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Abstract—At least since the introduction of ChatGPT, the
abilities of generative large language models (LLMs), sometimes
called GPTs, are at the center of the attention of AI researchers,
entrepreneurs, and others. However, for many applications, it
is not possible to call an existing LLM service via an API due
to data protection concerns or when no task-appropriate LLM
exists. On the other hand, deploying or training a private LLM is
often prohibitively computationally expensive. In this paper, we
give an overview of the most important recent methodologies that
help reduce the computational footprint of LLMs. We further
present extensive benchmarks for seven methods from two of
the most important areas of recent progress: model quantization
and low-rank adapters, showcasing how it is possible to leverage
state-of-the-art LLMs with limited resources. Our benchmarks
include resource consumption metrics (e.g. GPU memory usage),
a state-of-the-art quantitative performance evaluation as well as
a qualitative performance study conducted by eight individual
human raters. Our evaluations show that quantization has a
profound effect on GPU memory requirements. However, we also
show that these quantization methods, contrary to how they are
advertised, cause a noticeable loss in text quality. We further
show that low-rank adapters allow effective model fine-tuning
with moderate compute resources. For methods that require less
than 16 GB of GPU memory, we provide easy-to-use Jupyter
notebooks that allow anyone to deploy and fine-tune state-of-the-
art LLMs on the Google Colab free tier within minutes without
any prior experience or infrastructure.

Index Terms—Large Language Models, LlamaV2, fine-tuning,
LLM quantization, LLM deployment

I. INTRODUCTION

Recent Large Language Models (LLMs) have shown re-
markable performance on a wide range of language tasks [1],
which has earned them an impressive rise in interest [2] that
has extended beyond the typical aficionados in academia and
industry. Impressive results have been achieved using little
prior knowledge and purely leveraging data [3] thanks to
the adoption of the transformer architecture [4] (a.k.a. Fast
Weight Programmers [5]), which enables each layer of an
LLM to focus on specific parts of the input sequence de-
pending on the need. Effectively, models give varying degrees
of importance to different elements in the input sequence
dynamically, depending on their relevance to the current step in
the sequence generation process. This modeling power comes
at a cost of crucial computational complexity—transformers
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Fig. 1. The VRAM consumption of all benchmarked methods. See Section
III-B for inference and Section III-C for fine-tuning. For context, we illustrate
the VRAM capacities and list approximate prices of the most popular GPUs
in the AI space. Note that GPU prices are very volatile and time dependent.

scale quadratically with sequence length (O(n2d), with n the
sequence length, d embedding dimension). However, language
transformers only unlock their full potential when having
billions of trainable parameters (i.e. putting the L into LLM)
[6]. Combined with their computational scaling properties, this
makes LLMs notoriously difficult and costly to both train and
deploy. Training models for custom applications from scratch
requires such large amounts of data and large model sizes
that it is only possible for large corporations and universities
with substantial resources. Nonetheless, there has been a trend
among some of the tech giants to open source even their most
capable models, most notably LlamaV2 [7] by Meta. The open
availability of these models has enabled a whole new research
field concerned with methods that allow the efficient use of
pre-trained LLMs on modest hardware configurations.

In this paper, we give an overview of these new technologies



by surveying the state of the art. For the two most important
among them, quantization (see Section II-A1) and low-rank
approximators (see Section II-A2), we present novel bench-
mark results (see Fig. 1). We evaluate three quantized infer-
ence methods and four low-rank approximators for fine-tuning.
We benchmark these methods twofold: We first investigate the
computational properties of each method, reporting resource
consumption and computation speed. In the second step, we
investigate the quality of the model outputs by using automated
evaluation metrics and conducting a qualitative study on select
outputs. The GPU memory (VRAM) requirements of some
of the tested methods are low enough that they can be
deployed on the free tier of a Google Colab instance. For these
methods, we provide easy-to-understand Jupyter notebooks
that enable anyone to deploy a state-of-the-art LLM within
minutes without any prior knowledge or infrastructure.

The remainder of this paper is structured as follows: in
Section II, we give an overview of the key technologies
that enable LLMs on limited hardware; in Section III-A, we
introduce our benchmark methodology; Sections III-B and
III-C contain the benchmark results for model inference and
fine-tuning, respectively. In Section III-D, we share our Colab
notebooks before we draw conclusions in Section IV.

