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Abstract—While the data science ecosystem is dominated by
programming languages that do not feature a strong type system,
it is widely agreed that using strongly typed programming
languages leads to more maintainable and less error-prone code
and ultimately more trustworthy results. We believe Scala 3
would be an excellent contender for data science in a strongly
typed language, but it lacks a general automatic differentiation
library, e.g., for gradient-based learning. We present ScalaGrad, a
general and type-safe automatic differentiation library designed
for Scala. It builds on and improves a novel approach from
the functional programming community using immutable duals,
which is conceptually simple, asymptotically optimal and allows
differentiation of higher-order code. We demonstrate the ease of
use, robust performance, and versatility of ScalaGrad through
its applications to deep learning, higher-order optimization, and
gradient-based sampling. Specifically, we show an execution speed
comparable to PyTorch for a simple deep learning use case,
capabilities for higher-order differentiation, and opportunities to
design more specialized libraries decoupled from ScalaGrad. As
data science challenges evolve in complexity, ScalaGrad provides
a pathway to harness the inherent advantages of strongly typed
languages, ensuring both robustness and maintainability.

Index Terms—Automatic Differentiation, Scala 3, ScalaGrad

I. INTRODUCTION

The Python programming language dominates the field of
data science [1]. Python is easy to learn, fast to experiment
with, and has a vast ecosystem of libraries like scikit-learn
[2], TensorFlow [3], PyTorch [4] and others [5]–[7]. Despite
Python’s strengths, it has a dynamic type system that hinders
maintainability and trustworthiness in complex applications.
With the growing complexity of data science challenges, the
case for statically typed languages becomes compelling.

Scala 3 has a static, powerful, and sound type system [8]. It
propagates a functional programming paradigm without losing
the flexibility for side effects if needed, for example, mutable
state, which can be necessary for performance optimization.
Scala 3’s concise and braceless syntax allows for fast experi-
mentation and eases the switch from Python. Scala has broad
tool support, as it is an established language for distributed
systems and big data applications. However, Scala 3 lacks
a general automatic differentiation library, e.g., to facilitate
ubiquitous gradient-based learning [9].

In this paper, we introduce ScalaGrad, a general and type-
safe automatic differentiation library written in and designed
for Scala. ScalaGrad builds on a novel approach introduced in
the functional programming community by Krawiec et al. [10],
using immutable duals, resulting in easy-to-reason code while
being asymptotically efficient. Moreover, ScalaGrad improves
on this approach by removing the necessity of a state monad,
making the approach viable for Scala and allowing straightfor-
ward higher-order differentiation support. ScalaGrad is easy to
use as it can differentiate over general control flow statements
like if-else statements, loops, monads, or exceptions. It sup-
ports different automatic differentiation modes and has robust
performance by hardware-accelerated linear algebra operations
using the Breeze library [11]. Demonstrating ScalaGrad’s
versatility, we applied it to deep learning, higher-order opti-
mization, and gradient-based sampling. Specifically, the deep
learning application demonstrates ScalaGrad’s performance,
calculating 28,630 partial derivatives 938 times in around 5
seconds. The higher-order optimization application demon-
strates ScalaGrad’s higher-order differentiation capabilities.
And the gradient-based sampling application indicates the
unique advantage of ScalaGrad’s type-safe differentiation, as
the algorithm was implemented decoupled from ScalaGrad
while maintaining type safety. ScalaGrad and all applica-
tions have been open-sourced at https://github.com/benikm91/
scala-grad.

As automatic differentiation is pivotal for gradient-based
applications, ScalaGrad represents a significant step towards
realizing a vision of type-safe data science in the Scala
ecosystem.

II. RELATED WORK

Automatic Differentiation. Automatic differentiation usually
runs in one of two modes, the forward mode or the reverse
mode, with the selection dependent on the structure of the
function to differentiate. The forward mode was discovered
independently multiple times in the 50s, 60s, and 70s [12]–
[16], and the reverse mode was discovered independently
multiple times in the 70s and 80s [17]. In recent years,
researchers have expanded the theoretical groundwork for au-
tomatic differentiation. Elliott [18] highlights that derivatives
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def square(alg: MatrixAlgebraDSL)(x: alg.Scalar): alg.Scalar = x * x // Define function to derive
import ForwardMode.derive as d // Import derive function from ScalaGrad
val dSquare = d(square) // Derive function
assert(dSquare(BreezeDoubleMatrixAlgebraDSL)(3.0) == 2.0 * 3.0) // Apply derived function and check result

