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Abstract—In this study, we present a vendor-agnostic,
deep learning-based system for the automated analysis of
transthoracic pulsed-wave tissue Doppler imaging (TDI),
which decouples image acquisition from interpretation and
enables centralized, fleet-wide analysis across devices. The
model ingests standard TDI from heterogeneous ultrasound
systems and automatically extracts key diagnostic mark-
erspeak systolic velocity (S’), early diastolic velocity (¢'),
and late diastolic/atrial contraction velocity (a’) using a
single, unified pipeline. Conceptually, this harmonizes mea-
surements across vendors and sites, improving consistency,
comparability, and longitudinal tracking without device-
specific calibration or tooling. Procedurally, a central
inference service supports asynchronous batch processing
and human-in-the-loop review, thereby shifting analysis
off-console, allowing ultrasound scanners to remain fully
available for acquisition. In our clinical dataset, which
spans two ultrasound vendors and diverse cardiac cycles,
the system correctly identified more than 93% of tissue-
velocity landmarks. In 50% of studies, all automated de-
tections matched expert annotations, eliminating the need
for manual edits. This approach streamlines offline TDI
analysis, accelerates turnaround, and supports scalable,
standardized cardiac assessments.

Index Terms—echocardiography, tissue Doppler imaging,
deep learning, clinical application

I. INTRODUCTION

As part of an echocardiographic assessment, pulsed-
wave tissue Doppler imaging (TDI) [1], [2] is employed
to measure myocardial tissue velocities, which are in-
strumental in diagnosing conditions such as diastolic
dysfunction and other adverse heart conditions [3], [4].
Key diagnostically relevant metrics include the peak
systolic velocity (S”), early diastolic velocity (e’), and
late diastolic or atrial contraction velocity (a’), which are
critical for evaluating both systolic and diastolic heart
function. According to international echocardiographic
guidelines, these velocities are measured at the mitral
annulus using TDI [5]-[7]. They are quantified through
analysis of the spectral Doppler waveform displayed on
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Fig. 1: Vendor-neutral automated analysis of peak ve-
locities in echocardiographic tissue Doppler imaging in
which the acquisitions are performed with two different
stations (left) and subsequently analyzed in a central
location without needing access to an acquisition device
(right).

ultrasound monitors. As the annotation of a single image
typically requires up to a minute, and patients often
undergo multiple TDI examinations during a single visit,
this manual process detracts from the primary diagnostic
workflow.

Current manual annotation tools and proprietary au-
tomated solutions require echocardiography machines
to serve both acquisition and annotation tasks, limiting
their availability for additional patients. Vendor-agnostic
automated annotation enhances workflow efficiency by
pre-processing TDI data, enabling cardiologists to begin
interpretation immediately without the cold start asso-
ciated with reviewing unannotated images acquired by
sonographers. This approach preserves scanner availabil-
ity, accelerates measurement collection, and reduces the
overall time required for diagnostic assessment in high-
demand clinical settings.

Related research has explored deep learning ap-
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proaches for automated echocardiographic analysis. [8]
demonstrated that deep learning algorithms, trained on
labeled 2D videos and Doppler images, can accurately
measure cardiac structural and Doppler parameters,
achieving high agreement with human experts while
substantially reducing analysis time. [9] extended this
approach to large, multi-center datasets, showing that
fully automated workflows could classify, segment, and
annotate 2D and Doppler echocardiograms with high ac-
curacy, consistent measurements, and reduced variability
compared with human readers. While these studies show
the potential of automated image analysis in cardiology,
we focus on the evaluation of guideline-confirming,
verifiable measurements. This narrower field of research
has been largely restricted to single-device analyses [10]
or demonstrates limited accuracy [11]-[13]. In contrast,
this study presents a manufacturer-agnostic system that
automatically identifies S’, ¢/, and o’ velocities on
TDI images following international guidelines [S5]-[7],
streamlining the diagnostic process while freeing acqui-
sition devices from prolonged non-productive use. By
enabling clinicians to operate across multiple devices
concurrently, the system has the potential to substantially
improve clinical throughput and standardize measure-
ments without compromising diagnostic precision. Fig.
1 illustrates the principle of multi-station echocardio-
graphic acquisition combined with centralized, auto-
mated annotation within a human-in-the-loop workflow.

II. METHODS

A. Clinical data and expert annotations

The study included a retrospectively acquired dataset
comprising of 664 ultrasound Doppler tissue images
recorded with two different devices during routine clin-
ical visits. After the removal of two incomplete images
and 90 (near) duplicates, 572 TDI images were included
in this study. Five hundred and thirty-nine of those
images were acquired on a device manufactured by
General Electrics (GE) and 33 on a device manufac-
tured by Philips with varying image sizes (approxi-
mately 800x450 pixels). All participants of the study
gave written consent that the anonymized data can be
used for research and to train Al models. The dataset
includes a diverse range of patients with different cardiac
conditions. This ensures the representation of regular
and irregular heart cycles. Each image was annotated
by the same expert cardiologist (S.A.) using custom
labeling software, designed to mark S’, ¢/, and a’ peak
velocities directly on the echocardiographic images. The
offset and scaling to convert pixel coordinates to physical
coordinates of time in seconds and velocity in cm/s was
part of the vendor-specific data extraction step.

