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Zürich University of Applied Sciences

ZHAW Datalab
Winterthur, Switzerland

ECLT Fellow
Venice, Italy

Sandra Jenatsch and Beat Ruhstaller
Fluxim AG

Winterthur, Switzerland

Abstract—The optimization of organic semiconductor devices
relies on the determination of material and device parameters.
However, these parameters are often not directly measurable
or accessible and may change depending on the neighboring
materials in the layered stack. Once the parameters are known,
devices can be optimized in order to maximize a certain target,
e.g. the brightness of a LED. Here, we combine the use of
machine learning and a semiconductor device modelling tool to
extract the material parameters from measurements. Therefore,
we train our machine learning model with synthetic training data
originating from a semiconductor simulator. In a second step, the
machine learning model is applied to a measured data set and
determines the underlying material parameters. This novel and
reliable method for the determination of material parameters
paves the way to further device performance optimization.

Index Terms—XGBoost, synthetic data, organic semiconductor,
parameter extraction

I. INTRODUCTION

Organic light-emitting diodes (OLEDs) [1] are successfully
commercialized in display applications. To overcome limita-
tions in stability and efficiency, further research efforts are
crucial. A thorough understanding of the device operation is
key which again requires the knowledge of material parame-
ters. Traditionally, material parameters are determined with the
aid of dedicated measurements. Some material parameters may
vary depending on the sequence of the device layers or mea-
surement techniques, others are not directly measureable. An
alternative approach is fitting a device simulation to the corre-
sponding measurement and to derive the material parameters
from the simulation. Commonly, least-squares algorithms such
as e.g. Levenberg–Marquardt are used to minimize the sum of
squared difference between the measurement and simulation.
Due to the amount of unknown material parameters and their
correlation, multiple (different) experiments [2] are performed
and fitted leading to a multi-modal error landscape. The error
optimization between measurements and simulations has been
demonstrated in various publications [3]–[5], but the process
is still not fully automated and requires domain knowledge
from the user to direct the search in an appropriate direction
or to escape a local minimum. In this contribution, we apply
machine learning to the material parameter extraction prob-
lem, namely the XGBoost algorithm which is a competitive

alternative to neural networks [6]. A set of simplified single-
carrier p-doped/intrinsic/p-doped devices varying in thickness
is therefore measured and analyzed. The same data has already
been used in combination with a manual fitting approach [3].
The production and characterization of such prototype devices
is however time-consuming and involves a lot of manual steps.
Therefore, the data is extremely scarce and not suited for
training a machine learning model. To apply a data-driven
machine learning approach a physical model is used for the
training data generation.

II. APPROACH AND WORKFLOW

The approach taken in this contribution is visualized in the
workflow in Fig. 1. The device under analysis is described in
Section III.
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Fig. 1. Workflow of synthetic data generation and subsequent machine
learning and validation on the measurement data.



As a first step, we generate synthetic data with the aid
of a semiconductor simulator. The resulting simulations are
current-voltage curves and electrochemical impedance spec-
troscopy simulations and further described in Section IV. The
data set is then split into a training and test set which are
firstly used to train the model as explained in Section V and
secondly to evaluate the performance on unseen synthetic data
as reported in Section VI-A. Once the training is terminated
we present the measurements that are of the same structure as
the synthetic data to the machine model and show the results
in Section VI-B. In this step, the underlying physical material
parameters are predicted which are then used in a semiconduc-
tor simulation to reproduce the measured experiment. Once a
good agreement between the measurement and the simulation
is obtained, the optimization process of the device would start
and the influence of parameters on the overall performance
would be investigated which is, however, not further pursued
in this work. The approach introduced above assumes that the
physical model captures the main features in the measurements
and is an adequate description of the underlying physical
processes.