Fig. 1: Minimal example of using ScalaGrad. First, the square function is defined using MatrixAlgebraDSL to abstract over the multiplication operation.
Next, the function is differentiated using ScalaGrad’s forward mode, resulting in a new function, dSquare, the derivative of square.

are linear maps and reduces automatic differentiation to two
basic operations: the fork and the chain operation. Based on
this idea, Krawiec et al. [10] show an elegant and immutable
implementation for the reverse mode. The crucial new idea
is to use a dual, often used for the forward mode, to track
the chain and fork operations in the reverse mode. ScalaGrad
builds on those concepts and adds type-safety to the automatic
differentiation operation using Scala 3’s match types [19]
to compute the function’s derivative type at compile-time.
Additionally, ScalaGrad simplifies those concepts, making it
straightforward to implement the differentiation mechanism in
a differentiable way (an idea taken from JAX [20]), enabling
higher-order differentiation.

Python ecosystem. In the Python ecosystem, there exist
some automatic differentiation libraries. TensorFlow and Py-
Torch come bundled with a specialized automatic differentia-
tion engine with syntax narrowly tailored to deep learning:
One creates a tensor expression, marks the input tensors
as such (the weights), and starts to differentiate from an
output tensor (the loss). Over the years, TensorFlow and
PyTorch added support for general automatic differentiation,
including multiple outputs, the forward mode, and higher-
order differentiation. However, the afterthought for general
automatic differentiation lead to an overly complex syntax
for those more advanced automatic differentiation cases. In
recent years, libraries like JAX [21] and functorch [22] have
provided a cleaner, more functional syntax. Rather than a
tensor expression, one defines a function on tensors and
differentiates it by a higher-order function. This idea leads
to a natural syntax for multiple outputs, different modes,
and higher-order differentiation. Different modes are simply
different higher-order functions. Higher-order differentiation
is just the chaining of such function calls.

Python 3 supports type hints to improve maintainability and
safety when programming [23]. Type hints are optional type
annotations that can be used for static code analysis. However,
there is no compilation phase enforcing the correctness of
types, which in practice leads to code that rarely type-checks
[24], and many Python libraries do not use type hints. Dis-
regarding those practical concerns, Python 3’s type hinting is
additionally limited in expressive power compared to Scala 3’s.
Python does not support, e.g., singleton types, higher-kinded
types, path-dependent types, or match types.

Scala ecosystem. In Scala, there exist automatic differentia-
tion engines bundled with deep learning libraries [25], [26] as
well as bindings to TensorFlow [27] and LibTorch [28], [29],
making automatic differentiation possible in those domains.
However, Scala has no general, stand-alone automatic differ-

entiation library; therefore, it lacks a fundamental building
block for applications using derivatives, like deep learning and
probabilistic programming with gradient-based sampling.

III. SCALAGRAD

We present ScalaGrad, a general automatic differentiation
library written in Scala for Scala, built on and improving a
novel approach from Krawiec et al. [10]. ScalaGrad supports
higher-order differentiation, the forward and reverse mode, and
can differentiate over any control flow statements. Numerical
operations must be polymorphic to add automatic differentia-
tion capabilities, which ScalaGrad achieves using its own type
class. When differentiating a function, ScalaGrad tracks the
resulting derivative’s type, adding type safety to the automatic
differentiation operation.

Linear algebra polymorphism. ScalaGrad must abstract over
numerical operations like addition and multiplication to track
the derivatives while executing those operations. Additionally,
for performance reasons, ScalaGrad abstracts over basic linear
operations to implement them efficiently by native routines
(using Breeze [11]) while tracking the derivatives. For this,
ScalaGrad defines a type class MatrixAlgebra with four
types: a scalar, a column vector, a row vector, and a matrix.
The type class defines operations on those types. Using
four types adds some type safety, e.g., the undefined inner
product between two column vectors does not exist, rather
than throwing a runtime error. Finally, for a more concise
syntax, ScalaGrad provides the domain-specific language Ma-

trixAlgebraDSL using path-dependent types and wrapping
the MatrixAlgebra type class. Figure 1 shows a minimal
ScalaGrad example using the MatrixAlgebraDSL abstrac-
tion and the BreezeDoubleMatrixAlgebraDSL implemen-
tation. BreezeDoubleMatrixAlgebraDSL implements the
MatrixAlgebra operations with the Breeze library with
double precision. Implementing linear operations by native
routines gives ScalaGrad a robust performance, as discussed
in the deep learning application.

