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Abstract—Online process monitoring is essential to detect
failures and respond promptly in automated industrial pro-
cesses such as injection molding. Traditional systems rely on
experienced operators manually defining operational boundaries
around a reference signal. We propose a data-driven representa-
tion that auto-tunes the sensitivity to a pre-set specificity thresh-
old and automatically detects anomalies alongside interpretable
indices that help identify root causes. Our automated system
achieved an average AUC of 0.998 and detected 100 percent
of the anomalies with the proposed dynamic calibration of the
data-driven embedding method. The dynamic calibration, which
accounted for drift, boosts the average specificity from 0.362 to
0.869. The outputs also indicate the direction and relative magni-
tude of characteristic deviations caused by machine parameters,
including holding pressure, mold temperature, and injection
speed. The AI-derived process boundaries are superior to manual
annotation in tested real-world production environments.

Index Terms—anomaly detection, time series, variational auto-
encoder, root-cause analysis, explainable AI, transfer learning

I. INTRODUCTION

Injection molding is a cornerstone in mass-producing plastic
parts with high precision [1]. This process involves inject-
ing molten plastic into molds, forming the final products.
Monitoring time series from in-mold sensors can help detect
abnormal behaviors in real time [2]. For example, the transient
temperature curve in each mold’s cavity measured via an
infrared sensor or thermocouple is expected not to change in
stable operations [3]. Thus, the time series of sensors acquired
under normal operation represents a reference for detecting
deviations or anomalies. Early detection of anomalies or de-
viations can trigger timely intervention that lowers production
costs [4]. Traditionally, anomaly detection has relied on the
expertise of operators when analyzing complex data like pres-
sure curves. However, this manual approach has limitations:
it’s labor-intensive and inconsistent due to varying operator
expertise. It needs to be improved. Compounding the need
for improvement is the declining number of apprenticeships
for shopfloor workers in the European and US manufacturing
ecosystems [5]. This is expected to result in fewer personnel
operating more machines on the shop floor in the following

This work is supported by Innosuisse grant 62174.1 IP-ENG “DISTRAL”.

Fig. 1: Overview of this work: Manual process boundaries in
the traditional approach (a) that depend on machine settings (c)
and other factors and proposed data-driven process boundaries
(b and d). (a) Examples of pressure curves are traditionally
classified as normal (green) or abnormal (red) using evaluation
labels (the rectangle with three blue and one cyan edge on the
top). A normal curve must pass through at least one blue line
and not go through a cyan line. A pressure curve is defined as
an anomaly if it fails to meet any specified requirement. (b)
Our deep learning-based approach maps the pressure curves
into a two-dimensional embedding for automated analysis.
Given a set of reference embedded curves (purple crosses), the
adaptive process boundaries (cyan ellipse in b) are computed
automatically. (c) Machine parameter setpoints control the
injection molding process, and thus impact the part quality.
(d) The neural network is also used to estimate machine pa-
rameters and the direction and magnitude of the standardized
calibrated data distribution assist in detecting root causes.

decades. Increasing automation in the monitoring process aims
to improve efficiency, accuracy, and product quality [6], [7].

In the injection molding process, sensors are installed in
the mold to capture process signals during production. Among
those signals, the pressure time series is a fingerprint of the
injection molding process as it determines the crystallization
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of the molten substrate in the mold [8]. Its monitoring contains
information about the process stability and, implicitly, the part
quality [9] (or its deviation from the desired state) without
measuring the dimensions, weight, and appearance of every
part. It is, therefore, suitable for processes that need monitor-
ing but not a 100%-part inspection. In industrial solutions like
ComoNeo [10], operators traditionally set so-called evaluation
objects (EOs) on these curves manually (see Fig. 1a) to define
process boundaries. The EOs are set before the production
nominally starts for each specific process and part and depend
on the operator’s experience with different materials, shapes,
cycle times, or typical process parameters. They are hence
highly subjective and their setup and any intervention, once
an anomaly is detected, relies on the individual highly skilled
and experienced professional. The location and extent of
the boundaries determine the sensitivity and specificity of
the anomaly detection process concerning certain types of
anomalies. For example, a malfunction of the heating system
of the substrate will impact the pressure curves differently
than a change in the substrate. In theory, setting multiple EOs
allows for fine-tuning the detection precisely, but in practice,
possible failure scenarios with their impact are unknown. Thus,
deeper automation is required to remove the manual definition
of process boundaries and help identify root causes.