III. DEVICE UNDER INVESTIGATION

The analysis is concerned with three hole-only de-
vices consisting of a 100, 150, and 200 nm thick
intrinsic tris[(3-phenyl-1H-benzimidazol-1-yl-2(3H)-ylidene)-
1,2-phenylene]Ir (DPBIC) layer, respectively, which is sand-
wiched between two 30 nm thick, 10 Vol. % MoO3 doped (p-
type) DPBIC layers. The contact is made of indium tin oxide
(ITO) and gold (Au) which ensure a good band alignment
with the Highest Occupied Molecular Orbital (HOMO) of
DPBIC (5.28 eV [3]). The device structure is shown in Fig. 2
(not to scale) with an additional external series resistance.
All devices were measured at room temperature and in the
dark with Paios [7]. The current–voltage measurement is the
most basic characterization method for OLEDs and solar
cells. A more advanced technique is the electrochemical
impedance spectroscopy that determines the impedance, i.e.
the AC resistance, of electrochemical systems as a function
of the frequency of a small AC voltage VAC that is added to
an offset voltage. The oscillating current IAC is measured,
and the resulting impedance Z is calculated according to
Z = VAC

IAC
. As the current might be phase-shifted with respect

to the AC voltage modulation the impedance Z is complex
and can be represented in different ways. We will use the
Nyquist representation for the impedance at a certain offset
voltage while the frequency is swept. The second impedance
measurement uses a fixed frequency while we sweep the
voltage resulting in an impedance-frequency representation.
All measurements on one device were carried out subsequently
without changing the contact pins. For impedance analysis, an
oscillating voltage modulation of 70mV was used.

IV. SYNTHETIC DATA GENERATION

Algorithms, frameworks and machine learning packages
have flourished over the last decade and a wide range and
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Fig. 2. Device structure and material parameters of a single-carrier device.
The red line indicates the one-dimensional simulation domain for the semi-
conductor modelling.

TABLE I
MATERIAL PARAMETER OVERVIEW

Symbol Name Sampling
Interval

Units Position

Rs Series Resis-
tance

uniform
[49,53]

Ω External

φ Work
Function

uniform
[4.8,5.28]

eV Electrodes

µ0 Mobility log-uniform
[1e-10,1e-5]

cm2/(Vs) Doped &
Intrinsic
Layers

γ Mobility
Field-
Enhancement
Factor

log-uniform
[10−6, 10−3]

√
m/
√

V Doped &
Intrinsic
Layers

D Doping Den-
sity

log-uniform
[1023, 1029]

m−3 Doped
Layers

εd Relative Per-
mittivity

uniform
[3.5, 6.5]

Doped
Layers

εi Relative Per-
mittivity

uniform
[3.5, 6.5]

Intrinsic
Layers

variety is available. A more delicate and scarce resource is
high-quality data [8]. To circumvent this problem we generate
synthetic data. Synthetic data is artificially created by simu-
lations and not collected from the real world or generated by
actual events. The advantages of synthetic data generation are
manifold: The amount of data can easily be increased at the
cost of simulation time. The diversity of data can be chosen
such that all possible scenarios are included and the data is
perfectly annotated.

For our data generation case, we refer to semiconductor
modelling and use a simplified and reduced OLED structure
that facilitates material characterization for holes in organic
semiconductors. Further, the three-dimensional OLED geom-
etry is reduced to a one-dimensional simulation domain as
shown in Fig. 2 as the red line. The material parameters that
determine the behavior of the device are mostly unknown or
can only be measured with great effort. The goal of this work
is to determine these underlying material parameters from de-
vice characterization measurements. We display the unknown
parameters in Fig. 2 in their corresponding domain. The doped



layers differ in terms of the relative permittivity ε and the
doping density D from the intrinsic layer. The field-dependent
Poole–Frenkel mobility model, µ(E) = µ0 exp

Ä
γ
√
|E|
ä

where µ0 is the zero-field mobility, γ the field-enhancement
factor, and E the electric field is the same in all semiconductor
layers. As input parameters for the simulation we vary the
values within the boundaries indicated in Table 1. Depending
on the parameter the values are uniformly or log-uniformly
sampled. For the physical interpretation of the material param-
eters refer to [3]. With the simulation tool Setfos [9] we create,
by randomly varying the material parameters, 100’000 sample
simulations for all three thicknesses (100, 150, and 200 nm)
that are used for the training. Therefore, we solve the system
of coupled partial differential equations for semiconductors
[10]–[12] on the one-dimensional domain and vary the seven
material parameters simultaneously within prescribed bound-
aries from Table I. In Fig. 3 a single sample of the synthetic
data set is shown with the predictor and target variables as
well as their sizes. The input data of the physical model is the
output data of the machine model and vice versa. In summary,
the data set consists of a current-voltage simulation, impedance
simulations at two bias voltages with a frequency sweep, and
an impedance simulation for a fixed frequency with a voltage
sweep for each device thickness.