B. Deep learning model and training

We solve the localization task as a segmentation task.
The segmentation masks are generated by marking the
labeled points with a circular mask with a diameter of
31 pixels, one mask for each type of peak velocity. The
background mask is then created as the inverse of the
union of the three peak tissue velocity masks. Stacking
all masks results in a four-channel map that serves as
ground truth. We employed a U-Net with padded convo-
lutions but otherwise identical architecture as the original
implementation [14]. The U-Net is recognized for its
ability to perform accurate pixel-level segmentation and
capture both global context and fine-grained details. We
optimize the Dice loss [15] because it is more robust
than the cross-entropy loss against class imbalances [16].
Inversely to the generation of the mask of the ground
truth, the predicted coordinates were computed from the
output of the U-Net by finding their centers of mass
of predicted components. The architecture can process
input images of arbitrary size. To obtain correct physical
units in cm/s, the affine pixel-to-world transformation
obtained from the original DICOM (Digital Imaging and
Communications in Medicine) data is used.

The dataset was randomly split into training and
testing sets, with the test set comprising 80 images (8
Philips images and 72 GE images) and the training set
containing 492 images (25 Philips images and 467 GE
images). This ensures that the model is evaluated on
unseen data. The training was performed using a batch
size of 8 for 75 epochs. The trained model was validated
using a test set containing Doppler ultrasound images,
and segmentation masks were generated for each class.
Additionally, we conducted a qualitative assessment by
visually comparing the predicted segmentation masks
with overlaid ground truth markers, ensuring a compre-
hensive evaluation of the model’s performance.

To generalize to data from multiple vendors, we incor-
porate color- and intensity-based augmentation including
permutation of color channels, grayscale transformation,
and variation of intensity mapping that modifies the
images’ brightness, contrast, and color/grayscale appear-
ance, simulating variations in Doppler image appearance
of different display styles. The color jitter augmentation
(Ajis.) randomly jitters the brightness factor, contrast
factor, saturation, and hue prducing a wide range of
appearances. The grayscale or permutation augmentation
(Ap.g.) randomly shuffles color channels or converts
images to grayscale with equal probability. The combina-
tion of the above (Acomb.) combines Aji¢. and A, .. by
selecting either one augmentation with equal probability
and thus produces the largest variety in the input.



C. Evaluation of the detection rate and accuracy

Model performance was evaluated at two hierarchical
levels. At the waveform level, each individual TDI spec-
tral waveform was assessed, focusing on the detection of
S’, €', and a’ markers, typically three or more per image.
At the patient level, performance was assessed across all
waveforms within a given patients study, providing an
aggregate measure of the systems accuracy for complete
examinations. We define a marker placed by the domain
expert as detected if there is a predicted marker of the
same type within +0.2s and within £2.5cm/s. From
this rule, we define following quantitative performance
metrics:

The waveform-level true positive rate (T P Ryaveform)
is the fraction of manually annotated peak velocity
markers of a given class that have at least one match.

The waveform-level false positive rate (F P Ryaveform )
is the number of predictions that do not have a matching
ground truth marker divided by the number of ground
truth markers.

The patient-level true positive rate (T'PRpatient) 18
the fraction of images of the test set in which the
T P Ryaveform 1S 1.

Patient-level no false negatives (noF Npagient) is the
fraction of images of the test set that have no false
negatives.

The patient-level no false positives (noF Ppatient)
is the fraction of images of the test set in which
F PRyaveform 1S zero.

Patient-level no errors (noEpatient) is the fraction of
images of the test set in which T'PRyaveform 1S 1 and
no false positives are present.

III. RESULTS

The baseline network detected more than 90 % of the
markers (Table I). This result improved by about two
percent with the color jitter augmentation. However, no
augmentation method dominated all others. Training the
network without augmentation was in none of the metrics
optimal.

On the patient level, the U-Net trained with color jitter
predicted 50% of the TDI without errors (Table I). For
individual peak tissue velocity phases, the T'PRpatient
was between 0.825 and 0.925.

On the waveform level, color jitter augmentation had
the lowest F'P R aveform. Clinically, reducing the num-
ber of false positives is crucial to reducing inaccurate
velocity estimations, reinforcing that color jitter augmen-
tation provides the best alternative for this particular task.

On average, the peak tissue velocities were predicted
with a bias of —0.03cm/s , —0.07cm/s, 0.18 cm/s
and a standard deviation of 0.60 cm/s, 0.60 cm/s, and
0.47 cm/s for (¢'), (a’), and (S’), respectively (Fig. 2).

TABLE I: Detection performance on waveform level
obtained with different augmentation methods (top four
rows) and the patient-level performance using intensity
augmentation (bottom row).

