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Abstract—Graph augmentations effectively enhance the ro-
bustness and generalization of Graph Neural Networks (GNNs),
particularly for graph classification tasks. However, existing
augmentation methods, like NodeDrop, randomly drop a certain
portion of nodes to generate augmented graphs without pre-
serving the essential topological structures of the original graph,
potentially modifying label information. To address this issue,
we introduce a novel Node-Dropping Augmentation (NDAUG)
method for graph classification tasks. Our method leverages node
degree as a criterion to selectively drop less important nodes
(low-degree) and preserve essential graph structures, generating
diverse and informative augmented graphs. Further, in the case of
isolated nodes, we develop a structure learning method to recon-
nect these isolated nodes by learning attention-based relationships
between nodes. Experiments demonstrate that combining the
proposed NDAUG with existing GNN models yields an average
improvement of 2-5% accuracy on eight graph classification
benchmarks compared to the state-of-the-art baselines.

Index Terms—Node Augmentation, Graph Neural Network,
Graph Classification.

I. INTRODUCTION

Recently, Graph Neural Networks (GNNs), a specialized
form of deep learning designed for graph-structured data, have
shown effectiveness in various tasks of classifying graphs and
learning graph representations, including predicting chemical
molecular properties and analyzing social networks [1]], [2].
However, similar to deep learning models in image processing,
GNNs are prone to overfitting, particularly when dealing
with limited datasets [3]], [4]. Data augmentation methods are
known for their efficiency and effectiveness in mitigating over-
fitting issues in deep learning networks [5], [6]]. These methods
generate new synthetic samples from the existing training data,
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providing a straightforward and cost-efficient method to en-
hance the generalization of a deep model. Data augmentation
has proven helpful in the computer vision domain [3], [7],
but applying these techniques to graph-structured data presents
unique challenges due to the graphs’ irregular structures [8].
Some recent works focused on developing node feature-based
graph mixup augmentation methods for node-level tasks [9],
others like Kong et al. [10] recommend enhancing node
features through adversarial learning. While graph structural
learning augmentation methods [[L1], [12], [S]] usually modify
the graph structure by randomly dropping/adding nodes or
edges and generating new augmented graphs for graph-level
tasks. However, current graph learning augmentation methods,
such as random node-dropping, often fail to preserve the
original graph’s essential topological structures during the aug-
mentation process, potentially affecting the performance of the
graph classification tasks. This random node-dropping method
can also disconnect closely related nodes, generating isolated
nodes in the augmented graph [[L1[], [13], which may affect
the efficiency of the GNN’s message-passing mechanism.

To this end, we introduce a novel node-degree based Node-
Dropping Augmentation (NDAUG) method for graph classi-
fication tasks to address the issues in existing augmentation
approaches. The node degree is an important concept in graph
theory because nodes with higher degrees often correspond
to critical points in various graphs, such as road, social,
or protein-protein interaction graphs, which are essential to
identifying the structure and functionality of the entire graph
[14]. Our method generates augmented graphs by leverag-
ing the node-degree concept to remove less important low-
degree nodes while preserving significant topological struc-
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Fig. 1: The pipeline of the proposed NDAUG method. The initial step identifies the important structural motifs of the input
graph. Step 2 removes the low-degree nodes while maintaining the key topological structures formed by high-degree nodes.
The last step generates the final augmented graph to preserve the identified significant motif structures of step 1 and applies a
structure learning method to retain the connectivity of the augmented graph by reconnecting any isolated nodes resulting from

the node-dropping process.

tures formed by high-degree nodes, thereby maintaining the
essential characteristics of the original graph. However, in
applications such as molecular datasets with toxic/non-toxic
compounds, the functional groups often contain low-degree
nodes such as benzene or carbon motif ring structures [12].
To handle such cases, NDAUG identifies and preserves these
significant structures, ensuring the retention of vital low-
degree nodes. Additionally, we propose an attention mech-
anism to reconnect isolated nodes that may result from the
node-dropping process, thus maintaining the connectivity in
the graph and enhancing the performance of GNN layers. To
summarize, the main contributions of this paper are as follows:

« We propose a novel NDAUG augmentation method that
uses node degree to remove less important nodes while
preserving key topological structures.

e« We introduce an attention-based structure learning
method to reconnect isolated nodes, maintaining graph
connectivity within the augmented graphs and enhancing
GNN performance.

o Experiments on eight benchmark datasets show that
NDAUG outperforms existing augmentation methods
with a 2 — 5% improvement.