V. TRAINING OF MACHINE LEARNING MODEL

With the synthetic data we proceed in the flow chart in
Fig. 1 and split the data in training and test sets in a ratio of
80% to 20%. The training set is used to train the machine
model while we validate the model with the test set. We
deal with a multi-target regression problem that is concerned
with the prediction of multiple continuous target variables
using a shared set of predictors. In the following we apply
XGBoost [13] which is short for eXtreme Gradient Boosting
package to the regression problem. It was created by Tianqi
Chen [14] and is an efficient and scalable implementation of
gradient boosting framework by [15], [16] along with some
regularization factors. XGBoost is considered for supervised
machine learning tasks in classification and regression and has
performed well for structured, tabular data in the past.

XGBoost is categorized as boosting techniques in ensem-
ble learning. Boosting is a method that combines simpler
and weaker models (trees) to make better predictions of
the target variable. Models are added gradually and in a
sequential manner until there are no more improvements in
the predictions. Gradient boosting uses the gradient descent
algorithm to add the simpler models and thereby minimizes a
regularized objective function. It is a combination of a convex
loss function that takes the difference between the predicted
and target outputs into account and a penalty term for model
complexity. The training is performed iteratively by adding a
new tree to reduce the residuals of the current ensemble of
trees.
We create for each target variable an XGBoost model that
is individually trained. The target variables were previously
transformed by logarithmizing (if necessary) and scaling each
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Fig. 3. Simulated predictor (top) and corresponding target (bottom) variables
with their dimensions. The physical model works in the opposite direction as
the machine learning model.

target between 0 and 1. The XGBoost model was trained
on 80’000 training samples and validated on 20’000 test
samples. For the training we use a manually tuned learning
rate η = 0.25, the maximum depth of a tree is limited
to 15 and the maximum number of trees to 40. As a loss
function the Root Mean Square Error (RMSE) is selected.
In Fig. 4 the train and validation loss is plotted against the
number of trees for three exemplary parameters. The first
material parameter is the zero-field mobility µ0 and represents
a successful training. The training loss function decreases fast
and levels out. The loss function of the test set shows a
very similar behavior with the difference that the plateau is
slightly higher. The second parameter is the intrinsic relative
permittivity εi. Its performance is to some extent worse since
the training set reaches a clearly lower value than the test set.
The third parameter, the doped relative permittivity εd, behaves
differently because the training loss is still decreasing while
the loss function of the test set remains on the same level.
The reason for the worst performance lies in the sensitivity of
the physical model to the particular parameter, i.e. the model
is not very sensitive to the doped relative permittivity εd and
therefore hard to predict, or in other words, a change in the



doped relative permittivity εd has little impact on the result
of the semiconductor device simulation in contrast to other
material parameters.
The remaining parameters act as in the first or second case
in Fig. 4. Only the work function φ has the characteristic of
the third scenario, the physical reasoning being that the work
function φ has little impact on the device properties if the
boundary layers are highly doped.

VI. EVALUATION

A. Synthetic Test Data

The performance of the XGBoost model on the material
parameters is analyzed again for the three exemplary param-
eters in Fig. 5 where an identity chart is displayed. The
material parameter value predicted by the XGBoost model
versus the true parameter value from the training or test set
is plotted. As a guide-to-the-eye the red diagonal represents
perfect prediction on the identity chart. The first parameter is
the zero-field mobility µ0 which can be very well predicted
even for the test set as displayed in a). Also decreasing the
size of the training set has only little effect on the prediction.
As a second parameter we present in b) the intrinsic relative
permittivity εi where the prediction is still valid, but worse
than in the previous case. The uniform sampling of the relative
permittivity was rounded to one decimal place as visible in
the figure. A parameter that is more difficult to predict is the
doped relative permittivity εd shown in c). The spread around
the diagonal is wider for the training set and even worse for
the test set. The results in Fig. 5 are very much in line with
Fig. 4 and the identity charts visualize again the outcome of
the training phase.