Machine learning, deep learning (DL), and statistical model-
ing offer transformative potential in this field [11]. By adopting
a data-centric approach, we can surpass limitations imposed by
manual tools [12], [13], allowing operators to focus on timely
interventions and quality control. DL algorithms, trained on
extensive injection molding data, can effectively represent
pressure curves. Especially, variational autoencoder (VAE)
[14] is a powerful DL framework for learning low-dimensional
interpretable latent representations in an unsupervised manner
[15] due to the unavailability of sufficient labeled data in
the industrial setting [16]. Applying such DL models and
using statistical methods for anomaly detection in new pro-
cesses promises tuneable sensitivity, high accuracy in detecting
anomalies, and a more efficient, consistent, and predictive
monitoring strategy [17] while triggering appropriate interven-
tions to maintain product quality and process efficiency [18].
Furthermore, utilizing a DL model that incorporates domain-
specific knowledge can be instrumental in identifying these
anomalies and infer the underlying causes.

In this paper, our main contribution is a practical solution
for automated anomaly detection and machine parameter pre-
diction for injection molding processes without feature engi-
neering: (1) a novel VAE-based model that represents transient
1D sensor signals in a 2D latent space with robust out-of-
distribution embedding capabilities which is used to detect
deviations (anomalies) from reference curves representative
of a stable process, and utilizes additional neurons that cap-
ture changes in machine parameter setpoints for interpretable
outputs; (2) a dynamic calibration process that automatically
determines the operational bounds of the process for anomaly
detection with the ability to account for drifts; (3) prediction of
set machine parameters to assist the root-cause identification.

We assess our approach’s effectiveness with real-world data
from injection molding production in which data originated
from different production environments, achieving a remark-
able AUC score of 0.998.

II. RELATED WORK

DL-based methods have been widely used for the analysis
of industrial time series data as recently surveyed by Yan et
al. [19]. These methods can be divided into reconstruction-
based, forecasting-based, and other statistical methods. In deep
reconstruction-based methods, the anomalies are recognized
by comparing the deviation of the reconstructed time series
sequence and the actual sequence using a defined threshold
[20]. In contrast, for forecasting-based anomaly detection, only
the forecasted sequence is compared with the ground truth
sequence [21]. Most of the related anomaly detection methods
assume that testing and training data follow the same data
distribution, although by design, the “normal” state is unknown
a priori. Regarding model architecture, Tuggener et al. have
shown that the best-performing model architecture depends
much more on the actual data set at hand than on the current
state-of-the-art method on public benchmarks [22]. In this
paper, we build on simple but well-tuned reconstruction-based
models based on preliminary experiments.

Real-world industrial processes are dynamic and can be
affected by a variety of production conditions [23]. Tak-
ing the injection molding process as an example, ambient
environment, machine wear and tear, and other variables
can exert an unknown but sometimes high influence on the
manufacturing process. These conditions can then lead to a
drift of the observed control data during production [24], [25].
The aforementioned anomaly detection methods might not be
applicable. Various approaches have been proposed to deal
with domain shift issues, such as transfer learning and domain
adaptation. For instance, Saurav et al. [26] proposed a temporal
model based on recurrent neural networks for time series
anomaly detection to account for sudden or regular changes
in normal behavior. The model is updated incrementally as
new data becomes available and is capable of adapting to the
changes in the data distribution. Instead of adapting directly
to the new domain, Yang et al. seek to learn a domain
invariant representation [27]. They train a DL model to extract
a domain-invariant representation from normal data from the
source domain and a limited number of normal data in the
target domain. The domain-invariant representation is achieved
by adversarial learning. Apart from that, transfer learning
approaches have been applied in injection molding to transfer
knowledge from one or more source setups to solve tasks
in new setups [28], [29]. However, such approaches analyze
machine parameters instead of sensory data collected directly
from the manufacturing process, hence the transfer learning’s
effectiveness needs to be further validated. In this paper, we
develop an auto-calibration mechanism based on statistical
methods to mitigate data drift from sensor data while adding
machine parameters for root cause analysis.



