
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Hierarchical Glocal Attention Pooling for Graph Classification

Waqar Alia,b,∗∗, Sebastiano Vascona,c, Thilo Stadelmannb,c, Marcello Pelilloa

aCa’ Foscari University of Venice, Via Torino, 155, Mestre, Venice, 30170, Italy
bZHAW Centre for Artificial Intelligence, Technikumstrasse 9, Winterthur, 8401, Switzerland
cECLT European Centre for Living Technology, Sestiere Dorsoduro, 3911, Venice, 30123, Italy

ABSTRACT

Graph pooling is an essential operation in Graph Neural Networks that reduces the size of an input
graph while preserving its core structural properties. Existing pooling methods find a compressed
representation considering the Global Topological Structures (e.g., cliques, stars, clusters) or Local
information at node level (e.g., top-k informative nodes). However, an effective graph pooling method
does not hierarchically integrate both Global and Local graph properties. To this end, we propose a
dual-fold Hierarchical Global Local Attention Pooling (HGLA-Pool) layer that exploits the aforemen-
tioned graph properties, generating more robust graph representations. Exhaustive experiments on
nine publicly available graph classification benchmarks under standard metrics show that HGLA-Pool
significantly outperforms eleven state-of-the-art models on seven datasets while being on par for the
remaining two.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Graph Neural Networks (GNNs) have recently gained signif-
icant attention due to their ability to process graph-structured
data effectively. They have shown effectiveness in various tasks
of classifying graphs and learning graph representations (Kipf
& Welling, 2016), including understanding and predicting in-
teractions between molecules and proteins (Wang et al., 2022;
Réau et al., 2023a) that can lead to significant advancements
in drug discovery, analyzing structure and dynamics of interac-
tions in social networks (Khemani et al., 2024), operating on
knowledge graphs to enable Retrieval-Augmented Generation
(RAG) (Mavromatis & Karypis, 2024) or enable the detection
of visual objects from their context (Han et al., 2022), e.g.,
to support document accessibility (Schmitt-Koopmann et al.,
2022). Within the scope of graph classification, the Graph Pool-
ing (GP) methods play a pivotal role in GNN architectures that
map the set of nodes or subgraphs into a compact representation
to capture a meaningful structure of the entire graph (Pang et al.,
2021). Early GP methods, referred to as global methods (Bai

∗∗Corresponding author:
e-mail: waqar.ali@unive.it (Waqar Ali),

sebastiano.vascon@unive.it (Sebastiano Vascon), stdm@zhaw.ch
(Thilo Stadelmann), pelillo@unive.it (Marcello Pelillo)

et al., 2019; Simonovsky & Komodakis, 2017), are the sim-
plest approaches, which reduce the size of the input graph by
performing a sum or average of all nodes without considering
the hierarchical information of the graph and may lose feature
information. Recently, several advanced hierarchical GP meth-
ods, such as node cluster and node selection methods (Chen &
Gel, 2023; Gao & Ji, 2019; Luzhnica et al., 2019), have been
proposed to tackle the limitations of global pooling and obtain
state-of-the-art performance.

The node cluster methods like DiffPool (Ying et al., 2018)
and CliquePool (Luzhnica et al., 2019) capture the Global
Topological Structure (GTS) of a graph, which extracts the
overall architecture and connectivity patterns of the entire net-
work by partitioning the graph into clusters. Then, each cluster
transfers into a supernode to create a coarsened graph. How-
ever, the CliquePool (Luzhnica et al., 2019) method has limi-
tations in extracting overlapping nodes between cliques of the
same size and treats all cliques equally informative without con-
sidering node features. On the other hand, node selection meth-
ods such as TopKPool, SAGPool, and Topological Pooling (Xu
et al., 2022; Lee et al., 2019; Chen & Gel, 2023) identify the
most significant nodes based on their feature values or attention
scores while dropping unnecessary nodes. These methods pri-
marily focus on the graph’s Local Topological Structure (LTS),
which includes the analysis of individual nodes, their attributes,

2

and neighborhoods. However, there is a lack of an effective GP
method that combines the graph’s global and local properties
hierarchically to improve the graph representation.

To address the limitations of existing GP methods, this study
proposes Hierarchical GlobalLocal Attention Pooling (HGLA-
Pool), a novel pooling method designed to capture graphs’ lo-
cal and global properties. The proposed approach is structured
as a two-fold process, each fold addressing specific limitations
of existing GP approaches. The fold-1 leverages the idea of
cliques that perform clique pooling (Luzhnica et al., 2019),
which aims to encapsulate the graph’s GTS. In this fold, we de-
sign a rule-based method to enhance the clique representation
by identifying the overlapping nodes between cliques. Identify-
ing overlapping nodes is crucial in various real-world scenarios,
such as molecular biology, where a molecule might serve as a
shared binding site for multiple proteins, and in social network
analysis, where individuals often belong to multiple social cir-
cles, including professional networks and personal connections
(Wang et al., 2022; Khemani et al., 2024). Additionally, we in-
troduce a novel dynamic fusion method that incorporates graph
structure information and node features to calculate scores for
each clique and select the topk significant cliques using this fu-
sion score. Furthermore, we recognize that every node within a
selected clique does not contribute equally to the graph repre-
sentation during the pooling operation. We argue that the most
informative nodes from all ranked cliques should be captured
in GP. Therefore, in fold-2, we develop a LocalPool layer on
top of fold-1 using multi-attention to pinpoint and emphasize
the most informative nodes within the ranked cliques, ensur-
ing a more meaningful representation of the overall graph for
pooling operation. The hierarchical architecture of our method,
as illustrated in Figure 1, reflects this dual-fold approach. We
summarized our contributions as follows:
• This study introduces HGLA-Pool, a novel pooling layer

that sequentially integrates the global structural properties
of the graph with the local node’s properties.
• We develop a rule-based method to extract the overlap-

ping nodes between cliques. We also design a novel dy-
namic fusion method that leverages graph structural in-
formation and node features to identify the most relevant
global structures (cliques). Furthermore, this study devel-
ops a multi-attention LocalPool to capture the local node’s
properties.
• We experimentally prove that considering both sources of

information (global and local) yields a better-learned rep-
resentation. We consistently outperformed 11 state-of-the-
art models on seven diverse and challenging benchmarks.