II. RELATED WORK

Recently, GNNs [1]], [[15] have emerged as a powerful tool
and attained significant achievements in graph classification
tasks. Despite GNNs’ success, data availability is a significant
limitation in many graph classification problems [12], [16]].
For instance, GNNs have been widely used in predicting
molecular properties, where obtaining labeled molecule data
often involves complex manual laboratory procedures. This
leads to a lack of adequately labeled samples for GNNs to
attain a promising prediction performance.

Data augmentation methods are noted for their efficiency
and effectiveness in generating new synthetic samples from
existing training data, thereby enhancing the generalization ca-
pabilities of deep models [17], [18]. This strategy is preferred
over more resource-intensive methods like gathering extra real
data or making significant changes to the model architecture or
training algorithms. Data augmentation methods have proven
helpful in the fields of computer vision (CV) and neural
language processing [3]. However, applying such techniques
to graphs is more complex due to their non-Euclidean nature,
where nodes are irregularly connected by edges [[19], [20]], pre-
senting unique challenges in augmentation. Recent works have
focused on developing node feature space-based augmentation
methods for node-level tasks [9], [10], and a limited number



of attempts [21] have been undertaken for graph classification
tasks. For example, DropEdge [S] employs a random method
to remove a uniform portion of edges and generate augmented
graphs to enhance the robustness of the GNN model during
test-time inference, M-evolve [22] methodology uses motif-
similarity mapping methods to add or remove edges connect-
ing nodes that are predicted to have similar labels with a high
level of motif-similarity score, and DropNode [12] randomly
drop a certain portion of nodes from the original graph and
generate a new graph. The random node-dropping method can
disconnect closely related nodes, generating isolated nodes in
the augmented graph [[11]. This may affect the efficiency of
the GNN’s message-passing mechanism.

Furthermore, the authors of [11] develop a GraphCrop
method, which generates various cropped-augmented graphs
using a node-centric strategy. However, current graph augmen-
tation methods, such as random node-dropping, often fail to
preserve the original graph’s essential topological structures
during the augmentation process, potentially affecting the
performance of the graph classification tasks. Hence, this
study aims to tackle this issue by introducing a node-dropping
augmentation method. This method removes less important
low-degree nodes while preserving the essential topological
structures.

III. PROPOSED METHODOLOGY

This section first defines the mathematical notations and
problem formulation of graph classification tasks. Then,
we present a detailed description of the proposed NDAUG
method. Figure [T] shows the working pipeline of the NDAUG
method for generating an augmentation graph.

A. Mathematical Notations and Problem Formulation

We represent the input graph as G = (V, E), where V =
{v;li =1,...,n} denotes the nodes and F = {e;|i = 1,...,m}
shows the edges. The topological structure of G can be
represented by an adjacency matrix A € {0,1}"*™ with
A;j = 1if (i,j) € F and A; ; = 0 otherwise. Let X € R"*¢
represent the node features matrix, where d is the dimension
of the feature space. For the graph classification tasks, each
data point in the dataset D = {(G;,y;)|i = 1,...,t} consists
of a graph G; and its corresponding label y;. We split the
dataset D into training, validation, and testing sets, depicted as
Dirain, Dyal, and Dyeq, respectively (for more detail, see the
experimental section [[V-A). Specifically, we aim to generate
new data samples for a classifier such as G € Dy to a
new augmented graph G’ like f : (G,y) — (G’,y) where y
is the label of G. The augmented set D; add with Dy, qin

train
to produce the final training set: D)%% = Dyyqin + D;

train*

B. Motifs Preservation

Motifs are small, recurrent, and connected subgraphs that
play a crucial role in measuring the connectivity patterns
of nodes within a graph [23]. The importance of motifs
in the analysis of graphs has been widely recognized since
they serve as key indicators in revealing the fundamental