Fig. 2: Proposed data driven anomaly detection. A large data
set of pressure curves is used to train a model to map pressure
curves to a low-dimensional representation z (Here we only
show the 2D representations of the pressure curve). Once the
molding process is stable, a small sample of reference curves is
mapped into the latent space to calibrate the process boundary.
During online monitoring, an anomaly event is triggered if
a data point is mapped to a position outside the anomaly
threshold (calibrated process boundary).

Explainability and interpretability of DL models enable
the quantification of the contribution of input features to
the prediction results [30]. Alternatively, handcrafted features
from the injection molding process have been investigated
in [31]. An important factor analysis and a random forest
model is used to identify the most influential features in cavity
pressure and temperature data.

However, the relevant features may differ for different pro-
duction conditions. Determining them requires expert knowl-
edge and manual intervention and could miss other relevant
information from the manufacturing processes. In this paper,
we use the rich in-mold pressure signals without manual
feature engineering, adding machine parameters to assist root
cause analysis.

III. PROPOSED METHODS

A. Overall pipeline

Fig. 2 depicts the overall pipeline of the proposed methods
for data-driven anomaly detection. It consists of off-production
representation learning, in-production dynamic calibration,
and online monitoring. In the off-production training phase,
historic pressure curves from various batches are used to train
a useful low-dimensional representation of pressure curves.
This is possible because the characteristic shape of the relevant
curves is similar across productions (rapid ascent and a slower
descent) but varies in the location of the peak and slopes.

Once the process is stable and produces the parts of the
desired quality, the latent representation zp of a small number

Fig. 3: Model architecture of the autoencoder with machine
parameter prediction. The model consists of encoder Enc,
decoder Dec, and regressor Reg. Training is driven by re-
construction loss of the pressure curves, regression loss of
machine parameters, and distribution regularizer over zp. See
text for further details.

NC = {10 . . . 100} of reference cycles is extracted using the
pre-trained model. The embedded low-dimensional reference
data are then used to estimate their distribution parameters.
Under stable conditions, normal data from subsequent cycles
are expected to follow the estimated distribution, while that of
the anomalies is expected to deviate from it.

Analogous and in parallel, a predictor for machine param-
eter setpoints zm is trained (see Figure 3). Deviations from
the calibrated reference distribution of these predictions can
be used for root cause identification.

B. Deep learning architecture

We employ an auto-encoder that reconstructs the input
through a bottleneck layer [32] to leverage unlabeled data
and learn a useful representation. The network is implemented
as a VAE with convolutional layers and a two-dimensional
variational bottleneck without tied weights in the four hidden
layers of the encoder and decoder. Fig. 3 shows our proposed
network architecture, which consists of an encoder, a decoder,
and a regressor.

Encoder. The encoder receives a pressure time series p =
(pi, . . . , pD) and maps it into µ, σ, zm, where µ, σ rep-
resent the mean and variance of the estimated 2D Gaussian
distribution, and zm denotes the latent representation for 3
machine parameters. In summary, we can express the mapping
as µ, σ, zm = Enc(p). Moreover, zp is sampled from the
learned Gaussian distribution, given by zp = µ+ ε ·σ, where
ε ∼ N (0, I).

Decoder. After encoding the pressure signal into a low-
dimensional latent representation, we use the decoder Dec
to reconstruct the pressure signal with the original dimension
from zp, which can be denoted as p̂ = Dec(zp).

Machine parameter regression. Three non-variational neu-
rons are added to the VAE and connected to the bottleneck



layer. They predict setpoints of holding pressure, injection
speed, and molding temperature via an extra layer m̂i =
Regi(zmi). This extra linear mapping between the interme-
diate representation zm and the output m̂ allows production-
batch-specific scaling and shift factors during training. For new
batches (e.g. using different materials), the mapping between
the pressure curve and machine parameters is expected to be
proportional. For our application of detecting outliers and the
direction of deviations in the machine parameter predictions,
we use zm for the analysis.