2. Related Work

Related work includes existing GP studies focusing on global
and hierarchical techniques. Global pooling methods usually
use sum or mean functions to aggregate the node features that
generate a single vector representation for the entire graph. For
example, Vinyal et al. (Vinyals et al., 2015) proposed a Set2Set
framework that uses the Long Short-Term Memory model to
generate graph representation by identifying informative nodes.

Authors (Zhang et al., 2018) developed a novel GNN layer to
capture multi-level node features and a sort pooling that sorts
these features to keep more graph information. However, global
methods ignore the graph’s hierarchical information during the
pooling operations. Meanwhile, hierarchical methods leverage
graph structures and node features for the pooling. Based on
designing properties, the hierarchical methods can be classified
into two main classes: node selection and node cluster.

Node selection methods reduce the graph size by selecting
the most informative nodes based on their node features or at-
tention scores. Hongyang et al. (Gao & Ji, 2019) developed
a TopkPool that uses node scalar values on a trainable projec-
tion vector as the node score. SAGPool (Lee et al., 2019) fur-
ther adopts the GNN layer to calculate node scores. Jinheon
et al. (Xu et al., 2022) proposed Multistructure Attention Con-
volutional (MAC) pooling that incorporates dual-node scoring
strategies to obtain the importance of nodes. These methods
are considered more computationally efficient as they only re-
quire calculating an informative node’s score, but they ignore
the graph’s GTS information. The node cluster method cap-
tures the global properties by finding the clusters within the
graph. DiffPool (Ying et al., 2018) uses the GNN layer out-
put to learn a differentiable soft cluster assignment to extract
the clusters. In (Luzhnica et al., 2019), the authors introduced
a CliquePool method to learn the GTS by extracting the maxi-
mal cliques from the graph. Quasi-CliquePool (Ali et al., 2023)
further improves the CliquePool by capturing the overlapping
nodes between two cliques using the replicator dynamic algo-
rithm. (Islam et al., 2023) developed a Motif-based pooling
method that extracts the high-order graph structure by combin-
ing cluster and selection pooling operations. The motif method
treated all motif structures equally without considering the node
features. Graph Multiset Transformer (GMT) pooling incorpo-
rates node structural dependencies with a multi-head attention
mechanism to enhance the graph representation by identifying
node interaction. Jinlong et al. (Du et al., 2021) design a Multi-
channel pooling (MuchPool) that combines TopkPool and Diff-
Pool methods to create a more comprehensive hierarchical rep-
resentation of graphs. However, the MuchPool method suffers
from considerable computational complexity due to the simul-
taneous operation of three distinct channels to capture node fea-
ture information, global and local structural information. A
recent study (Chen & Gel, 2023) introduced a Wit-TopoPool,
which integrates a witness complex-based topological embed-
ding mechanism with a global pooling layer. This approach
aims to extract comprehensive and discriminative topological
information from graphs.

In conclusion, the current landscape in pooling methods
demonstrates a notable gap: the lack of an effective pooling
approach that sequentially combines node selection and node
cluster techniques to yield a robust graph representation. Ad-
dressing this gap, we proposed a novel HGLA-Pool method that
captures the graph’s local and global properties with node fea-
tures to generate a more robust graph representation.

3

3. Methodology

This section explains our proposed HGLA-Pool, shown in
Figure. 1. The HGLA-Pool performs pooling operations in
two-fold, capturing the graph’s global and local properties and
then aggregating the results to form a new pooled graph. The
following sections present a detailed description of the pro-
posed HGLA-Pool.

3.1. Preliminaries

This section defines mathematical notations and concepts
about GNNs, which will be used in this study.

We represent the input graph as G = (V, E), where V denotes
the nodes and E the edges in the graph. The connection be-
tween nodes of G can be represented by an adjacency matrix
A ∈ IRN×N , where N = |V | is the number of nodes. The matrix
X ∈ IRN×d represents the node features matrix, where d is the
dimension of the feature space. The GP operation changes the
number of nodes at each pooling layer, thus, we further iden-
tify the graph at the l-th layer as G′l = (V′l, E′l). The node fea-
ture and adjacency matrices of the pooled graph represent as
X′l ∈ IRN′l×d′l and A′l ∈ IRN′l×N′l .

Given a graph dataset D = {(G1,Y1), (G2,Y2), . . .}, where Gi

and Yi are the ith graphs and the set of labels corresponding to
graphs, respectively. The principle of the graph classification
task is to learn a mapping function, such as f : G → Y.

Several GNN architectures have been developed, such as
Graph Convolutional Network (GCN) Kipf & Welling (2016)
and Graph Attention Network (GAT) Veličković et al. (2017).
They can learn node representations by propagating and aggre-
gating information from a node and its neighbors, achieving
outstanding performance in various graph-related tasks. There-
fore, this study adopts hybrid graph convolution operators to
extract significant cliques (i.e., a graph is a subset of nodes such
that every two distinct nodes are adjacent) and node represen-
tations from multiple perspectives. In the following, we briefly
outline the mechanisms of GCN (Kipf & Welling, 2016) and
GAT (Veličković et al., 2017).

GCNs learn node representations by considering topology in-
formation and node features in a graph. The basic operation of
a GCN layer can be described as follows:

X(l+1) = σ(D̂−1/2ÂD̂−1/2X(l)W(l)) (1)

where Â is the adjacency matrix with added self-loops, D̂ is the
degree matrix, X(l) is the feature matrix at layer l, W(l) is the
trainable weight matrix, and σ is an activation function.