Algorithm 1 Node-Dropping Augmentation NDAUG

Input: A graph G with vertices V' and edges E and Drop
Probability P
Output: Augmented graph G’
1: Initialize an empty set D to store nodes to be dropped.
2: Identify the essential topological structural motifs M in
G.
3: for each vertex v in V do
4 Calculate node degree deg(v) = |{e € E : v € e}|
5: Generate a random drop probability prob, for node v
6: if d(v) < Ty and prob, < P and v ¢ M then
7.
8
9

Add v to D.
end if
: end for

10: Remove the nodes in D from V to get V.
11: Update the set of edges ' = {e € F :/Fv €

D such that v € e}
12: Re-index nodes in V" starting from 1 up to the size of V.
13: return G' = (V' E')

structure and functionality of complex networks [24]. Figure
illustrates the topological structures of two benzene rings with
5 and 6 nodes, which we refer to as cyclic motif structures,
and these hold substantial chemical significance in molecular
datasets. These cyclic motif structures often determine the
structural and chemical properties of the molecule, impacting
its behaviour and interactions [25]]. Therefore, preserving such
motifs is critical in graph classification like drug discovery
or toxicity prediction, where losing these structures could
lead to inaccurate interpretations of the molecule’s proper-
ties. Current augmentation techniques, like DropNode [12],
employ a random process to drop a substantial number of
nodes from the graph without preserving the underlying graph
motif structures. Therefore, our node-dropping method first
preserves these essential topological motif structures during
augmentation. Let M (v) be an indicator function defined as:

M(v) = (D

1 ifve M,
0 otherwise.

A node v is preserved in the augmented graph if M (v) = 1.
Here, M denotes the set of nodes that are part of identified
motifs. We implement this M (v) indicator function using the
cycle-basis function of the Netwrokx library to identify all
cyclic motif structures of nodes 4, 5, and 6.

C. Node Degree-based Dropping

After preserving significant structural motifs in the graph,
we use the concept of node degree to select the most important
nodes to generate an augmented graph. In simple terms, the
nodes with a high degree indicate their significance within
the entire graph [14]. For example, high-degree nodes in
road networks often correspond to major intersections or hub
areas [14]]. Similarly, in social and protein-protein interac-
tion networks, high-degree nodes often represent influential



TABLE I: Comparison of NDAUG and baselines. The bold text represents the best performances.

Methods BZR COX2 NCI1 |MUTAGEN | PROTEINS| DD IMDB-B | RED12K
No Augmentation | 79.424; 97 79.5041 50| 75.904150| 77.18:186 | 72.601392 |76.504235|68.204655(38.8043.12
NodeDrop[112] 80.314650|78.3943.08 | 76.474003| 77.7T1257 | 73.861251 |76.664380|68.204408|41.1341 46
EdgeDropl[5]] 81.974350|79.881644|77.932133| 79.184180 | 73.41ua4s5 |74.0314.00(69.404420|40.534261
GraphCrop[[11] |79.844340(79.764464|77.671250| 79.541259 | 73.101350 |76.864346|70.874351|40.81107
Gmixup[29] 82.15.425(78.344520| 77184156 80.594231 | 72.104571 |75.294160|70.314336(41.10423;
M-evolve [22] 79.304153 | 77. 744341 | 77371086 | 78.84um0s5 | 7231362 |76.811034|69.40435;(40.3443.87
Mixup [21]] 81.204351(79.8144.41 | 77.0842.10| 79.8112.13 | 74.101335 |75.4042.80(69.304320|40.6617 17
PiNGDA [21]] 82.354051(79.674041(69.354063| 77211013 | 73.211040 |75.404057(69.214020|41.3410.17
NDAUG 86.16.3,; |81.28.337 (80.01.,5; | 82.01.02; | 75.65:254 |79.31.331|72.40.320|45.95. 61

individuals or key connectors within the community and
correspond to crucial proteins that interact with many other
proteins. So, this step removes low-degree nodes from the
graph to generate an augmented graph. The degree of a node
d(v), which corresponds to the number of edges connecting
to v, can be formally expressed as:

dv)={ueV: (u,v) € EV (v,u) € E}| ()