C. Loss function

The VAE minimizes the mean squared reconstruction error
between the predicted and original pressure data. The two-
dimensional latent variables are regularized to follow a bivari-
ate standard Gaussian distribution using the KL divergence.
Reconstruction loss and regularization are formulated as

Lrec =
1

ND
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where N and D are the sample size and the number of time
stamps in the pressure time series, and pni and p̂ni are the
original and predicted pressure signal at time step i for n-th
time series sample. In addition, we apply L2 loss between the
predicted and original machine parameters:

Lreg =
1

NC

N∑
n=1

C∑
i=1

(mn
i − m̂n

i )
2 (3)

where C is the number of machine parameters, and mn
i and

m̂n
i are the original and predicted machine parameters for n-th

time series sample. The overall objective is to minimize

Loss = Lrec + ωkld · Lkld + ωreg · Lreg (4)

where ωkld and ωreg are weights to balance losses. We also
apply L2 regularization for the model weights during training.

D. Calibration and setting of process boundaries

Calibration is necessary to set meaningful process bound-
aries of an unknown process automatically. Using a few
numbers (NC) of reference curves from a stable process, the
system fits a multivariate Gaussian distribution on the bottle-
neck node and outputs means µ. Additionally, it estimates an
univariate Gaussian distribution for each unscaled machine-
parameter neuron output zmi

.
Given the empirical mean of the reference sample distribu-

tion, the distance of a new sample to the center of the reference
distribution mean can be interpreted as an anomaly indicator.
Specifically, the larger this distance, the more abnormal the
new sample is considered. However, the scale of the Euclidean
distance, especially in the multi-dimensional latent space, is
meaningless. We overcome this by incorporating the variances
and relating the resulting statistical measures analytically to

the cumulative distribution function as follows: The distance
standardized by either the covariance matrix in the multi-
variate distribution or the variance in the univariate distribution
yields the Mahalanobis distance [33], respectively. Based on
the Mahalanobis distance to the reference distribution d, a
chi-squared distribution χ2(d, k) is employed to express the
fraction of samples i from the distribution where di < d, with
k = |µ| representing the degree of freedom. An operational
bound B can thus be set such that a sample is considered an
anomaly if χ2(d, k) > B, where (1−B) is the expected rate
of false positives given a stationary process.

Since the machine parameters express physical proper-
ties that impact the process and are characterized by one-
dimensional distributions, the system retains the sign of the
relative deviation from the mean of the distribution. This
facilitates root cause analysis, suggesting the direction of a
parameter change as an intervention to recover a stray process.

When a process is non-stationary, meaning that the mean
of the distribution gradually shifts over time, or if the noise
exhibits heteroscedastic behavior (variance changes with time),
the parameters of the initial calibration eventually lose their
validity. This can happen due to external factors such as
changes in environmental conditions like room temperature
or humidity. We propose a dynamic update of the distribution
parameters based on the latest NC cycles.

IV. EXPERIMENTAL SETUP AND EVALUATION

In this section, we describe the experimental setup and
evaluation results, including the dataset, training procedure,
and metrics.

A. Data: collection, handling, and preprocessing

IMM datasets. The injection molding machine (IMM) data
is pooled from non-systematically acquired and incompletely
labeled historical data provided by three vendors of injection
molding systems. The resulting datasets were classified based
on the availability of anomaly labels and machine parameters
(see D0–D4 in Tab. I). Each mold has one to 8 Kistler pressure
sensors attached to each cavity. The sensors measure the
pressure in the cavity during each cycle and each sensor re-
ports its pressure reading independently. The data are acquired
at 16kHz for a cycle period between 0.6 and 20 seconds,
depending on the size and shape of the products. After the
acquisition, the time series signals are downsampled to a
maximum of 1, 000 measurement points with irregular time
intervals. The time series signals (per cavity/sensor) are stored
in a database with various meta-data such as the time of day,
mold ID, cavity ID, and a binary quality label. The labels are
derived from EO, visual inspection, or physical measurements.
The 5 datasets D0–D4 represent common production data but
cover only a small fraction of the possible variability in mold,
machine, part size, substrate, etc. In addition, a total of 540
pressure readings contained in two datasets (D5–D6) have
been acquired within a controlled experimental design where
we systematically varied the 3 machine parameters using 3



TABLE I: IMM datasets characteristics used for training, calibration, and testing.