While GATs introduce an attention mechanism to GNNs,
allowing the model to assign different importance to different
nodes within a neighborhood. The expression of GAT is given
as follows:

X(l+1) = σ

 1
K

K∑
k=1

∑
j∈N(i)

ak
i jW

kX j

 (2)

where K represents the number of heads, X j is the feature vector
of node v j, which is a neighbor of node vi, ak

i j is the attention
weight between Xi and X j, and Wk is a trainable weight matrix
for head k.

3.2. Fold 1: Global Topological Structure Learning

In fold 1, we aim to capture the GTS information of the
graph. For this purpose, we use the CliquePool (Luzhnica et al.,
2019) with a modified version of the Bron-Kerbosch algorithm
(Cazals & Karande, 2008) to extract all cliques from the input
graph G, denoted as a set C = {c1, c2, ..., ci}. This fold is de-
signed to overcome two significant challenges of CliquePool
(Luzhnica et al., 2019): extracting overlapping nodes between
cliques of the same size and ranking cliques based on their node
features.
Overlapping Nodes Extraction: Overlapping nodes substan-
tially impact various real-world scenarios, including molecular
biology, where a particular molecule may act as a shared bind-
ing site for multiple proteins, and in social network analysis, a
person may be part of both a professional network (Wang et al.,
2022; Réau et al., 2023b). We design a rule-based algorithm
using three conditions to handle nodes that belong to multiple
cliques during the clique extraction process: 1) If a node is al-
ready assigned to a clique, it is only added to the current clique
being considered if the sizes of the existing and current clique
are equal or current clique size is bigger than existing clique in
terms of nodes, 2) If a node is connected to multiple cliques,
in that case, we evaluate whether this specific node has maxi-
mum connectivity with the nodes of an associated clique. If it
does and is not already part of the associated clique, the node
is integrated into that clique, and 3) If nodes of a clique have
already been assigned to larger cliques, then we remove that
clique. This criterion ensures that the node’s association with
the clique is not arbitrary but is based on a meaningful and sub-
stantial connectivity pattern. In Figure. 1, the fold-1 demon-
strates the extraction of overlapping nodes; see the cliques 1, 2,
3, and 4 with overlapping nodes.

The existing clique pooling method (Luzhnica et al., 2019)
partitions the graph into cliques based on the graph’s topolog-
ical structure without considering the node features. Further-
more, this method treats all cliques equally, which can be prob-
lematic because not all cliques are equally significant; some are
rich in information, and others might merely consist of a single
node, thus carrying significantly less information to subsequent
pooling layers. To solve these issues, we developed a novel
dynamic fusion method to calculate each clique’s importance
using graph structure information and node features.
Graph Structure Score: The graph structure can provide use-
ful information on the importance of nodes, such as node de-
grees and the shortest paths between different nodes. Hence, we
borrow the node centrality definition to illustrate each clique’s
importance within the graph. We introduce a heuristic method
to calculate a score for each clique using graph structure infor-
mation: fusion of degree centrality and unique neighbor count.
In the first step, we compute the mean degree centrality D̄ci of
all nodes in ci. Next, we calculate the number of unique neigh-
bors ŪCi of a clique ci by collecting all neighbors of nodes in
ci and removing any nodes that are part of this clique itself.
Finally, the structure score S ci of each clique is derived as a
weighted sum of these two D̄ci and ŪCi metrics, parameterized
by β and calculated as follows:

4

Fig. 1: The hierarchical architecture of the HGLA-Pool integrates with GNN for graph classification. The grey lightbox demonstrates the overall workflow of
HGLA-Pool, which contains two folds. The fold-1 performs three steps: 1) capture GTS by finding all maximal cliques within the graphs; 2) find overlapping nodes
between two cliques to obtain more reasonable clique representations; and 3) incorporate the dynamic fusion method to rank the cliques and form a new pooled
graph. Meanwhile, the fold-2 takes this pooled graph as input and captures the LTS by selecting several significant nodes from ranked cliques based on scoring
criteria (e.g., GCN and GAT). The readout function is applied after each pair of GNN and HGLA-Pool layers to generate the graph-level representation.

D̄ci =
1
|ci|

∑
v∈ci

dv; Ūci =
∣∣∣∪v∈ci N(v) − ci

∣∣∣ S ci = β×D̄ci+(1−β)×Ūci ;

(3)
Node Feature Score: In addition to topological information,

the node features information contributes significantly to defin-
ing the graph properties (Kong et al., 2023). For instance, in
chemical molecules, node features represent atom types, which
are essential for predicting the graph’s characteristics. There-
fore, it can be an effective resource to show the clique’s impor-
tance within a graph. For this purpose, we use a graph convo-
lution layer to calculate importance scores for each node. The
calculation procedure is outlined as follows:

Z(v) = σ(D̃−1/2ÃD̃−1/2XW); Zci =
∑
v∈ci

Z(v) (4)

where Z(v) ∈ IRN×1 represents the importance scores and σ(.) is
a nonlinear activation function (e.g. softmax). The Ã ∈ IRN×N =

A + I shows the adjacency matrix with self-loops, D̃ ∈ IRN×N =∑
j Ãi j is the degree matrix of Ã and W ∈ IRd×1 is a trainable

weight parameter. Various aggregation functions like max and
sum can be employed to calculate the score for each clique. In
our implementation, we choose the sum function to aggregate
the importance scores of the nodes within the corresponding
clique ci. Given a clique ci, the importance clique score Zci is
computed in equation 4.