The following conditions guide the node-dropping process:
nodes are considered to be removed if their degree is less
than or equal to the degree threshold T}, their associated drop
probability prob,, is below a threshold p, and they are not part
of any identified motifs M:

Viarop = {v € V : d(v) < Ty and prob, < p and v ¢ M}
3)
The augmented graph G’ = (V',E’) is then derived by
removing Vgop from V, and accordingly adjusting E to
exclude edges incident to any node in Vgop. See Algorithm
for more details. Formally, the augmented graph is constructed
as follows:

V/:V\Vvdrop; E/:{(u;v)6E:u¢‘/dr0p/\v¢‘/drop}

“4)

D. Structure Learning Method

This section explains the working pipeline of our pro-
posed structure learning mechanism, which learns a refined
augmented graph structure. As mentioned earlier, the node-
dropping augmentation operation can lead to the discon-
nection of closely related nodes in the augmented graph
G' = (V',E’). This loss of graph structure information
further hinders the message-passing procedure of the GNN
[11] (also see an example in Figure. [I). We used a Graph
Attention Layer (GAT), which takes structural information A’

and hidden representation X’ as input to transform node fea-
tures by aggregating information from their neighborhoods and
resulting attention score vector for each node [26] (as shown
in the equation. [5)). We use cosine similarity to determine the
similarity between the transformed features of isolated nodes
and those in the main graph. For any isolated node ¢ and a
non-isolated node j, their similarity is calculated as follows:

Fl-F|

F' = GAT(X', A"); —t
IE7 I E]

Sij = )
The process of reconnecting isolated nodes involves identify-
ing these nodes, represented as the set I C V' in G'. For each
isolated node 7 € I, we search within V' \ I to find a node
7 that has the highest cosine similarity score with ¢ and then
create a new edge between nodes ¢ and j.
E/:E/U{(i,j)ZiEI,jz argmax Sik,Sij} (6)
ke{V'—TI}
By effectively reconnecting isolated nodes, we maintain the
graph’s connectivity and ensure the continuity and efficacy
of the message-passing mechanisms in the GNN, which are
essential for accurate graph classification tasks.

IV. EXPERIMENTS

This section evaluates the efficacy of the proposed NDAUG
method on eight classification datasets, including BZR, COX2,
NCI1, and MUTAGENICITY for molecular compound clas-
sification, DD and PROTEINS for protein categorization,
IMDB-M, and REDDIT-MULTI12K for social network classi-
fication [27]. These datasets have been widely used as bench-
marks for graph classification tasks, as demonstrated in this
study [28]]. Our findings demonstrate that NDAUG consistently
outperforms the existing baseline approaches. Furthermore, a
graph visualization comparison and a comprehensive series
of ablation studies are conducted to evaluate the individual



(a) Training on the NCI1 dataset without
any augmentation method obtains an aver-
age testing accuracy of 78.44+2.71.

(b) The random node-dropping [12] method
training achieves an average testing accuracy
of 76.47+2.03.

(c) Training with our proposed NDAUG
method obtains an average testing accuracy
of 80.01+£2.51.

Fig. 2: A comparison of NDAUG and the random node-dropping method on the NCI1 dataset shows significant differences.
Figure (a) displays a random NCI1 graph with crucial cyclic carbon structures. Figures (b) and (c) illustrate augmented graphs
generated by NDAUG and Nodedrop [12]], respectively. The random DropNode degrades classification performance by dropping

key nodes from carbon structures. In contrast, NDAUG preserves these structures and enhances classification performance.

contributions of different components inside the NDAUG
method.