Dataset Sample size (train/val) Cavity count Cycle duration (s) Anomaly rate Different machine settings count (train/val)
D0 5, 208 / 1, 240 8 6 assumed 0% 18 / 5

Sample size (cal/test) Different machine settings count (cal/test)
D1 70 / 2, 905 7 1.5 5.50% unknown
D2 80 / 5, 104 8 2 0.78% unknown
D3 80 / 4, 240 8 2.5 2.08% unknown
D4 80 / 3, 024 8 1.5 1.59% unknown
D5 10 / 260 1 10 assumed 0% 1 / 26
D6 10 / 260 1 10 assumed 0% 1 / 26

distinct values for each, yielding 10 cycles for each of the
33 = 27 possible combinations.

Training and validation data. Out of a larger collection, we
construct the unlabeled dataset D0 by pre-selecting pressure
curves that visually appear similar to remove any environ-
mental influence on the data apart from the known machine
parameter settings. This yields 6, 448 pressure data with 23
machine settings out of 44 in the overall collection. Then, data
from random 18 machine settings is used for training and the
remaining 5 for validation.

Calibration and testing data. We have two groups of testing
data for evaluating anomaly detection and machine parameter
indication, respectively, using D1–D4 to evaluate time series
anomaly detection performance and D5–D6 to evaluate the
performance of machine parameter indication. For D1–D4, we
only keep the data with valid EO labels, i.e., we keep the
data generated when a specific number of consecutive normal
samples are obtained. In D1, we identified an invalid cavity
that recorded noise and excluded the corresponding data in the
study. In all experiments, we use a calibration window size
(number of consecutive normal pressure curves) of NC = 10.
For the dynamic calibration, we re-calculate the distribution
parameters for each cycle with the previous NC = 10 cycles.

Data preprocessing. Since the original time series data
is sampled with irregular time intervals, we interpolate the
pressure time series data into the same length (200) with
equidistant time intervals. More specifically, the irregularly
sampled time series data are resampled in 200 samples with
regular intervals between 0 and 10 seconds. Additionally, we
normalize pressure data by dividing by 1, 000 and subtracting
0.5. This roughly brings the observed data between −0.5 and
0.5. The inverse operation is applied to the network output to
recover the original location and scale. This ensures a uniform
scale across training, validation, calibration, and testing.

B. Training process

We train the model using stochastic gradient descent with
batch size 16 for 200 epochs. Gradient updates are performed
with the Adam optimization procedure [34]. The coefficients
for the losses in Eq. (4) are set as ωkld = 100, ωreg = 10,
balancing the terms such that they are of roughly equal
importance. We train the model with early stopping when the
validation loss does not decrease for 5 consecutive epochs.

C. Evaluation metrics

To evaluate the anomaly detection performance, we obtain
the confusion matrix of the anomaly detection based on the
actual (EO-based) and predicted (using process boundaries
estimated from calibration data) labels of the testing dataset.
Based on the confusion matrix, we then calculate the re-
call/true positive rate (TPR) and specificity. TPR measures
the ratio of correctly classified normal samples to all actual
normal samples. Specificity measures the ratio of the predicted
negatives to the actual negatives. Furthermore, leveraging
the Mahalanobis distance between the testing data and the
estimated Gaussian distribution, we compute the area under
the receiver operating characteristic curve (AUC score) as the
main metric to assess the performance of anomaly detection.

D. Results

Overview. In the experiments, D5 and D6 share similar
experimental settings across different products. For brevity,
we only show one arbitrary dataset per figure as both datasets
yield the same conclusion. Fig. 4 shows a comprehensive
illustrative analysis of data from D6. The pressure data are
mapped into the latent space to obtain µ and zm. The green
color represents calibration data (assumed normal cases),
and the ellipses represent different estimated distributions for
different confidence levels. A suitable operational bound is set
to classify abnormal samples (we assume data from machine
settings other than calibration data are abnormal). We also
analyze the machine parameter indication by comparing the
latent representation for the machine parameters. Note that the
reconstructed signals and the proportionally scaled machine
parameters are not of interest and, therefore, not reported here.