Fusion Score: To achieve a more robust score for each
clique, it is necessary to use both graph structure and node fea-
ture information fully. So, we combine S ci with the Zci score
using a learnable parameter α to obtain a fuse score Fci (see left-
most side of equation 5), thus providing a more comprehensive
representation of the graph’s topology. After obtaining the Fci

scores, we used them to select cliques that the pooling operator
should preserve. In detail, we first rank the cliques according

to their fusion score Fci , then a subset of top-ranked cliques are
selected for constructing the pooled graph as follows:

FCi = α × ZCi + (1 − α) × S Ci ; C′j = rank(FCi , ⌈Cr × |C|⌉) (5)

where rank(.) denotes the function that returns the impor-
tant cliques, Cr is the clique ratio, and |C| is the total cliques.
We update the node feature based on selected clique nodes (see
leftmost side of equation 6). We construct a new adjacency ma-
trix A′ where only the edges between the nodes in the selected
cliques are retained. For this purpose, we define an edge mask
matrix Em, which is structured to correspond with the A using
node mask Mi. Each element in Em is set to 1 if both corre-
sponding nodes (vi and v j in Mi) are part of the selected cliques
and set to 0 otherwise. This can be represented mathematically
as:

X′ = X ⊙ M; A′ = A ⊙ Em (6)

where X′ is the new node feature matrix, X is the original node
feature matrix, ⊙ represents the broadcasted element-wise prod-
uct, and M is a vector where each entry corresponds to a node
in the graph. The dimension of M is the same as the number
of nodes in the graph. Each entry in M specifies whether or not
the corresponding node is part of a selected clique (1 for nodes
in C′k and 0 for all other nodes). A′ is the new adjacency matrix,
and A is the original edge index matrix. The first fold’s output
serves as an input for the subsequent fold. The information pro-
vided by this fold acts as a contextual framework that enables
the second fold to identify local structures effectively.

3.3. Fold 2: Local Topological Structure Learning
This section presents how our proposed LocalPool layer

leverages multi-attention mechanisms to learn LTS informa-
tion by extracting the most informative nodes from ranked
cliques. Existing pooling methods like CliquePool and KPlex-
Pool (Luzhnica et al., 2019; Bacciu et al., 2021) extract all pos-
sible cliques from the input graph and often transfer each clique

5

into a supernode to form a pooled graph. This transformation
aims to reduce the graph size and complexity by aggregating
the information within each clique. However, this transforma-
tion does result in a loss of information at the individual node
level within each clique. The fine-grained details of interac-
tions and relationships between nodes within a clique are not
preserved in the pooled representation. This loss of informa-
tion can potentially affect the downstream tasks, especially if
the node-level information is crucial for classification tasks.

To address this, we propose a LocalPool layer to refine
the graph further by selecting the most important nodes from
ranked cliques. This refinement and selection process allows
our pooling operation to help preserve the key information
within each clique while reducing the graph size and complex-
ity. Our LocalPool approach significantly diverges from ex-
isting methods like SAGPool (Lee et al., 2019). Specifically,
SAGPool relies on a single strategy for computing node impor-
tance, yielding less robust node rankings. Inspired by the MAC
method Xu et al. (2022), we adopt a dual-strategy-based pool-
ing layer to calculate node importance, as illustrated in Figure
1. First, we employ a GCN layer to calculate importance scores
for the nodes. This choice stems from the GCN model’s ability
to learn node representations by aggregating information from
neighboring nodes, offering a localized perspective. GCNs ag-
gregate feature information from a node’s local neighborhood,
providing a stable and robust representation by averaging the
features of neighboring nodes. Simultaneously, we employ the
Graph GAT layer to compute attention scores. GATs intro-
duce an attention mechanism that assigns different importance
to different nodes within a neighborhood, capturing more in-
tricate relationships. GATs can adapt to varying graph struc-
tures by learning the attention coefficients, making them versa-
tile and capable of capturing complex patterns and dependen-
cies that might be missed by the uniform aggregation of GCNs.
Given that GCN and GAT extract graph information from dis-
tinct viewpoints—GCN provides a robust, averaged view of a
node’s neighborhood, and GAT offers a nuanced, dynamically
weighted view. we consider this process a multi-attention strat-
egy for calculating node importance scores. By aggregating the
scores from both GCN and GAT (using operations such as sum
or max), we achieve a more comprehensive and robust node
importance score, which enables our pooling method to select
the most important nodes. We consider this process as a multi-
attention strategy, and it is calculated as follows:

S Ni = Aggregation
(
σ
(1

K

K∑
k=1

∑
j∈N(i)

ai j
kWkX′j

)
, σ

(
D̃−1/2Ã′D̃−1/2X′W

))
(7)

where S Ni represents a multi-attention score for a node, and Ag-
gregation is an operation such as max, mean, and sum. We use
the max function to select the maximum value from each row
(e.g., for each node, choose the maximum score from either the
GCN or GAT model). The Wk ∈ IRd×1 and W ∈ IRd×1 are pa-
rameter weight matrices and used for linear transformations of
node features. We identify and select high-score nodes from
the output graph of Fold-1 to construct a pooled graph using
the scores S Ni . The details of this process are as follows:

idx = topk(S Ni , ⌈Pr ∗ N′⌉); Xl+1 = X′(idx, :) ⊙ S Ni (idx, :); Al+1 = A′(idx, idx)
(8)

where topk is the function that returns the indices of the
top Nl+1 = ⌈Pr ∗ N′⌉ values. The X′(idx, :) perform the row-
wise (node-wise) indexed node feature matrix, S (idx, :) repre-
sents the row-wise indexed node importance score matrix, and
A′(idx, idx) is the row-wise and col-wise indexed adjacency ma-
trix. Xl+1 and Al+1 represent the new node feature and adjacency
matrices, respectively.