II. SURVEY OF KEY TECHNOLOGIES

In this section, we present an overview of the innovations
that have enabled model fine-tuning, inference, and perfor-
mance evaluation of LLMs on a moderate compute budget. We
omit to survey how LLMs should be trained from scratch as
this undertaking remains extremely costly, being out of scope
for most organizations and practical applications. For general
design patterns of efficient deep learning, see [8], [9].

A. Efficient LLM Execution and Adaptation

1) Quantization: The biggest hurdle to the wide adoption
of LLMs is their VRAM requirements. The parameters and
activation states of these models are usually stored in a 32- or
sometimes 16-bit format. It has been shown that quantization
methods that can properly represent the characteristic emergent
structures in transformer [4] weights can reduce the parameter
and activation formats to an 8-bit representation with minimal
loss of arithmetic accuracy [10]. Recently, a 4-bit NormalFloat
data type has been introduced that is theoretically optimal for
storing normally distributed weights [11].

When quantizing a fully pre-trained transformer model,
the quantization can take the explicit structure of the model
weights into account, making quantization even more efficient:
GPTQ [12] leverages approximate second-order information
to generate highly accurate approximations with 3 to 4 bits
per weight. Activation-aware Weight Quantization (AWQ) [13]
achieves a decrease in quantization error by deriving the
importance of each weight through observing their activations
before quantization, then protecting the 1% most important
weights from being quantized.

When also training a model (not only running inference), the
required VRAM is drastically increased due to the variables

required by the optimizer. A straightforward way to address
this is to also quantize the optimizer’s weights [14]. Quanti-
zation is very widely adopted and considered to be the most
effective method for reducing VRAM consumption.

2) Low-Rank Approximators: While quantization methods
are often sufficient to run LLM inference on constrained
hardware, VRAM constraints prevent fine-tuning LLMs on a
single GPU even when using optimizer quantization. Low-rank
adaptation of large language models (LoRA) [15] offers an
alternative: LoRA freezes the pre-trained model weights and
injects trainable low-rank decomposition matrices into each
layer of the Transformer. This way the base network can be
run in “inference mode” and only the low-rank matrices are
trained as a differential update to the base network. AdaLoRa
[16] develops this concept further and assigns parameter bud-
gets to different weight matrices according to an importance
metric. LoKr [17] recognizes limited representation power of
above low-rank representations and suggests using the Kro-
necker product instead. Low-rank approximators are the key
innovation that democratized LLM fine-tuning. In resource-
constrained settings they are mandatory.

3) Pruning: A popular strategy to alleviate the high infer-
ence cost of deep neural networks is “model pruning” [18]–
[20]: Starting from a pre-trained network, one can iteratively
remove redundant parameters and retrain the model while
maintaining a test accuracy comparable to the original full-
sized network. While Large Language Models are natural
candidates for network pruning techniques, they have received
little interest from the community compared to the other
popular compression techniques such as quantization (see
II-A1). A likely explanation for this is that standard pruning
methodologies require retraining the network, which is too
costly in the case of LLMs. Recent works have however shown
promising results with pruning without relying on retraining
networks [21], [22].

4) CPU Parameter Offloading: CPU offloading in training
deep neural networks involves transferring some computations
from the GPU to the CPU to alleviate memory constraints and
improve training efficiency. Optimal strategies for offloading
activations, gradients, and model parameters to the CPU ulti-
mately enable the training of larger models. Microsoft has been
at the forefront of this line of research and introduced the open-
source library DeepSpeed [23] as well as ZeRO [24]. This
includes a “ZeRO-Offload” feature, which performs optimized
CPU parameter offloading, enabling large models with up to
13 billion parameters to be efficiently trained on a single GPU.
Smart load sharing between CPUs and GPUs is very important
in large multi-GPU or even multi-cluster operations. When
working with a single GPU it is usually preferable to compute
everything on that device to avoid costly data transfers.