Anomaly detection. We provide qualitative and quantitative
analyses for anomaly detection based on the deviation from the
calibrated reference distribution of zp. Quantitative results are
summarized in Tab. II. AUC scores are reported as average
over all cavities of each dataset. In addition, we compute
recall, specificity, and odds ratio at the operational bound of
B=0.95. The odds ratio is computed as the ratio between
precision and a priori anomaly rate. We compare results
between one-time calibration and dynamic calibration. The
results show that dynamic calibration outperforms one-time
calibration in most instances since it consistently adapts to the
data drift over time. As each cavity is calibrated separately and
the anomaly value is expressed as the Mahalanobis distance to



Fig. 4: Left: Pressure curves of 4 machine settings from D6, using 10 reference cycles from one machine setting as calibration
data (green) and the rest for evaluation, where only a single machine parameter has been changed. Middle: Process boundaries
at B=0.95 (solid line) and B=0.999 (dashed line). The small zoomed-out figure shows that the latent representations from
increasing injection speed and holding pressure significantly deviate from the calibrated distribution. Right: Machine parameter
predictions superimposed on the calibrated distribution (dotted lines indicate a deviation of 99.9% from the mean). It is sensitive
to changes in the set values (e.g., for the red curves with set lower molding temperature, the molding temperature is indeed
predicted lower, pointing at the anomaly’s root cause as well as at an intervention). It is however less specific (i.e., a lower
molding temperature is also predicted for the blue and purple curves, although temperature was kept constant there). This lack
of disentanglement is partly due to the extreme nature of the parameter variations here as well as to actual physical couplings.

the cavity-specific distribution’s center, the values are directly
comparable across cavities.

Machine parameter prediction. Datasets D5–D6 are in-
cluded for the evaluation of the prediction of the machine
parameters because of their 3× 3× 3 design in which each of
the 3 machine parameters is changed threefold while keeping
the others constant. The prediction of the holding pressure
and the injection speed are in a positively linear relation, as
shown in Fig. 5. The effect of the mold temperature is smaller
than that of holding pressure and injection speed. For example,
at 400 bar holding pressure and 30mm/s injection speed, the
prediction of the temperature is unreliable.

V. DISCUSSION AND CONCLUSIONS

Summary. This study marks significant progress in the
practical automation of injection molding process monitor-
ing. It introduces a straightforward and effective method for
domain adaptation and root cause identification, addressing
prior challenges in transfer learning and unrealistic data re-
quirements. We built on the state of the art in represen-
tation learning, employed statistical modeling, and injected
domain knowledge to overcome three main limitations in
the automation of injection molding anomaly detection and
root cause analysis with a novel model and process. Specif-
ically, the dependence on experienced personnel and manual
configuration of the detection process has been reduced by
using a variational auto-encoder-based representation that is
dynamically calibrated with reference data during production.
An objective choice of acceptable false positive rate replaces

the subjective EOs. The designed machine-parameter-sensitive
activations facilitate rule-based root cause identification that
increases the practical value of the output. As such, the
proposed system meets the needs of a self-calibrating system
for anomaly detection. Our approach is implemented in the
context of injection molding processes, but it also applies
to other transient sensor data in which a deviation from a
“reference” indicates an anomaly. The solution automatically
sets process boundaries in a low-dimensional and explainable
representation of pressure curves in a data-centric way. The
detection process can be dynamically re-calibrated if desired.
The principle is not limited to 1D time-series signals, but the
representation-learning based framework generalizes to multi-
dimensional data if the reference data is consistent and enough
data is available. The same dynamic calibration process can
be applied elsewhere as long as smooth data drift occurs. This
conceptual advance has been filed for a European patent [35].

Discussion. We evaluated the feasibility of automatically
setting meaningful process boundaries in unseen process data
based on a small number of reference cycles. Data were
acquired with sensors of a single modality, but the principle
applies to other transient signals. The test data were distinct
from the training data, most notably in cycle duration, which
was 6 seconds in the training data but ranged from 1.5 to 10
seconds in the test data. The inductive bias of the unsupervised
VAE made the representation useful because it was sensitive
to changes in the input signals and detected the anomalies
with high sensitivity when the operational borders were set to
produce a false positive rate of 5 percent. At this threshold,



TABLE II: Evaluation of anomaly detection performance on four different datasets.