3.4. Hierarchical HGLA-Pool Architecture and Readout Layer

We employ a hierarchical pooling architecture, integrating
multiple GCN layers with HGLA-Pool layers to perform graph
classification tasks. Figure 1 shows the architecture consisting
of three blocks with GCN and HGLA-Pool layers. Each block
receives a graph as input and generates a pooled graph with
a new feature and adjacency matrices. Concurrently, we use
mean-pooling and max-pooling as a readout layer after each
block to aggregate all the node representations to obtain a single
graph embedding as follows:

Γ j =

[
max

1≤i≤Nl
Xl

i j

]
∀ j ∈ [0, d]; Rl =

 1
Nl

Nl∑
i=1

xl
i || Γ

 (9)

where Nl is the number of nodes at layer l-th, xi is the feature
vector of i-th node, and || denotes concatenation. The Γ ∈ Rd

vector contains the maximum values of each feature dimen-
sion across all nodes. The readout Rl ∈ R2∗d concatenates the
two (average and max) feature representations. Finally, this
graph embedding is fed into a multi-layer perceptron classifier
to make predictions.

4. Experiments and Analysis

This section presents a comprehensive evaluation and quan-
titative analysis of our proposed HGLA-Pool’s effectiveness.
We perform exhaustive experiments across four diverse dataset
categories: chemical molecular structures (Wale et al., 2008)
(including Mutagenicity, NCI-1, NCI-109, COX2, and BZR),
social networks (Bacciu et al., 2021) (Reddit-Multi-12K), bio-
logical networks (Dobson & Doig, 2003) (DD and Proteins) and
computer vision (Irwin et al., 2012) (MSRC_21). Table 2 shows
the statistics of each dataset. Additionally, we conduct abla-
tion studies to evaluate the individual contributions of each fold
within the HGLA-Pool layer. To further analyze the robustness
of our approach, we also explore the impact of hyperparameter
variations on the performance of our pooling method.

4.1. Baselines and Experimental Settings

We select three GNN architectures to conduct comparative
experiments, including GCN (Kipf & Welling, 2016), GAT
(Veličković et al., 2017), and GraphConv (Morris et al., 2019)
and eleven state-of-the-art hierarchical and global pooling ap-
proaches such as DiffPool (Ying et al., 2018), SortPool (Zhang
et al., 2018), TopkPool (Gao & Ji, 2019), SAGPool (Lee et al.,
2019), CliquePool (Luzhnica et al., 2019), GMT (Baek et al.,
2021), MuchPool (Du et al., 2021), MPool (Islam et al., 2023),

6

Table 1: Comparison of HGLA-Pool and baselines. The highest score is in bold, and the second highest score is in underline (OOR referred to as out-of-resources).

Class Baselines PROTEINS D&D NCI-1 NCI-109 COX2 BZR MUTAGEN RED-M-12K MSRC-21

GNNs
GCN[2017] 73.77 ± 5.59 75.13 ± 4.14 74.68 ± 3.09 73.47 ± 2.22 78.16 ± 0.85 80.01 ± 2.39 78.18 ± 2.54 23.84 ± 0.92 84.04 ± 6.40
GAT[2018] 75.30 ± 5.23 76.91 ± 2.68 75.16 ± 3.36 73.78 ± 3.38 78.37 ± 0.66 80.74 ± 2.52 78.99 ± 2.44 21.73 ± 0.03 88.80 ± 4.38
GraphConv[2018] 74.04 ± 5.07 76.57 ± 3.98 78.15 ± 1.86 77.01 ± 2.52 80.79 ± 4.43 83.51 ± 2.89 79.18 ± 2.24 37.53 ± 1.97 88.66 ± 2.49

Pooling

DiffPool[2018] 77.62 ± 4.97 74.31 ± 2.15 70.70 ± 0.22 70.20 ± 0.24 77.60 ± 2.70 78.90 ± 0.04 71.80 ± 0.15 OOR 83.30 ± 0.51
SortPool[2018] 74.66 ± 5.08 67.47 ± 6.23 70.58 ± 3.68 68.87 ± 2.38 78.20 ± 0.02 79.70 ± 0.07 75.80 ± 2.43 42.50 ± 0.36 74.70 ± 0.40
TopkPool[2019] 73.32 ± 6.09 73.85 ± 4.63 74.84 ± 4.62 75.09 ± 2.37 77.93 ± 2.79 81.49 ± 4.17 79.56 ± 1.96 37.56 ± 3.39 88.45 ± 3.70
SAGPool[2019] 73.50 ± 4.56 72.49 ± 2.87 74.26 ± 1.96 74.94 ± 3.13 78.37 ± 1.86 81.24 ± 4.01 79.25 ± 3.03 36.79 ± 3.53 87.92 ± 3.24
CliquePool [2019] 73.56 ± 2.86 74.81 ± 3.87 77.26 ± 1.53 76.49 ± 1.14 78.37 ± 1.86 82.17 ± 2.25 78.47 ± 1.62 36.11 ± 2.13 88.72 ± 1.14
GMT[2021] 75.09 ± 0.59 78.72 ± 0.59 74.21 ± 1.88 71.38 ± 2.03 80.86 ± 0.41 82.25 ± 0.70 80.53 ± 0.11 44.06 ± 0.09 90.53 ± 0.34
MuchPool[2021] 78.52 ± 3.89 76.48 ± 7.01 74.70 ± 2.25 71.84 ± 2.66 79.27 ± 6.01 80.28 ± 6.93 74.75 ± 2.48 OOR 86.85 ± 3.61
MPool[2023] 79.30 ± 3.30 81.20 ± 2.10 77.40 ± 1.90 73.50 ± 2.50 78.10 ± 0.10 78.70 ± 0.11 79.60 ± 3.70 OOR 87.52 ± 0.54
MAC[2023] 76.08 ± 3.55 79.13 ± 4.70 77.60 ± 1.66 75.84 ± 1.86 78.36 ± 0.16 82.76 ± 5.91 80.33 ± 1.49 42.67 ± 2.23 89.75 ± 0.22
Quasi-CliquePool[2023] 75.68 ± 1.38 75.30 ± 3.30 78.21 ± 1.83 77.38 ± 2.23 80.15 ± 2.12 82.87 ± 2.58 79.53 ± 1.58 38.21 ± 2.43 88.15 ± 2.22
Wit-TopoPool[2023] 75.88 ± 5.60 71.30 ± 0.37 70.58 ± 0.29 69.71 ± 0.25 81.73 ± 3.50 79.75 ± 0.14 73.88 ± 1.29 33.87 ± 1.01 89.16 ± 4.00