5) Stateless Optimizers: Numerous prevalent optimization
algorithms come with the cost of additional parameters. For
instance, Adam [25] and AdamW [26] involve the computation
of both the moving average of first-order moments (mean of
gradients) and second-order moments (uncentered variance of
gradients) for each parameter. Consequently, they incur the



cost of tripling the parameter count. An alternative to quantiz-
ing the optimizer weights (see Sec. II-A1) is to use a stateless
optimizer like stochastic gradient descent. The drawback of
plain SGD is its typically inferior convergence properties.
However, this limitation can be mitigated by introducing a
learning rate scheduler [27] that systematically reduces the
learning rate, ensuring the attainment of a local minimum.
Running a stateless optimizer is an efficient way of reducing
VRAM requirements. The incurred loss in convergence speed
depends on the problem at hand and it is best to investigate
in a preliminary study if it is a worthwhile tradeoff.

6) Gradient Checkpointing: Conventionally, intermediate
activations from the forward pass are stored in the VRAM
for gradient computation during backpropagation, but this
becomes impractical in scenarios with limited memory or very
large models. Gradient (or: activation) checkpointing [28],
[29] addresses this challenge by selectively caching a subset
of crucial intermediate activations for gradient computation,
dynamically recomputing the remaining activations during the
backward pass. This turns out to make a better trade-off
than re-computing all activations: The flexibility of gradient
checkpointing in choosing activations for checkpointing allows
tailored optimization based on a model’s specific memory and
computational demands. Gradient checkpointing can help to
further reduce memory consumption when reducing the batch
size is no longer possible. It comes, however, at a steep cost
in training speed.

7) Gradient Accumulation: Gradient accumulation [30] is
a technique that allows training on large “virtual batches”
that are bigger than the maximum batch size fitting into
the available VRAM. This is achieved by accumulating the
gradients over multiple batches and only running an optimizer
step once enough gradients for the desired “virtual batch size”
have been collected. This is often necessary when working
with a limited VRAM budget. Gradient accumulation ensures
that the necessary batch size can be reached which reduces the
noise in the gradient updates enough for the LLMs to properly
converge.

8) Software Engineering: LLMs typically operate in an
autoregressive fashion [4], predicting the succeeding token
based on the prior sequence. Consequently, output generation
time increases as the predicted sequence’s length grows. In
the context of token streaming (as, e.g., in ChatGPT’s user
interface), the output can be exhibited token by token, as
the already produced sequence is directly presented to the
user. Furthermore, the autoregressive approach also facilitates
continuous batching [31]. In this method, incoming requests
are accumulated in a queue, and after each autoregressive
step, they are incorporated into the currently processed batch,
provided the memory limit permits. Furthermore, sequences
that reach the end-of-sequence token are removed from the
batch to free up space, allowing other sequences in the queue
to be processed.

These measures are crucial when running LLMs in pro-
duction; Token streaming should be used when the users are
actively waiting for the response, allowing users to promptly

read the result, even if it hasn’t been fully generated. Con-
tinuous batching, on the other hand, is particularly beneficial
in scenarios where the timing and quantity of requests are
uncertain, for example, in multi-user settings.

B. Evaluation

Various metrics such as perplexity [32], BLEU score [33],
and F1 score have been proposed to gauge the performance of
language models on specific tasks, including translation [34],
and text classification [35]. However, LLM-based assistants
have started to exhibit more general capabilities across diverse
tasks such as writing, chatting, and coding [7], [36]–[38], mak-
ing evaluating their broad capabilities more challenging. Ex-
isting benchmarks to evaluate LLMs include core-knowledge
benchmarks [39]–[45] that typically require LLMs to generate
a short, specific answer to benchmark questions that can
be automatically validated. Instruction-following benchmarks
[46]–[50] use more open-ended questions and more diverse
tasks to evaluate LLMs after instruction fine-tuning. Conver-
sational benchmarks [51]–[53] focus on dialogue; however, the
diversity and complexity of their questions often fall short in
challenging the capabilities of the latest models.

Many of these performance metrics primarily center on
assessing multi-turn dialogues involving open-ended inquiries,
or they fail to pose a sufficient challenge for contemporary
cutting-edge models. Although human preferences directly
gauge a chatbot’s efficacy in multi-turn interactions between
humans and AI, this approach lacks scalability. Based on this
insight, Zheng et al. [54] propose to bridge this gap by using
the novel MT-bench benchmark that tests the core capabilities
of state-of-the-art models while leveraging an auxiliary LLM
model as a judge. Remarkably, their findings reveal that
auxiliary LLM models exhibit a level of agreement comparable
to that of human annotators, rendering them suitable for
evaluating other LLMs.