Efficient, immutable reverse mode implementation. In the
reverse mode, the partial derivatives for a function f are
calculated from each output to all inputs. So, first, the op-
erations must be tracked while executing f from the inputs
to the outputs, called taping, and then the tape must be run
back in reverse order from each output. An essential idea of
Krawiec et al. [10] is that it is unnecessary to tape all kinds
of operations, but only the chain and the fork operations,
representing scaling and addition. The idea works because
derivatives are linear maps, and non-linear scaling factors can
be eagerly calculated while taping [18]. For an efficient reverse



def add(alg: MatrixAlgebraDSL)(x1: alg.Scalar, x2: alg.Scalar): alg.Scalar = x1 + x2 // Define function add
import ForwardMode.derive as d // Import derive function from ScalaGrad
val dAdd = d(add) // Derive function add
val (dx1, dx2) = dAdd(BreezeDoubleMatrixAlgebraDSL)(3.0, 4.0) // Compiler knows that dAdd returns two scalars

Fig. 2: ScalaGrad tracks the type of the derivative of a function during differentiation. Here, the compiler knows that dAdd returns two scalars because add
takes two scalar parameters and returns one scalar, so there are two partial derivatives.

mode implementation, one must run back each operation of
the tape exactly once. Therefore, all effects on dependent
operations must be accumulated before running back that
operation. Common automatic differentiation libraries ensure
complete accumulation using global state. They track the
operations in the exact order of execution using, for example,
a global counter as an ordering number while taping and then
they run the tape back in the reverse order of execution. The
reverse order of execution ensures that all dependent effects
are run back and accumulated before running back an opera-
tion. ScalaGrad simplifies this approach: it ensures complete
accumulation without global state. ScalaGrad tracks the partial
order of operations’ dependencies rather than the order of
execution. An ordering number for each operation tracks this
partial order; the ordering number is just the maximum of
all dependencies’ ordering numbers plus one. Running back
the tape while respecting the reverse partial order also ensures
that all its dependent effects are first run back and accumulated
before running back an operation. Figure 3 depicts the simple
yet impactful insight behind this simplification.

f(x1, x2) =

a1 = x1 * x2
a2 = x1 + x2
b1 = a1 * a2
b2 = a1 + a2
y = b1 * b2

return y

Exact execution order and run back

a1 → a2 → b1 → b2 → y

a1 ← a2 ← b1 ← b2 ← y

Partial dependencies order and run back

a1, a2 → b1, b2 → y

a1 ← a2 ← b2 ← b1 ← y

Fig. 3: Showcase the insight driving ScalaGrad’s simplification. The left
shows the example operations. The top right shows the commonly used exact
execution order and how it is run back. The bottom right shows ScalaGrad’s
partial dependency order. There are multiple ways to run it back, here we just
show one example. Both order ensure that all dependent effects have always
been run back, before running back an operation.

Krawiec et al. [10] use a state monad to track the exact
order of executions. An equivalent implementation in Scala is
impractical to use, as every numeric operation would have to
run inside this state monad’s context1. Utilizing mutable global
state eliminates the need for a monad, however, it introduces
complexities related to state corruption, e.g., re-entrance issues
in higher-order differentiation and race conditions in multi-
threaded applications. ScalaGrad’s simplification allows the
best of both worlds, it stays immutable while being ease to
use. Additionally, higher-order differentiation, not supported
by Krawiec et al. [10] mostly due to the state monad, can nat-

1Krawiec et al. [10] use a sequence to sequence translation on a custom
and limited language not having this issue.

TABLE I: Examples of type-safe differentiation in ScalaGrad

f input type f output type Resulting ∇f output type
(S, S) M (M, M)
(S, S) (S, S) ((S, S), (S, S))
(S, CV) (S, RV) ((S, RV), (CV, M))

S stands for Scalar, CV for ColumnVector, RV for RowVector, M for Matrix.

urally be supported. The higher-order optimization application
demonstrates higher-order differentiation in ScalaGrad.