Proposed
HGLA-Pool+ZC 76.58 ± 3.34 77.57 ± 3.01 80.80 ± 1.24 79.80 ± 2.30 82.86 ± 3.55 85.93 ± 3.08 82.40 ± 1.58 45.61 ± 2.15 91.30 ± 2.39
HGLA-Pool+FC 73.33 ± 3.18 75.30 ± 3.95 81.02 ± 1.90 79.10 ± 1.10 83.30 ± 3.57 87.43 ± 3.87 82.25 ± 1.56 43.30 ± 2.03 92.19 ± 2.23

Table 2: Eight datasets’ characteristics and Statistics. TG, AN, and AE denote
the total number of graphs, average nodes, and average edges, respectively.

Classification Datasets TG AN AE Classes

Biological
Proteins 1,113 39.06 72.82 2
D&D 1,178 284.32 715.66 2

Chemical

NCI-1 4,110 29.87 32.30 2
NCI-109 4,127 29.68 32.13 2
Mutagen 4,337 30.32 30.77 2
COX2 467 41.22 43.45 2
BZR 405 35.75 38.36 2

Social RED-M 11,929 391.41 456.89 11
Computer Vision MSRC_21 563 77.52 198.32 20

MAC (Xu et al., 2022), Quasi-CliquePool (Ali et al., 2023), and
Wit-TopoPool (Chen & Gel, 2023).

We implement HGLA-Pool using the PyTorch framework
(Paszke et al., 2017) and the PyTorch Geometric library (Fey &
Lenssen, 2019). To ensure a fair comparison, we follow many
previous works (Lee et al., 2019; Ali et al., 2023; Du et al.,
2021), employing tenfold cross-validation to evaluate the effec-
tiveness of all models. We report the average accuracy and stan-
dard deviation. For consistency, we utilized the source codes
provided by the authors of the baseline models and tuned the
hyperparameters according to the specifications in their papers
to reproduce the results. We use the same GCN (Morris et al.,
2019) layer as a message-passing function for HGLA-Pool and
all baselines.1

Hyperparameters are optimized within predefined ranges, in-
cluding embedding dimensions {32, 64, 128, 256}, learning
rate {0.01, 0.001, 0.0001, 0.05, 0.005, 0.0005}, batch size {64,
128}, pooling and clique ratios {0.5, 0.6, 0.7, 0.8, 0.9}. We em-
ployed the Adam optimizer for model initialization and a neg-
ative log-likelihood loss function for training. We also adopt
patience and early stopping criterion, i.e., if the loss value of
the validation set does not reduce for 50 consecutive epochs,
then the training process will be stopped.

4.2. Performance Comparison
We evaluated the performance of our proposed method

(HGLA-Pool with importance scores ZC and HGLA-Pool with

1We reproduced the numbers of all baselines using the source codes given by the au-
thors, and the source codes for all baselines and our method are available on this link.

dynamic fusion scores FC) and baseline methods on the nine
benchmark datasets for the graph classification tasks. We out-
lined the classification accuracy with standard deviation in Ta-
ble 1. In this comparison, HGLA-Pool method achieves su-
perior performance among all other baselines in the chemi-
cal molecules, social networks, and computer vision domain
datasets. For instance, in the case of the chemical molecular
domain, our method outperforms the best baselines by 2.81%
improvement for the NCI1, 2.42% for the NCI109, 3.92% for
the BZR, 1.57% for the COX2 and 2.07% for the Mutagenic-
ity. It is worth noting that the average number of edges in these
datasets is much smaller than in the other datasets (see Table
2). This implies that these five chemical datasets are relatively
sparse, presenting a significant challenge for pooling layers to
learn meaningful representations. However, our designed dual-
fold attention strategy can capture the graph’s local and global
information, enabling HGLA-Pool to extract information unde-
terred by the sparse graph structure effectively.

Furthermore, HGLA-Pool consistently outperforms GCN-
based global pooling methods across datasets from all four do-
mains. This superior performance underscores the efficacy of
our approach in generating more meaningful graph representa-
tions, thereby emphasizing the value of incorporating hierarchi-
cal pooling layers into the learning process. Notably, HGLA-
Pool and other node clustering techniques like CliquePool,
Quasi-CliquePool, and MPool perform better than GNN-based
models such as GCN, GAT, and GraphConv. This outcome sug-
gests that capturing GTSs as maximal cliques or clusters is ben-
eficial for enhancing graph representation learning. It is also
noteworthy that CliquePool and DiffPool do not consistently
outperform node selection pooling approaches such as SAG-
Pool and TopkPool. This observation further substantiates the
idea that integrating the graph’s local and global properties can
lead to more effective GP methods. We can also see from Table
1 that our proposed HGLA-Pool demonstrates considerable im-
provement in the multi-classes based datasets, with an increase
of 1.66% and 1.55% on MSRC_21 and REDDIT-MULTI, re-
spectively. Our analysis identified a significant proportion of
isolated nodes and subgraphs in the biological dataset. Further-
more, the graphs in this dataset demonstrate a scarcity of struc-
tures resembling cliques. Our approach’s effectiveness hinges

https://github.com/waqar12868/Hierarchical-Glocal-Attention-Pooling-for-Graph-Classification/tree/main

7

Fig. 2: Effect of dual folds and Hyperparameter analysis on HGLA-Pool performance.

significantly on identifying and ranking such cliques, leading
to challenges in capturing meaningful hierarchical representa-
tion structures within these graphs. This structural difference
between the dataset and our method’s underlying assumption
likely contributes to the observed performance decline. To sum
up, our proposed HGLA-Pool consistently performs better on
seven out of nine benchmarks than baseline pooling techniques.