In the next section, we apply MT-bench in conjunction
with an auxiliary (LLM) to assess the efficacy of a model
across diverse tasks. Moreover, this metric proves apt for
discerning whether model performance drops during fine-
tuning when using, for example, quantization methods, as it
not only provides a score per category but also allows pair-
wise comparison between models.

III. BENCHMARKING PERFORMANCE AND QUALITY

We present benchmarks for two distinct use cases: First,
we assess model inference by employing a pre-trained model.
Second, we examine fine-tuning on custom data. Model
quantization and LoRA are the most promising, impactful,
and universally applicable among the plethora of techniques
introduced above. Therefore, we chose them for benchmark-
ing. In both scenarios, we conduct a comparative analysis
between a given model and the same model incorporating
additional quantization techniques. In the inference scenario,
we benchmark quantization techniques, while in the fine-
tuning scenario, we test multiple low-rank approximations.
One focus lies on evaluating VRAM usage, speed, and model



performance, as these metrics are pivotal for the effective
deployment of models in resource-constrained environments.
The second focus lies on gauging the quality of the generated
conversations. Since it is the most capable openly available
LLM, we use LlamaV2 [7] as the basis for all of our
experiments. We use its 7-billion parameter variant – larger
versions require a substantial GPU infrastructure, even when
paired with the techniques introduced above.

A. Benchmarking methodology

1) Resource usage and speed metrics: For inference, we
systematically report metrics acquired during the quantitative
evaluation (c.f. Section III-A2) on the MT benchmark. This
includes VRAM usage (the most constraining factor for the
seamless execution of state-of-the-art models with billions of
parameters), generated tokens per second, and overall power
consumption in watt-hours (Wh). For fine-tuning, we provide
metrics obtained during the re-training, including VRAM
usage, processed batches per second, and overall power con-
sumption. For simplicity, we constrain the models to a batch
size of 1, even though the aforementioned methods might
reduce VRAM requirements to allow an increase in batch size,
contingent on available computational resources.

The experiments are conducted using a single Nvidia A-
100 40GB GPU. The selection of this GPU was based on its
ample VRAM, allowing the execution of all model versions
(except direct fine-tuning which is out of the scope of this
work), both with and without quantization, facilitating a fair
comparison. We also report results generated using a Nvidia
T4 16GB GPU to demonstrate the feasibility of running and
fine-tuning models on constrained hardware (“at home”). It is
important to note that, due to the memory limitations of the
Nvidia T4 16GB GPU, only models employing quantization
methods could be executed on it.

2) Quantitative Evaluation: We employ the MT-benchmark
that contains 80 high-quality multi-turn questions described in
[54]. They are manually designed to evaluate the models’ pro-
ficiency in multi-turn conversation and instruction-following
capabilities. The questions are organized into eight categories,
each holding ten challenging questions: writing, roleplay,
extraction, reasoning, math, coding, STEM knowledge, and
humanities/social science knowledge. Each multi-turn question
comprises an initial plus a subsequent inquiry.

The multi-turn questions are fed into all model versions,
and the resulting responses are stored. Subsequently, OpenAI’s
GPT-4 model is utilized to assess response quality by assigning
a score ranging from 1 to 10 to each answer. To obtain the
score, we follow the prompting scheme of Zheng et al. [54],
asking GPT-4 to evaluate the model’s response for various
factors such as “relevance”, “accuracy”, and “depth” before
providing an overall score. The average score per category is
then computed to provide a comprehensive evaluation of the
model’s performance across different categories. In addition
to this single-answer evaluation, a pairwise comparison is
conducted between the baseline model and a second model
version that has been tuned for efficiency. In this process, the

responses from both models are presented to the auxiliary
LLM, GPT-4, which is then tasked with determining the
superior model or declaring a tie. Both procedures adhere to
the methodology proposed by Zheng et al. [54].

3) Qualitative Evaluation: As automatic evaluation of gen-
erative language models is still in its infancy, it is important
to also qualitatively inspect outputs to assess the quality of
a model. We systematically do this by prompting our models
with the same catalog of five questions sourced from MT-
bench. Then, eight individual human judges rate all the outputs
on a scale from 1 (useless) to 5 (perfect answer). Finally, we
average across the marks given by each judge to obtain an
objective score. We use the following five multi-turn questions
to assess the ability of the models on a broad range of topics:

Q1 (Writing) Round 1: Compose an engaging travel blog post
about a recent trip to Hawaii, highlighting cultural experiences
and must-see attractions.
Round 2: Rewrite your previous response. Start every sentence
with the letter A.