A. Baseline Methods and Experimental Settings

We follow numerous prior research studies [12], [5] and
employ the 10-fold cross-validation method, dividing the
datasets into training, validation, and testing sets with ratios of
80%, 10%, and 10%, respectively. We report the average test
accuracy over ten different runs. The training process utilizes
the early-stop mechanism, which terminates when the loss
value of the validation set does not decrease for 50 consecutive
epochs. We fine-tune hyperparameters for all models on each
dataset within the specified range, as follows: 1) initial learning
rate € {0.01,0.0005}, 2) embedding dimensions € {64, 128},
3) batch size € {32,64,128}, 4) DropEdge and DropNode
drop ratio € {20%,40%}, 5) node degree value € {1,2,3}
and number of GNN layers € {2,3,4}. We utilize the Adam
optimizer to initialize our model and apply a negative log-
likelihood loss function for training. We compare our NDAUG
methods, which do not use any data augmentations, and seven
graph augmentation baseline methods, including DropNode
[12], DropEdge [5], GraphCrop [LL1], Gmixup [29], M-evolve
[22], Mixup [21]] and PINGDA [21]. We use the same GNN
model [15] and hyperparameter setting for NDAUG and all
baseline augmentation approaches to ensure a fair comparison.

B. Performance Comparison

Table [l compares the performance of our proposed NDAUG
and baseline methods across the eight graph classification
benchmark datasets. Significantly, NDAUG demonstrates su-
perior performance over all baseline methods in all datasets.
Specifically, when comparing with the GCN baseline, NDAUG
shows a relative accuracy improvement on the BZR, NCI,
MUTAGENICITY, DD, and REDIT12K datasets by margins
of 6.74%, 4.51%, 4.83%, 2.45%, and 7.15%, respectively. This
advancement underscores the efficacy of graph data augmen-
tation in enhancing GNN performance for graph classification
tasks. Moreover, NDAUG consistently surpasses traditional
augmentation methods like NodeDrop and EdgeDrop. In the

realm of chemical molecule datasets, NDAUG outperforms
these baselines by an average of 2-4% in BZR, NCII, and
MUTAGENICITY and by 1.4% in COX2. Across the bi-
ological and social network datasets, NDAUG achieves an
average improvement of 2.0%, 4.0%, respectively. Existing
augmentation methods, such as NodeDrop and EdgeDrop,
have limited performance because they randomly drop nodes
or edges without preserving the connectivity between the
nodes in the augmented graph. This destroys the original
graph’s essential topological structures, leading to the loss
of essential label-related information. We additionally provide
graph visualizations to represent the effect of different aug-
mentation techniques in Figure [2| Our analysis, supported by
the success of NDAUG on graph datasets, validates the effec-
tiveness of our proposed NDAUG method. This advancement
not only sets a new standard in graph augmentation but also
opens the potential for future analyses to enhance the per-
formance of GNNs. The overall time complexity of NDAUG,
which depends on determining motifs and calculating pairwise
similarity, is O(|V|® + |V|?d), where |V| is the number of
nodes, d is the dimension of node features, and ¢ represents
the complexity of detecting cyclic motifs.

C. Ablation Study

This section performs an ablation study on NDAUG by
removing three components to verify further where the per-
formance improvement comes from. For convenience, we
name the NDAUG method without the node degree measure-
ment, motif structures, and structure learning components as
NDAUG w/o NDM, NDAUG w/o MS, and NDAUG w/o ST,
respectively. For ablation study experiments, we train GCN-
based [15] classification models on four different-scale graph
datasets covering small and large graphs and employ the same
parameter setting as Section The results presented in
Table [lI] highlight the considerable impact of node degree
measurement and motif structures, particularly within the
domains of chemical molecules, since the preservation of
essential motif graph structures such as cyclic benzene with
node degree is especially useful to maintain the important



TABLE II: Results of ablation studies about different NDAUG
components.

