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Abstract—We examine the paradigm of data-centric artificial
intelligence (DCAI) as a solution to the obstacles that small and
medium-sized enterprises (SMEs) face in adopting AI. While
the prevalent model-centric approach emphasizes collecting large
amounts of data, SMEs often suffer from small datasets, data
drift, and sparse ML knowledge, which hinders them from
implementing AI. DCAI, on the other hand, emphasizes to
systematically engineer the data used to build an AI system. Our
contribution is to provide a concrete, transferable implementation
of a DCAI development process geared towards industrial appli-
cation, specifically in machining and manufacturing, and demon-
strate how it enhances data quality by fostering collaboration
between domain experts and ML engineers. This added value can
place AI at the disposal of more SMEs. We provide the necessary
background for practitioners to follow the rationale behind DCAI
and successfully deploy the provided process template.

Index Terms—MLOps, ML pipeline, data preparation

I. INTRODUCTION

The development of AI systems based on machine learning
(ML) fundamentally revolves around extracting knowledge
from data and materializing that knowledge within a model.
This is predominantly done by model-centric approaches [1].
In model-centric AI (MCAI), the model is treated as the first-
class citizen, i.e., development revolves around engineering the
model while keeping the data fixed after an often one-time
collection and preparation effort. Based on the assumption
that a model performs better when trained with more data
[2], the only emphasis given to the data itself is to collect
as much data as possible, which is thoroughly studied and
unanimously recommended for shallow and deep learning
[3]–[6]. MCAI excels in several disciplines and has led to
undeniably important advances (cp. [7], [8]). Thus, especially
consumer internet companies, which are able to serve both
the demand for sufficient data, the corresponding compute
capacities, and employ the necessary expertise, rank among
the main beneficiaries of AI [9], [10].

At the same time, these conditions often do not reflect the
reality of other companies like SMEs. Often, they suffer from
(i) data drift [11], (ii) small datasets [12], and (iii) sparse ML
knowledge [13], as part of the long-tail problem [14]. This
excludes many from AI adoption, despite its benefits [15]. A
solution to the listed obstacles can be found in the paradigm

of data-centric AI (DCAI) [11], [16]. It ”is the discipline
of systematically engineering the data used to build an AI
system” [1]. For this, it utilizes common engineering tools
[17] like data cleaning, feature selection, data transformation,
feature engineering, and dimensionality reduction, alongside
systematic error analyses [18], in order to enhance data quality
through well-defined and tool-supported processes.

In this paper, based on a systematic literature review, our
contribution is a concrete, novel, and transferable template
for a data-centric development process derived from an AI
application in the machining industry. Equipped with role
descriptions (to foster collaboration between data-providing
experts and ML engineers), list of process steps (to adapt to the
application at hand), and tooling overview (for concrete imple-
mentation of the process), the template enables practitioners
with a hands-on example to follow off-the-shelf, supporting
the more wide-spread adoption of AI [19].

II. RELATED WORK

Since the inception of the term in 2021, the concept of
DCAI has sparked widespread interest. Hamid [20] wraps up
the evolution from MCAI to DCAI and motivates a comple-
mentary understanding of both terms, where DCAI builds on
top of pre-trained models like foundation models [8]. Whang et
al. [21] address DCAI implementation with established tools.
Jarrahi et al. [22] formulate six DCAI principles, but stay
vague with their advice for practitioners. Jakubik et al. [23]
span the arc from definition to framework, but their framework
does not go beyond a graphical representation of instructions.
Rather, they focus on the impact on information systems.
Summarizing, these overviews provide valuable information
about DCAI but lack practical utility.

The following substantial implementations deal with the
practical impact of DCAI on label consistency. Hao et al. [24]
address which subset of data to improve and demonstrate the
effectiveness of a pre-trained model supported by an active
learning loop for a computer vision (CV) task. Their approach
can be fully automated and does not rely on a human in
the loop, whereas Nguyen et al. [25] concentrate on human
integration into the labeling process (for 3D objects). They
utilize a pre-trained model for a preliminary annotation in 3D



Fig. 1: (a) The proposed data-centric development process with roles and activities; (b) the MLOps pipeline enabling it.

and reduce the amount of annotator clicks to one with a good
software integration. Further examples of how the labeling or
re-labeling process can be made more efficient and/or effective
to ultimately improve labeling quality are presented at the
same workshop in [26]–[28]. All authors agree to use a pre-
trained model as starting point for DCAI approaches.