Q2 (Reasoning) Round 1: Thomas is very healthy, but he has to
go to the hospital every day. What could be the reasons?
Round 2: Can you explain why the above question is interest-
ing?

Q3 (Math) Round 1: Benjamin went to a bookstore and purchased
a variety of books. He bought 5 copies of a sci-fi novel, each
priced at $20, 3 copies of a history book priced at $30 each,
and 2 copies of a philosophy book for $45 each. What was the
total cost of his purchases?
Round 2: Suppose Benjamin decides to sell each of these books
at a 25% markup from the price he purchased them. What
would be his total revenue if he sold all the books he bought?

Q4 (Stem) Round 1: Photosynthesis is a vital process for life on
Earth. Could you outline the two main stages of photosynthesis,
including where they take place within the chloroplast, and the
primary inputs and outputs for each stage?
Round 2: How much energy can a tree produce through
photosynthesis in its lifetime? Please provide an estimate using
actual numerical values and thoroughly explain your thought
process step-by-step.

Q5 (Humanities) Round 1: Which methods did Socrates employ to
challenge the prevailing thoughts of his time?
Round 2: Let’s bring Socrates to the modern world. Generate
a conversation between Socrates and Bill Gates to debate on
generative AI for education.

B. Results for Efficient Inference

In the subsequent analysis, we assess different quantization
techniques with a focus on computational, quantitative, and
qualitative performance. Out of the numerous open-source
LLMs [1], we selected“LlamaV2-7B” and its dialogue-fine-
tuned version “LlamaV2-7B-Chat” as the basis for this evalu-
ation. This choice is based on the models’ good performance
with a manageable, popular parameter count of “just” 7B [7].

Resource usage and speed metrics. Table I presents an
overview of the computational requirements of the LlamaV2-
7B-Chat model and its variants employing quantization tech-
niques during the processing of the MT-bench dataset. The
first column shows the VRAM usage. It is important to
acknowledge that VRAM utilization may vary based on the
sampled model response that is reused as conversational
context in subsequent follow-up questions. The adoption of



TABLE I
VRAM USAGE, TOKENS PROCESSED PER SECOND, AND THE OVERALL POWER CONSUMPTION DURING INFERENCE ON MT-BENCH. THE MODEL USED IS

LLAMAV2-CHAT, OPTIONALLY COMBINED WITH BITS-AND-BYTES (BNB), NESTED BNB, AWQ, AND GPTQ QUANTIZATION TECHNIQUES.

VRAM usage [GB] avg. tokens/s power consumption [Wh]
GPU A100 A100 T4 A100 T4
LlamaV2-7B-Chat 33.80 36.06 out of memory 92.39 out of memory
LlamaV2-7B-Chat BnB 8.40 25.45 16.07 63.53 57.09
LlamaV2-7B-Chat AWQ 9.10 86.66 26.32 33.72 38.96
LlamaV2-7B-Chat GPTQ 9.02 34.20 28.33 52.56 32.28

quantization techniques enables the execution of the model
on GPUs with constrained VRAM, such as the Nvidia T4,
as the VRAM requirements reduce from 33.80GB to below
10GB. Alternatively, in scenarios where sufficient memory is
available, this facilitates the utilization of batch sizes that are
three to four times larger, thereby enabling the concurrent
processing of a higher volume of requests.

When examining the tokens processed per second using
the A-100 GPU, it becomes evident that quantization via
BnB (25.45 tokens/s) exhibits significantly slower perfor-
mance compared to the baseline without quantization (36.06
tokens/s). Thus, squeezing parameters and activations into
lower precision datatypes reduces memory requirements on
the cost of speed. In contrast, more advanced algorithms
such as GPTQ and AWQ can even preserve or improve the
throughput while having a reduced memory footprint: GPTQ
quantization achieves a throughput of 34.2 tokens/s, nearly
matching the baseline. Remarkably, AWQ quantization attains
an impressive throughput of 86.66 tokens/s, approximately 2.4
times faster than the baseline. Unfortunately, this enhanced
performance does not scale to the T4 GPU due to this GPU’s
reliance on the older Turing architecture. The T4 GPU lacks
the novel CUDA kernels of the Ampere architecture, which
is extensively utilized by AWQ. Consequently, AWQ on the
T4 GPU achieves performance similar to GPTQ. However, as
previously elucidated, the quantization methods enable larger
batch sizes and the concurrent processing of more tokens,
thereby enhancing overall throughput. Thus, even slower meth-
ods like BnB could outperform the baseline when quantization
is employed to increase the batch size.