B. Measurement Data

In this section, we feed the XGBoost model with the
measured current-voltage and impedance spectroscopy data.
Since the measurements are reliable and repeatable, we have
not performed any pre-processing on the data such as e.g. de-
noising. The measured data set has exactly the same structure

Fig. 4. RMSE loss function for the training and test sets versus number of
trees.

(a) For the training set the prediction of the zero-field mobility µ0 is
accurate. A slightly wider spread in the prediction for the test set is
displayed.

(b) The predicted intrinsic relative permittivity εi is shown. The
training set focuses more on the diagonal than the test set.

(c) The predicted doped relative permittivity εd is displayed which is
clearly more challenging to predict for the test as well as the training
set.

Fig. 5. Identity charts for three exemplary parameters for the training and
test sets.



TABLE II
EXTRACTED MATERIAL PARAMETERS FROM XGBOOST

Symbol Value Units
Rs 49 Ω
φ 5.00 eV
µ0 1.1× 10−7 cm2/(Vs)
γ 8.5× 10−4

√
m/
√

V
D 2.7× 1026 m−3

εd 6.0
εi 4.2

as the synthetic data in Fig. 3 and is fed to the XGBoost
model. The extracted material parameters are re-transformed
and shown in Table II. We note that these material parameters
obtained with the help of machine learning compare favorably
with the ones obtained in a more traditional semi-automatic
least square fitting approach [3].

Depending on the size of the training set and the selected
hyperparameters the extracted material parameters will slightly
vary. Increasing the training data set helps to reduce this
variation e.g. for the doping parameter D. A hyperparameter
search for each material parameter has the potential to further
improve the training and find the optimum configuration of
XGBoost. In order to circumvent this problem the resulting
material parameter set can be further processed and serve as an
initial guess to a local optimization algorithm that minimizes
the error between the measurements and the simulations.
As a next step, the material parameters are fed back into the
semiconductor simulator to reproduce the measurements. In
Fig. 6 the measurements as well as the simulations based on
the material parameters predicted by XGBoost are displayed.
The first figure shows the measured and simulated current-
voltage curves with a very good agreement. Also in the second
plot the impedance in log-log representation for two offset
voltages represents an accurate description. The plots at the
bottom display the real and imaginary part, respectively, of the
impedance versus the applied voltage at a constant frequency
of 28.8 kHz. The characteristic features are captured in all four
situations. The final agreement between measurements and
simulations confirm that the semiconductor model consists of
all important physical ingredients to describe the measurement
with one set of material parameters.

VII. CONCLUSIONS

A material parameter extraction problem for single-carrier
organic semiconductor devices with three different thicknesses
was presented. The approach taken in this work combined a
physical semiconductor model for synthetic data generation
and machine learning. We successfully trained an XGBoost
model on the synthetic data to a multi-target regression prob-
lem to determine underlying material parameters from current-
voltage and impedance spectroscopy measurement data. The
material parameters extracted from the measurement were
fed to the semiconductor simulator. The simulation and the
measurement are in close agreement. The concept of merging
machine learning and physical modelling for data generation is

a powerful alternative to classical fitting algorithms provided
the simulation times for the physical modelling are short. As
a next step, we will introduce a quantitative measure of the
fit quality. Further, we envisage to extend the application to
the determination of the underlying physical model with its
key ingredients. Such a physics-informed machine learning
approach can potentially be helpful for various applied physics
and engineering problems.
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[2] M. T. Neukom, S. Züfle, and B. Ruhstaller, “Reliable Extraction of
Organic Solar Cell Parameters by Combining Steady-State and Transient
Techniques,” Org. Electron. 2012, 13, 2910– 2916.

[3] S. Jenatsch, S. Altazin, P.-A. Will, M. T. Neukom, E. Knapp, S. Züfle,
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(a) The current-voltage curves for all three thicknesses are shown. (b) The absolute imaginary part of the impedance is plotted versus the
real part of the impedance.

(c) The real part of the impedance versus the applied voltage at a
frequency of 28.8 kHz is displayed.

(d) The absolute imaginary part of the impedance versus the applied
voltage at a frequency of 28.8 kHz is shown.

Fig. 6. Predicted simulations based on extracted material parameters by XGBoost in comparison with the measured data.