Peak velocity measure

Augm. Metric S’ e’ a’ All
none TPRyaveform  0.924 0899 0913 0914
FPRyaveform 0.138  0.135  0.134  0.136
A TPRyaveform 0960 0919 0919 0933
jit. FPRyaveform 0122 0129  0.119  0.124
A TPRyaveform 0950  0.889  0.929  0.923
P8 FPRyaveform 0.149  0.133  0.149  0.136
A TPRyaveform 0925 0924 0918  0.922
©mb- PPRuaveform  0.132 0133 0.151  0.131
TP Rpatient 0925 0.875 0.825 0.725
As noF Npagient 0937 0.875  0.850  0.725
e noF Ppatient ~ 0.800  0.787  0.762  0.562
noEpatient 0.750 0725 0.637  0.500

none: no augmentation; Aji¢. : intensity augmentation; Ay o : color channel
permutation or grayscale augmentation; Acomb.: combination of augmentations.
The table reports the performance on the waveform level, specifically true
positive rate (T'P Ryaveform) and false positive (F' P Ryayeform) for S, €/,

a’ waves, and overall. The best values in each column are highlighted in bold.
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Fig. 2: Deviation of the predicted myocardial peak tissue
velocity and time to the corresponding matching ground
truth velocity and time. The dashed lines indicate the
mean deviation of each class. The boxplots show the
median (yellow line), a box with interquartile distance
(IQD), whiskers at +2x1QD or the extreme value. Black
dots beyond the whiskers indicate outlier values further
away than +2x1QD.



Fig. 3: Examples of incorrect patient-level predictions. The ground truths (+) and predictions (o) of tissue velocity

peaks S (cyan), €’ (red), and

are overlaid on the input image. Left: Unusual signal in which no a’ waves

are preset. The model confuses a’ and ¢’ and misses two S’ waves (false . Centre: The last o’ wave is marked as
a’ and ¢’ (false positive). Right: There are two S waves marked in two of the waveforms and two ¢’ waves marked

in the last waveform.

IV. DISCUSSION

Deep learningbased detection of peak tissue velocities
in TDI has been reported previously [10], [17]. While
direct comparison with these studies is not feasible due
to differences in test datasets, our approach measures
the same clinically relevant physical quantities cm/s,
ensuring that the results remain directly meaningful for
practical diagnostic applications.

For matched points, we found measurement errors
ranging from +0.47cm/s to +0.60cm/s while [10]
found errors ranging from £0.26cm/s to +£1.25cm/s
between the consensus of two experts and a third expert
or between the consensus of two experts and the machine
[10]. Overall, the error magnitudes observed in our study
were comparable to those reported in prior work, though
they exceeded those observed in previous inter-observer
comparisons between human experts.

At the patient level, all peak tissue velocity points for
each wave type were accurately detected without any
false positives in 50% of the cases. This implies that
in the clinical setting, we expect that in half the cases
no intervention is necessary to obtain quantitative values
that are not inferior to those from a domain expert but
with less effort.

In the qualitative evaluation of failure cases (Fig.
3), we found that not all errors are critical or true
errors. For example, some unmarked points at the edge
of the image were likely missed in the ground truth.
Their inclusion would not affect the extracted patient-
level diagnostic value. Confusions between ¢’ and o
are considered critical. These cases, however, could be
flagged with algorithmic plausibility checks requiring a
strict order of S — ¢/ — a’. Also considered critical are
completely misplaced markers. This happens typically in
unusual (e.g. low-quality) signals and can also be flagged
algorithmically whenever the variability of the velocity
within a class is too large.

Despite the possibility of flagging failures with an
algorithm, the application in its current state requires a
human in the loop to verify, and, if needed, correct the

proposal. Human verification is also needed because the
accuracy is lower than that of human domain experts.

V. CONCLUSION

Our study presents a vendor-agnostic deep learning
system for automated detection of peak myocardial tis-
sue velocities in TDI, designed to streamline echocar-
diographic workflows without compromising diagnos-
tic accuracy. The model operates robustly across het-
erogeneous imaging systems and arbitrary image sizes
without the need for vendor-specific retraining, enabled
by augmentation-heavy training and standardized pre-
processing.

Using a representative clinical dataset from two
echocardiographic platforms prevalent in Switzerland,
the system correctly identified over 93% of tissue-
velocity landmarks. In half of the studies, all detected
peaks met predefined quality thresholds, substantially
reducing the need for manual corrections and accel-
erating analysis throughput. Errors such as confusion
between the ¢’ and @’ TDI waves were rare and reliably
captured by automated post-processing checks, ensuring
that uncertain outputs are flagged for expert review.

Integrated within a human-in-the-loop workflow, the
system enables continuous scanner availability, supports
parallel operation of multiple workstations, and pro-
motes consistent, vendor-neutral interpretation of TDI
data. These features contribute to improved operational
efficiency and standardization in echocardiographic as-
sessment.

Future work will focus on extending generalization
to additional ultrasound vendors, integrating quantitative
quality metrics for automated confidence estimation, and
validating the system across broader and more diverse
patient populations. Ultimately, this approach aims to
advance reproducibility, scalability, and accessibility of
echocardiographic tissue velocity analysis in routine
clinical practice.
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