4.3. Ablation Study

This subsection conducts an ablation study on HGLA-Pool
by removing independently both folds to verify further where
the performance improvement comes from. For convenience,
we name the HGLA-Pool method without the first and the
second fold as HGLAPool-NF1 and HGLAPool-NF2, respec-
tively. We chose five different-scale graph datasets covering
small and large graphs for these experiments. From Figure.
2 (see the leftmost graph), we can see that capturing GTS is
crucial in the chemical molecule and MSRC datasets since the
GLAPool-NF2 variant obtains a notable performance enhance-
ment as graph attention facilitates the selection of the most
informative cliques. Meanwhile, the GLAPool-NF1 variant
outperforms GLAPool-NF2 in the PROTEINS as this dataset
has limited clique-like structures, which poses challenges for
our method in capturing meaningful hierarchical representation
structures. This pattern suggests that the LTS with node features
are more important for some datasets than the GTS. Overall,
HGLA-Pool’s ability to learn both the graph’s local and global
enables it to generate robust graph representations that signifi-
cantly enhance performance in classification tasks.

4.4. Parameter Sensitivity Analysis

In this section, we investigate the sensitivities of the two
main parameters, Pr and Cr, influencing the performance of
the HGLA-Pool. Figure 2 (see second and third graph) sum-
marizes the accuracy of HGLA-Pool under different combina-
tions of these parameters across four different datasets. Our
method achieves the highest accuracy for all four datasets when
Pr=0.8 and Cr = 0.8, while performance drops with Pr=0.5 and
Cr = 0.5. To further investigate these scenarios, we performed
a more detailed analysis of the interaction between Pr and Cr,
generating a heatmap (see Figure. 3) for each dataset, illus-
trating their combined influence. The heatmap reveals specific
scenarios where certain combinations of Pr and Cr result in sub-
optimal performance, particularly in datasets with sparsely con-
nected graphs like Mutagenicity. For instance, low values of Pr

and Cr (e.g., Pr = {0.5, 0.6, 0.7} and Cr = {0.5, 0.6, 0.7}) tend to
exacerbate graph sparsity, leading to a loss of substantial graph

structures during pooling, as depicted in Figure. 3. From our
analysis, we also found that a Cr of at least 0.7 is essential for
biological, social, and computer vision datasets, while a mini-
mum Cr of 0.8 is necessary for chemical datasets due to their
sparse nature. Therefore, the recommended small ranges for Cr

and Pr are {0.7, 0.8} for biological, social, and computer vision
datasets and {0.8, 0.9} for molecular datasets. Interestingly, the
HGLA-Pool demonstrated stability, producing reasonably sat-
isfactory results across most combinations of these parameters.

4.5. Graph Visualization
To further demonstrate the distinctiveness and superiority

of our pooling method compared to existing techniques, we
use the Networkx library to visualize the pooling outcomes of
HGLA-Pool, CliquePool, TopkPool, and MuchPool. To pro-
vide a fair comparison, we build a hierarchical pooling archi-
tecture consisting of two layers and set a 0.8 for the Cr and Pr.
We randomly selected a graph from the Mutagenicity dataset
comprising 36 nodes for the demonstration. The input and
pooled graphs of each method’s first and second pooling lay-
ers are shown in the first row and the second row of Figure
4, respectively. The results demonstrate that the HGLA-Pool,
CliquePool, and MuchPool mostly preserved the input graph’s
significant topological structure (ring and branch structures). In
contrast, the results of the TopKPool are scattered with numer-
ous isolated nodes, indicating a lack of structural preservation.
The results obtained from the second pooling layer indicate that
three baselines encounter challenges with preserving the under-
lying topology of the initial graph. However, HGLA-Pool can
preserve reasonable topological structures, such as dual ring
structures present in the initial graph. This underscores the ef-
fectiveness of HGLA-Pool since ring structures are crucial in
the characterization of molecules.

4.6. Limitations
Our pooling method, rooted in the fundamental notion of

cliques, effectively captures the graph’s local and global char-
acteristics. However, its efficacy is constrained when applied to
datasets with non-clique structures, such as graphs containing
many isolated nodes. For example, if the clique-based repre-
sentation in fold-1 is inaccurate, it might lead to suboptimal
outcomes in subsequent steps, such as clique ranking and Lo-
calPool.

5. Conclusion

This study presents the HGLA-Pool method, an innovative
approach for hierarchical graph representation. It employs a

8

Fig. 3: Effect of different combinations of clique and pooling ratios on HGLA-Pool performance.

(a) Input Graph (b) TopkPool (c) CliquePool (d) MuchPool (e) HGLA-Pool

Fig. 4: Comparative graph visualization of different polling methods.
two-fold strategy to capture the graph’s global and local prop-
erties sequentially. Fold-1 captures the global topological struc-
ture of a graph by identifying the cliques and overlapping
nodes between cliques, coupled with a dynamic fusion scor-
ing method to rank and select significant cliques for pooling. In
Fold-2, a LocalPool layer employing a multi-attention mech-
anism selects the most informative nodes from these cliques,
capturing the LTS. In the end, the outcomes of both folds are
integrated sequentially to form a new pooled graph, which re-
tains the original graph’s structure and enhances classification
performance. The effectiveness of HGLA-Pool has been rigor-
ously assessed through extensive experiments across nine graph
classification datasets spanning four distinct domains. Future
work will enhance the clique pooling technique to capture a
broader range of graph structures, further boosting the graph
classification performance.
References

Ali, W., Vascon, S., Stadelmann, T., & Pelillo, M. (2023). Quasi-cliquepool:
Hierarchical graph pooling for graph classification. In Proceedings of the
38th ACM/SIGAPP Symposium on Applied Computing (pp. 544–552).