Dataset AUC Recall (B = 0.95) Specificity (B = 0.95) Odds Ratio (B = 0.95)
One-batch
calibration

Dynamic
calibration

One-batch
calibration

Dynamic
calibration

One-batch
calibration

Dynamic
calibration

One-batch
calibration

Dynamic
calibration

D1 0.9039 0.9974 1.0 1.0 0.2266 0.8729 1.4002 5.8545
D2 0.9620 0.9974 1.0 1.0 0.3146 0.8593 1.5769 6.9487
D3 0.9980 0.9980 1.0 1.0 0.6823 0.8614 7.4856 3.1971
D4 0.9425 0.9998 1.0 1.0 0.2245 0.8809 1.4151 7.7862
Avg 0.9516 0.9982 1.0 1.0 0.3620 0.8686 2.9695 5.9466

Fig. 5: Predicted machine parameters of a subset of D5.
Each triplet of boxplots has 2 machine parameters fixed as
indicated in the tick labels of the horizontal axis. The aim
of the modeling is that the mini-batches produce correctly
ordered predicted parameters m1 < m2 < m3 or vice versa
for correspondingly ordered set machine parameters. This is
clearly achieved for holding pressure and injection speed. The
scale and sign of the unscaled predictions are arbitrary.

the specificity was much lower than the expected percentage.
By continuously re-calibrating the distribution parameters,
the specificity increased above 80% but never reached the
expected 95%. This is indicative of the data exhibiting slow
drifts and that our assumption about the normality of the
latent variables does not fully hold. We also observed that
the estimated variance is not constant. In D3, for example,
the variance of the first calibration batch was larger than
throughout the remaining cycles. Here, the dynamic calibration
reduced precision, triggering more false alarms.

Holding pressure and injection speed were proportionally
predicted, yet the model did not fully disentangle them. This
is not surprising as both parameters lead to a higher pressure
peak. Changes in the mold temperature caused relatively little
change in the pressure curves and therefore the system was

not sensitive to those changes.
Limitations. Although the test set consisted of six batches

(datasets), it only represents a small fraction of possible
production data. A wider study is needed to explore the limits
of the method in terms of generalization performance.

Some molds produce multiple parts and host one pressure
sensor for each part. The system evaluation in this paper is
limited to analyzing each cavity in isolation. This ignores
potential information from interactions between channels. For
example, when a single cavity is clogged, this would affect
mainly the signals of that cavity. If the inlet were to be
clogged, the pressure reading of all the cavities would be
affected, triggering anomalies across all channels. Such scenar-
ios would require updated training and/or infusion of domain
expert knowledge at the level of root cause detection.

Another limitation is that when the reference cycles are
very similar, the variance of the distribution is underestimated.
This reduced the specificity. Currently, the model can adapt to
slow data drift. However, the industrial process still needs to
be supervised. When data constantly drifts in an unexpected
direction, leading to an anomaly, the operator should intervene.

Conclusion and outlook. This study demonstrates progress
of practical importance in the automation of injection molding
process monitoring. The anomaly detection is sensitive and
reliable if the process is stable. The dynamic calibration
improves the reliability if there is a slow drift in the repre-
sentation. The estimated distribution generally underestimates
the variance which leads to a specificity that is lower than if
the observed data would follow the theoretical model.

The proposed system can be improved in several ways
without changing the architecture. If controlling the false
positive rate is critical, the density estimation must be im-
proved in future work. This could be achieved by either
finding a distribution with few parameters (such as the Student
distribution) that fits the observations better or fitting a more
complex distribution such as a Gaussian mixture [36]. The
latter case would require more training data, and in both cases,
the appeal of easy-to-interpret elliptical process boundaries
would be lost. Enlarging the training data set would help make
the network generalize better. Readily available process data
without machine parameters or quality labels could be used for
pre-training. However, more variability in the data may entail
the need to increase the network capacity by adding depth
or breadth to the network. In our experiments, we found that
insufficient capacity caused the network to get trapped in local



minima where the posterior collapses on the prior [37].
The proposed system underestimated the variance as indi-

cated by a specificity lower than 0.95 at an anomaly threshold
corresponding to 0.05. The posterior variance σ of the VAE
may be leveraged to estimate the batch-specific posterior better
than with the distribution of the posterior mean µ alone.

Improving the disentanglement of the latent factors [38] is
necessary to improve the system’s utility further and could
be achieved without a fundamental change in the architecture.
On the other hand, transformer-based self-supervised models
with dimensionality reduction capabilities [39], [40] may
produce more accurate reconstructions and, therefore, a more
expressive latent representation.
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