Architecture Mutagenicity NCI1 BZR IMDB-B

NDAUG 82.021 +2.21 80.34 +2.39 86.16 +3.21 72.70 +2.71
NDAUG w/o ST 80.90 £2.27 79.10+2.30 84.31+3.11 71.40+4.01
NDAUG w/o MS 80.30+£2.96 79.87+2.10 84.41+3.01 70.80+3.61
NDAUG w/o NDM | 78.95+3.01 77.83+3.03 81.61 +£3.51 70.80 +3.61

graph structures within the augmented graphs. Furthermore,
removing the structure learning strategy significantly degrades
the performance of NDAUG in NCI and BZR because these
datasets are sparse, resulting in augmented graphs containing
isolated nodes. It is demonstrated that structure learning, node
degree measurement, and preservation of essential graph motif
structures are key success factors of NDAUG in generating
augmented graphs.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel data augmentation method
named NDAUG for graph classification tasks. At its core,
NDAUG used the concept of node-degree measurement to
strategically drop less important low-degree nodes from the
original graph. This approach is carefully balanced to maintain
essential topological motif structures within the augmented
graph, even those typically associated with low-degree nodes.
Furthermore, we proposed a structure learning technique that
employs an attention mechanism to reconnect disconnected
nodes to maintain graph connectivity within the augmented
graphs and enhance GNN performance. Comprehensive ex-
periments on eight graph classification datasets demonstrated
a notable enhancement in the accuracy of up to 5% compared
to the existing baselines. In future work, we plan to enhance
our NDAUG approach by incorporating edge perturbation
techniques to identify key topological substructures and extend
its application to node-level tasks.

REFERENCES

[1] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907.

[2] Kim, M., Choi, J., Lee, S., Jung, J., & Kang, U. (2025). Augward:
Augmentation-aware representation learning for accurate graph classifi-
cation. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining (pp. 237-250). Singapore: Springer Nature Singapore.

[3] Perez, L., & Wang, J. (2017). The effectiveness of data augmen-
tation in image classification using deep learning. arXiv preprint
arXiv:1712.04621.

[4] Liu, X., Zhang, Y., Wu, M., Yan, M., He, K., Yan, W., & Fan, D.
(2025). Revisiting edge perturbation for graph neural network in graph
data augmentation and attack. IEEE Transactions on Knowledge and Data
Engineering.

[5] Rong, Y., Huang, W., Xu, T., & Huang, J. (2019). Dropedge: Towards
deep graph convolutional networks on node classification. arXiv preprint
arXiv:1907.10903.

[6] Liu, S., Ying, R., Dong, H., Li, L., Xu, T.,, Rong, Y., & Wu, D.
(2022). Local augmentation for graph neural networks. In International
conference on machine learning (pp. 14054-14072). PMLR.

[7] Tuggener, L., Emberger, R., Ghosh, A., Sager, P, Satyawan, Y. P,
Montoya, J., Goldschagg, S., Seibold, F., Gut, U., Ackermann, P. Schmid-
huber, J., & Stadelmann, T. (2024). Real world music object recognition.
Transactions of the International Society for Music Information Retrieval,
7(1), 1-14.

[8] Huang, S., Xu, Y., Zhang, H., & Li, X. (2025). Learn beneficial noise as
graph augmentation. arXiv preprint arXiv:2505.19024.

[9] Verma, V., Qu, M., Kawaguchi, K., Lamb, A., Bengio, Y., Kannala, J., &
Tang, J. (2021). Graphmix: Improved training of gnns for semi-supervised
learning. In Proceedings of the AAAI conference on artificial intelligence
(pp. 10024-10032).

[10] G Taylor Kong, K., Li, G., Wu, Z., Zhu, C., Ghanem, B., Taylor, G.
& Goldstein, T. (2020). Flag: Adversarial data augmentation for graph
neural networks.

[11] Wang, Y., Wang, W., Liang, Y., Cai, Y., & Hooi, B. (2020).
Graphcrop: Subgraph cropping for graph classification. arXiv preprint
arXiv:2009.10564.