Quantization techniques also allow for substantially dimin-
ishing power consumption. This is attributed to the utilization
of lower-precision datatypes for representing model param-
eters and activations, resulting in enhanced computational
efficiency. On the A-100 GPU, the standard model consumes
92.39Wh, whereas BnB has a power consumption of 63.53Wh,
and nested BnB consumes 69.15Wh. GPTQ and AWQ employ
similar datatypes as BnB, but due to their higher throughput,
these methods achieve an even lower total power consumption
of 33.72Wh (AWQ) and 52.56Wh (GPTQ), respectively. Un-
fortunately, due to the aforementioned reasons, AWQ struggles
to transfer its high efficiency to the older GPU.

To summarise, from a purely computational perspective,
AWQ quantization is preferable if the GPU is equipped with
compatible CUDA drivers; otherwise, GPTQ is recommended.
These approaches demand significantly less VRAM compared

Fig. 2. Single score evaluation results for LlamaV2-7B-Chat with different
quantization techniques and the state-of-the-art GPT-4 for comparison.

to the baseline model while maintaining or increasing pro-
cessing speed, even when the batch size remains unchanged.
Unfortunately, AWQ and GPTQ cannot be used for model
training, making BnB the preferred method for quantization
while learning model weights.

Quantitative evaluation. To quantitatively assess the influ-
ence of quantization on LlamaV2-7B-Chat’s output quality,
we utilize the single-score judgment based on MT-bench.
Additionally, we include evaluations of LlamaV2-7B as a
lower bound and GPT-4 as an upper bound. Please note
that GPT-4, when used as a judge, favors its own answers
with a 10% bias in pair-comparisons, suggesting that it rates
itself also slightly better than other models in single answer
grading [54]. LlamaV2-7B is used as the lower bound due to
its identical architecture but lack of fine-tuning for dialogue,
a requirement for MT-bench. The findings are presented in
Figure 2. As expected, the LlamaV2-7B-Chat model and its
quantized versions are noticeably better than the lower bound
and worse than the upper bound. There is only a marginal
performance difference between the baseline and the quan-
tized models, suggesting that the application of quantization
techniques neither degrades nor enhances performance.

Qualitative evaluation. Table II shows the average grade for
the answers of all the quantized versions of LlamaV2-Chat
to our five selected questions (see Section III-A3). Notably,
the non-quantized model achieves the highest average grade
of 3.35, surpassing GPTQ with an average grade of 3.1
and BnB with an average grade of 2.9. In contrast, AWQ
received a lower average rating of 1.95 compared to the other
quantization methods. This discrepancy suggests that humans



TABLE II
AVERAGE (ACROSS 8 HUMAN RATERS) USEFULNESS EVALUATION

(1=USELESS, 5=PERFECT) OF ANSWERS FROM QUANTIZED VERSIONS OF
LLAMAV2-CHAT

Q1 Q2 Q3 Q4 Q5 Average
no quantization 3.75 1.25 4.5 4 3.25 3.35
BnB 2.25 2 2.75 3.5 4 2.9
AWQ 1.5 1.5 1.5 2.5 2.75 1.95
GPTQ 1.25 1.75 4.75 3.75 4 3.1

do not favor AWQ as a quantization technique, which is in
contrast to the outcomes of the quantitative analysis, where
no performance gap could be observed. Our results indicate
that quantization techniques improve computational efficiency
but degrade the overall dialogue quality.