Type-safe differentiation. The return type of ∇f , the deriva-
tive of f , varies depending on f since ∇f returns all
the partial derivatives. ScalaGrad captures this mathemati-
cal concept at the type level. Given a Scala function f of
type (Scalar, Scalar) => Scalar, its derivative d(f)

has the type (Scalar, Scalar) => (Scalar, Scalar).
ScalaGrad computes the type of d(f) at compile-time based
on f utilizing Scala 3’s match types [19]. Figure 2 illustrates
this concept in code. ScalaGrad can compute the type of
d(f) for any function f of scalars, vectors, and matrices;
Table I shows some examples. Keeping track of the type during
differentiation adds type safety to the automatic differentiation
operation, adding robustness and maintainability to automatic
differentiation applications. Additionally, it allows algorithms
using derivatives to abstract over their function types, decou-
pling them from ScalaGrad but still being type-safe, as shown
in the gradient-based sampling application.

IV. APPLICATIONS OF SCALAGRAD

To highlight ScalaGrad’s versatility, we applied it to deep
learning, higher-order optimization, and gradient-based sam-
pling. The complete code for those applications can be found
in the ScalaGrad repository.

Deep Learning. To showcase the robust performance of
ScalaGrad, we trained a fully connected neural network classi-
fying images from the MNIST dataset [9] by implementing the
mini-batch gradient descent algorithm. The neural network has
one hidden layer with 36 units, resulting in 28,630 parameters
to learn, or, put differently, there are 28,630 partial derivatives
to calculate each iteration. For one epoch consisting of 938
iterations (60,000 images with 64 as batch size), ScalaGrad
took 5.18 ± 0.98 seconds measured on a MacBook M1 Pro
and 100 epochs using OpenJDK 20. A comparable setup
in PyTorch, with the same hardware, network architecture,
hyperparameters, and floating precision, took 2.08 ± 0.19
seconds measured on 100 epochs using Python 3.9.

Higher-order optimization. To showcase the higher-order
differentiation capabilities of ScalaGrad, we implemented
Newton’s method to train a linear model where ∇2f , the
second-order derivative, is needed.



ScalaGrad’s differentiation mechanism inside the derive

function is implemented with its own MatrixAlgebra ab-
straction, making the mechanism itself differentiable. There-
fore, to get the second-order derivative of f, derive (here
imported as d) is simply applied twice d(d(f)).

Gradient-based sampling. This application illustrates a
unique design space for gradient-based applications using a
type-safe automatic differentiation library. We implemented
the Hamiltonian Monte Carlo algorithm by taking the poste-
rior’s derivative as a parameter. The derivative is just a Scala
function and has no dependence on ScalaGrad. When passing
the derivative computed by ScalaGrad to the algorithm, the
compiler checks that the argument matches the parameter
type, so this design is type-safe. However, another automatic
differentiation library, or even a manually coded derivative
could have been used instead, highlighting that the algorithm’s
implementation is decoupled from ScalaGrad.

V. DISCUSSION AND CONCLUSION

ScalaGrad is a general automatic differentiation library ap-
plicable to various use cases. However, there are certain limita-
tions. Currently, ScalaGrad’s MatrixAlgebra type class only
abstracts operations of tensors with two or fewer dimensions.
Additionally, there is no mechanism to extend new operations
from the outside, which is necessary to bind other highly
optimized native routines like hardware-accelerated activation
functions in a deep learning library. Those limitations are not
inherent to the method and can be solved by engineering
efforts. Regarding future work, an obvious next step is to
build a data science library on top of ScalaGrad, e.g., a deep
learning or probabilistic programming library. Another future
direction is to make ScalaGrad’s abstraction more type-safe.
One straightforward way is to use Scala’s singleton types to
track the dimensionality of tensors at compile-time to check
for undefined operations. A more ambitious direction is to drop
the notation of a tensor from the abstraction, as it is the unit of
execution, not abstraction. For example, rather than having a
4-dimensional tensor representing a batch of images, one could
have a list of an Image type. An open question is how to map
operations on those abstractions back to tensor operations for
execution with an acceptable loss of performance.

We presented ScalaGrad, a general automatic differentiation
library for Scala. ScalaGrad can differentiate general Scala
code, only requiring numerical operations to be implemented
by its type class. It provides asymptotically efficient imple-
mentations for the forward and reverse mode, supports native
linear operations, and tracks types while differentiating, adding
type safety to the automatic differentiation operation. Addi-
tionally, we discussed our improved automatic differentiation
implementation, removing the necessity for global state, which
allows for an immutable and ease to use implementation as
well as a natural higher-order differentiation support. Finally,
we demonstrated ScalaGrad’s versatility, robust performance,
and type safety by applying it to deep learning, higher-order
optimization, and gradient-based sampling.
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