There are a number of interesting application examples for
DCAI. Yin et al. [29] try to close the model performance gap
between training and real production for an entity resolution
system. They augment the data with different human-in-the-
loop strategies, improving the F1 score from 95.07 to 98.79.
Liu et al. [30] release AutoDC as a pendant to AutoML [31].
Whereas AutoML facilitates building custom ML applications
in an MCAI way, AutoDC seeks to automate outlier detection,
label correction, edge case selection, and data augmentation
for users without particular programming skills, e.g., domain
experts. Outliers are implicitly considered incorrectly labeled
or edge cases. Accordingly, in the next steps, users are asked
to correct the labels, followed by selecting the edge cases,
each of which is aided by AutoDC. Bai et al. [32] obtain an
unsupervised representation of their CV data by contrastive
learning methods. In addition, based on a nearest neighbor
graph, they add pseudo-labels to enrich the dataset. The work
of Huang et al. [33] is an example of what a truly seamless
DCAI integration can look like for a software company. They
tackle the mentioned problems of label scarcity and label bias
and facilitate the continuous training induced by DCAI as a
means for concept and data drift detection. Several other works
[34]–[36] explore the use of novel DCAI frameworks for
their use cases, tackling label noise or sparsity and promoting
continuous learning. However, their frameworks are either
highly customized or poorly maintained, hindering adoption.
The literature thus reveals a gap between concrete DCAI
applications for specific use cases and a framework ready
for adoption between the conceptual and the implementation
level—a data-centric development process.

III. A REAL-LIFE DEVELOPMENT PROCESS FOR DCAI

A typical development process for MCAI solutions is
straightforward: Let domain experts (potentially after some
schooling on ML) gather data, and pass this dataset “as is”
to the ML engineers for further pre-processing and modeling;
feedback loops are not foreseen [37], and data problems
are mitigated with modeling approaches [38]. How should
a development process look like that is data-centric, i.e.,
considers the data as the main object of manipulation?
Process Overview Our proposed data-centric process is de-
picted in Figure 1(a). At the core of the process, we propose
a tight collaboration between the domain expert and the
machine learning engineer. This lies in contrast to the MCAI
approach of a one-shot exchange between the two roles. The
iterative process tackles the main issues that arise from the
more specialized proposals surveyed above. First, since data
is scarce and annotations are costly, the samples to be labeled
are chosen by the machine learning expert so that their impact
is maximized. Second, the domain expert is in charge of
interpreting the data, which is often ignored in the MCAI
setting where the machine learning engineers simply use the
data at their discretion. Lastly, data and concept shifts are
anticipated and handled inherently by the iterative process.
Roles and Responsibilities The communication between the
two roles is defined as follows: Whenever domain experts
provide new data and/or labels, this triggers the automatic
model building pipeline of training and evaluation. The respec-
tive results prompt the ML engineers to inspect the outcome,
analyze error cases, and annotate the samples in question
with comments and requests to the domain experts. Thus, the
ML engineers are responsible for the analysis of the causes
of inadequate model performance and issue requests; domain
experts review requests (potentially in real time) and provide
answers in form of data, labels and/or explanations. Both
roles have the advantage of getting important information
quicker than with a classical (MCAI) development process.
Turnaround times for model iteration are reduced, giving
domain experts a clearer picture on where their AI solution



is heading, and providing ML engineers with direct feedback
whether their work is improving practical performance.

Thus, in the DCAI setting the main focus is to provide
an integrated set of tools that facilitate the communication
between the domain expert and the machine learning engineer.
This includes tools that are specific for each role, tools for the
communication, and fostering the trust rooted in a common
understanding of each other’s work as well as the final model.
In the next part, we describe such a MLOps pipeline.