C. Results for Efficient Model Fine-Tuning

When there is no task-appropriate LLM available, it be-
comes necessary to fine-tune an LLM on a new dataset. To
evaluate the effect of efficiency techniques for LLM fine-
tuning, we fine-tune a LlamaV2 base model on the dataset
that was designed for the training of Guancano [11] and
that is a subset of the OpenAssistant [53] dataset. Thus, we
train the model to behave like a chat-based assistant rather
than a general generative model. While this is of no practical
importance as a new model due to the existence of LlamaV2-
Chat, it allows us to keep a consistent evaluation scheme
across all experiments for this benchmarking. Fine-tuning a
LlamaV2 model without a low-rank adapter is only possible
with very large computational resources (at least 80GB VRAM
on a single chip), therefore we consider the widely used LoRA
[15] method as our baseline. Additionally, we fine-tune models
using AdaLoRA [16] and LoKr [17]. We also test quantized
versions of LoRA (Q-LoRA) and AdaLoRA (Q-AdaLoRA),
which provide a further reduction in VRAM requirement. We
train our models with a constant learning rate of 0.0001 and
a weight decay of 0. We use a batch size of 1 and 8 gradient
accumulation steps. We cap the gradient norm at 0.3 and train
for 15, 000 steps. LoKr has a relatively heavy VRAM load,
therefore we have to reduce the maximum sequence length to
400 tokens instead of the default of 500, even on a 40GB GPU.
To enable fair comparisons, we keep this training configuration
(including max sequence length) consistent across all methods.
The full training details can be found in the public WandB
logs linked here: https://github.com/tuggeluk/LMM at home.
We have opted for this relatively short fine-tuning due to
our limited computational resources. This setup allows us to
compare the different low-rank adaptation methods, but the
resulting models are not expected to be competitive with the
highly tuned LlamaV2-Chat.

Resource usage and speed metrics. Table III shows an
overview of the resources consumed by the different fine-
tuning methods for the A100 and T4 GPUs. Among the non-
quantized adapters, LoKr requires a higher amount of memory
than LoRA and AdaLoRA. Quantizing the adapter slashes
the memory required for fine-tuning by almost two-thirds,

Fig. 3. Pair-wise comparison results of LlamaV2-7B vs. fine-tuned models.

allowing the use of T4 chips that only have 16GB of memory.
The processing speed does not deviate too sharply between
the methods with the fastest processing (LoRA: 0.217 steps/s)
and the slowest processing (LoKr: 0.15 steps/s) on an A-
100. Quantizing causes a slowdown of roughly 20% in both
cases, comparable to the BnB quantization during inference.
The T4 is much slower at 0.04 steps/s for both methods,
yielding an increase in training time of more than four-
fold. The overall power consumption on the A-100 is highly
correlated with the training time, while the reduced memory
usage of the quantized methods has a slim effect on the energy
consumption, making the faster, unquantized training a more
energy-efficient option. While the T4 has a much lower peak
power consumption, this is largely compensated by longer
training time, leading to similar energy usage for both GPU
models.

Quantitative evaluation. To assess the impact of efficiency-
optimized fine-tuning on chat quality, we conduct a pair-wise
comparison using MT-bench. In this comparison, a judging
model assigns scores of 1.0 if the fine-tuned version is superior
to the baseline model, 0.5 if they perform equally, and 0.0
if the fine-tuned version is inferior. The results, depicted
in Figure 3, reveal that our fine-tuned models consistently
outperform the baseline, consisting of a stock LlamaV2,
across all categories. This underscores the effectiveness of our
fine-tuning. Notably, the fine-tuned models exhibit especially
superior performance in the categories of writing, roleplay,
extraction, STEM, and humanities, with average scores hov-
ering around 1.0, indicating their consistent superiority over
the baseline in nearly every instance.

In addition to conducting pairwise comparisons, we present
outcomes based on single-score assessments using MT-bench.
The outcomes are illustrated in Figure 4. The results from our
fine-tuned models follow a similar pattern as the results from
the quantized LlamaV2-Chat version used for inference (cf.
Figure 2), i.e., work better in specific categories than others.
However, overall, they perform worse than the models used
during inference. This discrepancy arises from our use of a
simplified and short fine-tuning approach, wherein we refrain
from manually evaluating multiple checkpoints to identify the
optimal model version. Nonetheless, this validation affirms

https://github.com/tuggeluk/LMM_at_home


TABLE III
VRAM USAGE, TOKENS PROCESSED PER SECOND, AND OVERALL POWER CONSUMPTION DURING FINE-TUNING. THE BASE MODEL USED IS

LLAMAV2-7B, FINE-TUNED WITH LOW-RANK APPROXIMATORS LORA, ADALORA, LOKR, QUANTIZED LORA, AND QUANTIZED ADALORA.