[12] You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., & Shen, Y. (2020). Graph
contrastive learning with augmentations. Advances in neural information
processing systems.

[13] Sui, Y., Wang, S., Sun, J., Liu, Z., Cui, Q., Li, L., & He, X. (2025).
A simple data augmentation for graph classification: A perspective of
equivariance and invariance. ACM Transactions on Knowledge Discovery
from Data, 19(2), 1-24.

[14] Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal syn-
chronous graph convolutional networks: A new framework for spatial-
temporal network data forecasting. In Proceedings of AAAI conference
on artificial intelligence (pp. 914-921).

[15] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan,
G., & Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order
graph neural networks. In Proceedings of AAAI conference on artificial
intelligence (4602-4609).

[16] Kang, J., Liu, S., Huang, K., Fan, C., He, H., & Chen, C. (2024).
Graph-CoRe: Graph Representation Learning with Contrastive Subgraph
Replacement. In IEEE International Conferences on Internet of Things
(iThings) and IEEE Green Computing & Communications (GreenCom)
and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE
Smart Data (SmartData) and IEEE Congress on Cybermatics (pp. 511-
518). IEEE.

[17] Zhou, J., Xie, C., Gong, S., Wen, Z., Zhao, X., Xuan, Q., & Yang, X.
(2025). ACM Computing Surveys, 57(11), 1-34.

[18] Wang, Y., Zhao, Y., Shah, N., & Derr, T. (2022). Imbalanced graph
classification via graph-of-graph neural networks. In Proceedings of
the 31st ACM international conference on information & knowledge
management (pp. 2067-2076).

[19] Zhao, T., Jin, W., Liu, Y., Wang, Y., Liu, G., Giinnemann, S.,& Jiang, M.
(2022). Graph data augmentation for graph machine learning: A survey.

[20] Wang, Z., Yin, Z., Zhang, Y., Yang, L., Zhang, T., Pissinou, N., & Zhang,
W. (2025). Fg-smote: Towards fair node classification with graph neural
network. ACM SIGKDD Explorations Newsletter, 26(2), 99-108.

[21] Wang, Y., Wang, W., Liang, Y., Cai, Y., & Hooi, B. (2021). Mixup for
node and graph classification. In Proceedings of the Web Conference (pp.
3663-3674).

[22] Zhou, J., Shen, J., Yu, S., Chen, G., & Xuan, Q. (2020). M-evolve:
structural-mapping-based data augmentation for graph classification.
IEEE Transactions on Network Science and Engineering, 8(1), 190-200.

[23] Elhesha, R., & Kahveci, T. (2016). Identification of large disjoint motifs
in biological networks. BMC bioinformatics, 17, 1-18.

[24] Sun, M., Yang, M., Li, Y., Mu, D., Wang, X., & Wang, Y. (2023).
Structural-aware motif-based prompt tuning for graph clustering. Infor-
mation Sciences, 649, 119643.

[25] Meyer, E. A., Castellano, R. K., & Diederich, F. (2003). Interactions
with aromatic rings in chemical and biological recognition. Angewandte
Chemie International.

[26] Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P,
& Bengio, Y. (2017). Graph attention networks. arXiv preprint
arXiv:1710.10903.

[27] Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., &
Neumann, M. (2020). Tudataset: A collection of benchmark datasets for
learning with graphs. arXiv preprint arXiv:2007.08663.

[28] Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are
graph neural networks?. arXiv preprint arXiv:1810.00826.

[29] Han, X., Jiang, Z., Liu, N., & Hu, X. (2022, June). G-mixup: Graph
data augmentation for graph classification. In International Conference
on Machine Learning.



	Introduction
	Related Work
	Proposed Methodology
	Mathematical Notations and Problem Formulation
	Motifs Preservation
	Node Degree-based Dropping
	Structure Learning Method

	Experiments
	Baseline Methods and Experimental Settings
	Performance Comparison
	Ablation Study

	Conclusions and Future Work
	References