IV. TOOLING LANDSCAPE

Figure 1(b) depicts the types of tools needed for the seam-
less end-to-end integration of the whole DCAI process with a
MLOps pipeline. There are three types of tools that are needed:
(i) Tools for the domain expert, (ii) tools for the ML engineer,
and (iii) tools for the orchestration and communication. We set
the focus on open-source tools, which allow higher flexibility
when adapting to novel use cases.
Tool Support for the Domain Expert Role The domain
expert essentially needs two types of tools: The data labeling
tool, and a tool for providing new raw data. The latter is highly
domain specific and must be provided by the domain expert.
For instance, the apparatus to collect and provide astrophysi-
cal data is different from ways to supply injection molding
sensor data. The list of labeling tools under consideration
was narrowed down to Diffgram [39], Label Studio [40] and
TRAINSET [41] due to the ability to also label time series
(TS) data. All are open-source, but TRAINSET is poorly
maintained. Diffgram and Label Studio are supported by a
professional community, but Label Studio is more popular and
provides more TS-specific functionality, hence it is selected.
It has a thought-through and user-friendly front end that does
not require any specialized ML knowledge. Thus, it can be
operated autonomously by the domain expert, reducing the
complexity of ML tasks and the reliance on an ML engineer.
Tool Support for the ML Engineer Role Disentangled from
the data acquisition process, the ML engineer can tune and
improve the model as part of the cyclic ML workflow: (i)
tune data and hyperparameters, (ii) train the model, and (iii)
error analysis. For this, the ML engineer needs tools for data
preparation, a version control for models and code, and an er-
ror analysis component (tools focusing on model development
are purposefully left out here but discussed elsewhere [42]).
While the landscape for the other types of tools is already
vast (e.g., Neptune [43], DVC, MLMD [44], GitHub), there
are only a few choices supporting error analysis.

Error analysis is needed to identify the specific samples
of data that degrade the model’s performance. That is, when
tuning the model does not lead to further progress, our
development process motivates the ML engineer to inspect the
data. Most error analysis tools are highly specific depending
on the use case. For computer vision (CV) tasks, Domino
[45] and Spotlight [46] are open-source options which offer
less customization, LandingLens [47], on the other hand, pro-
vides a data-centric pipeline but is offered as a closed-source
commercial web interface. For natural language processing

tasks, SEAL [48] has a sophisticated GUI but comes only
with clustering as a means for outlier detection. The most
mature tool is called Error Analysis [49]. It supports all types
of numeric inputs, is open-source, actively maintained, and
provides measures for identifying malicious samples using
decision tree and heatmap, and for examining data and feature
distributions to evaluate a sample’s impact.
Implementation Backbone and Communication Orchestra-
tion of the whole process, bringing together the tools for the
domain expert and machine learning engineer, is implemented
by two components: (i) Communication tools transfer the
labeled data from the domain expert to the machine learning
engineer, and send the samples identified by error analysis
back to the domain expert; (ii) orchestration tools provide the
platform on which all these tools are deployed and integrated.
For orchestration there exist many solutions such as Airflow
[50], [51] or more commercial services like Microsoft Azure,
Amazon Sagemaker, and Google Cloud Platform, that offer
similar functionality pre-built at the expense of less control.

A more integrated orchestration leads to a more integrated
process. For instance, a change in a label of a sample by the
domain expert is automatically communicated to the machine
learning engineer. This is done via a data warehouse, for which
there exist many solutions already (e.g., MySQL, SQL Server,
and PostgreSQL). Most importantly, a consistent structure
of the data for a certain period of time is ensured, which
facilitates the work of the ML engineer. The orchestration
can be automated so far that as soon as new data arrives,
an event is triggered that initiates a new build of the most
recent ML model pulled from version control. To keep track
of the data changes, DVC [52] can be used, whereas MLflow
[53] keeps track of the model lifecycle. DVC works on top
of Git [54] and is therefore convenient to use. Compared
to its competitors (Pachyderm [55], Neptune) it stands out
as an open-source, light-weight, atomic data versioning tool.
MLflow complements it nicely as it keeps track of every run’s
model information independent of Git commits. The main
advantage over its competitors (Neptune, Amazon Sagemaker,
Verta AI, Azure ML) is its open-source nature.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a development process and
supporting MLOps pipeline that implements the vision of
data-centric artificial intelligence, which is better suited for
small-and-medium-sized enterprises. At the core lies the tight
and iterative coupling of the domain expert and the machine
learning engineer. This lies in contrast to the model-centric
view, which only considers a one-time interaction between the
two roles. We gave an overview of the types of tools needed
to facilitate this process and presented concrete tools that exist
already. We focus on open-source tools, which allow maximal
control and adaptability to the use case at hand. However, we
found that for the crucial step of error analysis the tooling
landscape is still scarce, and more general solutions need
to be developed. Thus, when applying our process to novel



problems, custom tools may be needed for certain steps in the
pipeline, leaving a fully general solutions as an open problem.

A natural continuation of our work is the integration of
automated data augmentation since synthesizing data holds
enormous prospects for applied AI, albeit being challenging.
Also, wrapping up the MLOps pipeline underlying the devel-
opment process as an integrated package is left for further de-
velopment. It would be insightful to compare different pipeline
configurations with respect to their efficacy in facilitating AI
system development in practice.
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