VRAM usage [GB] steps/s power usage [Wh]
GPU A100 T4 A100 T4
LoRA 33.4 0.217 out of memory 6, 641 out of memory
AdaLoRA 32.7 0.203 out of memory 6, 560 out of memory
LoKr 39.5 0.15 out of memory 10, 080 out of memory
Q-LoRA 13.5 0.178 0.04 7, 990 7, 402
Q-AdaLoRA 12.7 0.168 0.04 7, 936 7, 843

Fig. 4. Single score evaluation results for pre-trained LlamaV2-7B (baseline)
and our fine-tuned versions.

that our results are comparable to the open-source fine-tuned
versions.

When comparing the results from the fine-tuned versions,
only subtle distinctions are evident. For instance, LoKr ex-
hibits a slightly inferior performance in tasks related to
humanities and STEM compared to the other models. Con-
versely, LoKr, along with AdaLora, surpasses other models in
tasks involving information extraction. Moreover, quantization
methods appear to have negligible effects on the overall quality
of the model. The mean rating for LoRA stands at 4.58, and
its quantized counterpart, Q-LoRA, is rated at 4.63 (+0.05).
Similarly, AdaLoRA achieves an average score of 4.96, and
its quantized variant, Q-AdaLoRA, is rated at 4.60 (−0.36).
These variances are minimal, especially considering the scale
of ratings ranging from one to ten.

Qualitative evaluation. Table IV shows the average grade
for answers of all fine-tuned models to our five selected
questions (see Section III-A3). We observe that, on average,
LoRA performs the best, with a strong performance gap to
AdaLoRA that in turn outperforms LoKr. Interestingly, the
human evaluation of the answers does indicate a quite steep
drop-off in quality between the quantized and unquantized
versions of LoRA and AdaLoRA. This is a further indication
that model quantization does not incur just a negligible loss
in performance as most automated evaluations suggest.

D. Colab Notebooks to “Run Your LLM at Home”

We provide easy-to-use Colab notebooks for all presented
methods that work on a T4 GPU (see https://github.com/
tuggeluk/LMM at home). Using these notebooks, all quan-

TABLE IV
AVERAGE (ACROSS 8 HUMAN RATERS) USEFULNESS EVALUATION

(1=USELESS, 5=PERFECT) OF ANSWERS FROM FINE-TUNED LLAMAV2S.

Q1 Q2 Q3 Q4 Q5 Average
LoRA 2.5 2.25 0.75 3.75 3.25 2.5
Q-LoRA 2 0.75 2.25 3.25 1.75 2
AdaLoRA 1.5 1.25 2.5 3 2.25 2.1
Q-AdaLoRA 1.25 1.75 1.25 1.5 2.25 1.6
LoKr 2.25 1.5 1 0.5 3 1.65

tized inference methods as well as Q-LoRA and Q-AdaLoRA
fine-tuning can be easily deployed on a Colab free-tier instance
by anyone without any coding.

IV. CONCLUSIONS

We have surveyed the state of the art in methods for efficient
fine-tuning and inference with LLMs, and have shown that the
current ecosystem of open-source LLMs with accompanying
resource-sparse technologies allows for efficient and effective
LLM inference and fine-tuning with limited computational
resources. As expected, quantization led to a massive reduction
in GPU memory requirements. For inference, this has also
carried over to a significant reduction in power consumption
which might be an important factor for large operations.
Most quantization methods claim to cause a negligible loss
in performance. However, we have been able to show, to the
best of our knowledge for the first time, that quantization
has caused a noticeable degradation in performance for both
inference and fine-tuning on LlamaV2 models. Important to
note here is that the automated evaluation was not able to
accurately capture this shift in performance, rather, it was
only found thanks to the qualitative evaluation using human
input. This further enforces an emerging sentiment in the
community that the current evaluation methods for genera-
tive LLMs are not sufficient [55]. We have further shown
that low-rank-adaptation-based fine-tuning effectively trains
LLMs. AdaLoRA and LoKr were not able to outperform the
default of LoRA (again in the context of LlamaV2 models),
which calls into question whether these further developments
are useful, especially the computationally heavy LoKr. We
furthermore observed that our fine-tuned models with short
training perform worse than LlamaV2-Chat, which shows
that fine-tuning still is a lengthy process and highly-tuned
open source models are usually preferable over home-brewed
variants where available.

https://github.com/tuggeluk/LMM_at_home
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