case is significantly different from
the source domain. Then, it causes negative transfer [2]. The
best performance is observed in Exp. 1 with latent predictors
and no pre-training, achieving the lowest errors across both 2D
(θ2D: 9.59°, q2D: 0.08) and 3D (θ: 12.14°, q: 0.1). Overall,
combining latent predictors with sufficient training settings
consistently improves performance. However, pre-training is
not recommended if the pre-training data significantly differs
from the data of the target task.

Qualitative evaluation. The model is designed to accurately
predict the deviation of machine parameters relative to the
reference, regardless of the scale. 2D pairwise qualitative
results on D1 from Exp. 1 are depicted in Fig. 6, comparing
predicted actions with ground truth. The figures indicate that
the effect of actions regarding holding pressure and mold
temperature is well isolated, as the predicted actions are close
to the ground truth when these actions are taken. However,
the effect of injection speed remains entangled with other
parameters, indicating that its influence is not as distinctly
separable. A key reason is that injection speed and holding
pressure are highly correlated in reality, for example, changes
in injection speed might influence the material flow which in
turn affects pressure.

VII. CONCLUSIONS

We proposed an actionable world model for industrial
process control. It shows potential in disentangled latent rep-
resentation learning and precise action prediction, improving
over the state of the art over prior work [3]. This is achieved by
creating a novel methodology that generalizes JEPA to learn
action-aware representations for arbitrary, factored actions.
The results across multiple datasets highlight the importance
of the latent predictor, ensuring better disentanglement and
improved prediction quality of actions that can be used as
process control signals. Additionally, increasing training data
(linearly related to the number of settings) enhances alignment
with the ground truth and optimizes model’s prediction quality.
However, the results also emphasize necessary caution with
respect to pre-training with limited or unrelated data. In some
cases, it may lead to performance degradation due to negative
transfer from data that do not generalize to the case at hand.

Limitations. The proposed method depends on the avail-
ability of machine parameters for task-specific representation
learning, acting as external guiding signals for the learning.
Accordingly, the method’s success relies on the accuracy
and reliability of the machine parameters and whether these
parameters are truly indicative of the underlying process the
model aims to capture. Unlike traditional SSL methods (e.g.,
contrastive learning or I-JEPA), which aim to learn general-
purpose representations, this model is tailored to a specific
domain or machine setup by incorporating a predictive mod-
ule. The incorporation of specific actions (control parameters)



TABLE II
EVALUATION OF DIFFERENT EXPERIMENTAL SETUPS ON EXPERIMENT-SPECIFIC TEST SETS OF D1 AND D2

Experiment Experimental setup Avg. action dir. θ2D Avg. action mag. d2D Avg. overall q2D Avg. action dir. θ Avg. action mag. d Avg. overall q

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

1 (Base) + latent predictor, - pre-training, 8 settings 16.13 9.59 0.25 0.17 0.13 0.08 18.22 12.14 0.31 0.20 0.15 0.10
2 + latent predictor, - pre-training, 4 settings 34.00 34.00 0.50 0.50 0.14 0.14 35.00 35.00 0.61 0.61 0.15 0.15
3 - latent predictor, - pre-training, 8 settings 16.56 9.94 0.25 0.17 0.13 0.08 18.34 12.63 0.31 0.22 0.15 0.10
4.1 - latent predictor, + pre-training, 8 settings 8.68 17.85 0.14 0.25 0.07 0.14 11.13 19.64 0.17 0.31 0.09 0.16
4.2 + latent predictor, + pre-training, 8 settings 8.53 20.56 0.14 0.27 0.07 0.16 10.61 23.89 0.17 0.34 0.09 0.19

may limit the model’s ability to generalize to tasks or domains
where those parameters are unavailable or differ significantly.

Future work. The model has been applied successfully to
injection molding cases with 3 machine parameters. Next,
we want to expand this approach to include process datasets
covering more machine parameters. Furthermore, it would be
also interesting to expand this framework for other industrial
applications. Additionally, the effectiveness of transfer learn-
ing must be investigated using diverse datasets from different
sources, which can be used for downstream fine-tuning. A
key challenge is the non-bijective relationship between process
signals and machine parameters, as the same process signal
may correspond to different parameters. On a larger scale,
actionable world models that learn representations of their
percepts with respect to issuing goal-driven behavior are a
promising avenue for progress in many other fields of AI,
from robotics to autonomous agents.
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