Bacciu, D., Conte, A., Grossi, R., Landolfi, F., & Marino, A. (2021). K-plex
cover pooling for graph neural networks. DMKD, 35, 2200–2220.

Baek, J., Kang, M., & Hwang, S. J. (2021). Accurate learning of graph repre-
sentations with graph multiset pooling. preprint arXiv:2102.11533, .

Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., & Wang, W. (2019). Simgnn: A
neural network approach to fast graph similarity computation. In Proc. of
the twelfth ACM ICWS-DM (pp. 384–392).

Cazals, F., & Karande, C. (2008). A note on the problem of reporting maximal
cliques. Theoretical computer science, 407, 564–568.

Chen, Y., & Gel, Y. R. (2023). Topological pooling on graphs. In Proc. of the
AAAI (pp. 7096–7103). volume 37.

Dobson, P. D., & Doig, A. J. (2003). Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology, .

Du, J., Wang, S., Miao, H., & Zhang, J. (2021). Multi-channel pooling graph
neural networks. In IJCAI (pp. 1442–1448).

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with py-
torch geometric. arXiv preprint arXiv:1903.02428, .

Gao, H., & Ji, S. (2019). Graph u-nets. In international conference on machine
learning (pp. 2083–2092). PMLR.

Han, K., Wang, Y., Guo, J., Tang, Y., & Wu, E. (2022). Vision GNN: An image
is worth graph of nodes. Advances in NIPSs, 35, 8291–8303.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G.
(2012). Zinc: a free tool to discover chemistry for biology. Journal of
chemical information and modeling, 52, 1757–1768.

Islam, M. I. K., Khanov, M., & Akbas, E. (2023). Mpool: Motif-based graph
pooling. In Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing (pp. 105–117). Springer.

Khemani, B., Patil, S., Kotecha, K., & Tanwar, S. (2024). A review of graph
neural networks: concepts, architectures, techniques, challenges, datasets,
applications, and future directions. Journal of Big Data, 11, 18.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, .

Kong, Y., Li, J., Zhang, K., & Wu, J. (2023). Multi-scale self-attention mixup
for graph classification. Pattern Recognition Letters, 168, 100–106.

Lee, J., Lee, I., & Kang, J. (2019). Self-attention graph pooling. In Interna-
tional conference on machine learning (pp. 3734–3743). PMLR.

Luzhnica, E., Da, B., & Lio (2019). Clique pooling for graph classification.
arXiv preprint arXiv:1904.00374, .

Mavromatis, C., & Karypis, G. (2024). GNN-RAG: Graph neural retrieval for
large language model reasoning. arXiv preprint arXiv:2405.20139, .

Morris, C., Ritzert, M., Martin, Hamilton, W. L., Lenssen, J. E., Rattan, G.,
& Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI conference (pp. 4602–4609).

Pang, Y., Zhao, Y., & Li, D. (2021). Graph pooling via coarsened graph info-
max. In Proc. of the 44th International ACM SIGIR (pp. 2177–2181).

Paszke, A., Gross, S., Chintala, G., Yang, Z., Edward, Lin, A., Zeming, Antiga,
L., & Lerer, A. (2017). Automatic differentiation in pytorch. Automatic
differentiation in pytorch, .

Réau, M., Renaud, N., Xue, L. C., & Bonvin, A. M. (2023a). Deeprank-gnn:
a graph neural network framework to learn patterns in protein–protein inter-
faces. Bioinformatics, 39, btac759.

Réau, M., Renaud, N., Xue, L. C., & Bonvin, A. M. (2023b). Deeprank-gnn:
a graph neural network framework to learn patterns in protein–protein inter-
faces. Bioinformatics, 39, btac759.

Schmitt-Koopmann, F. M., Huang, E. M., Hutter, H.-P., Stadelmann, T., &
Darvishy, A. (2022). FormulaNet: A benchmark dataset for mathematical
formula detection. IEEE Access, 10, 91588–91596.

Simonovsky, M., & Komodakis, N. (2017). Dynamic edge-conditioned filters
in convolutional neural networks on graphs. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 3693–3702).

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y.
(2017). Graph attention networks. arXiv preprint arXiv:1710.10903, .

Vinyals, O., Bengio, S., & Kudlur, M. (2015). Order matters: Sequence to
sequence for sets. arXiv preprint arXiv:1511.06391, .

Wale, N., Watson, I. A., & Karypis, G. (2008). Comparison of descriptor spaces
for chemical compound retrieval and classification. KISs, 14, 347–375.

Wang, Z., Liu, M., Luo, Y., Xu, Z., Xie, Y., Wang, L., Cai, L., Qi, Q., Yuan, Z.,
Yang, T. et al. (2022). Advanced graph and sequence neural networks for
molecular property prediction and drug discovery. Bioinformatics, 38.

Xu, Y., Wang, J., Guang, M., Yan, C., & Jiang, C. (2022). Multistructure graph
classification method with attention-based pooling. IEEE Transactions on
Computational Social Systems, 10, 602–613.

Ying, Z., You, J., Morris, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical
graph representation learning with differentiable pooling. Proc. NeuIPS, 31.

Zhang, M., Cui, Z., Neumann, M., & Chen (2018). An end-to-end deep learning
architecture for graph classification. In Proc. AIII. volume 32.

	Introduction
	Related Work
	Methodology
	Preliminaries
	Fold 1: Global Topological Structure Learning
	Fold 2: Local Topological Structure Learning
	Hierarchical HGLA-Pool Architecture and Readout Layer

	Experiments and Analysis
	Baselines and Experimental Settings
	Performance Comparison
	Ablation Study
	Parameter Sensitivity Analysis
	Graph Visualization
	Limitations

	Conclusion

