

 Int. J. Web and Grid Services, Vol. 5, No. 3, 2009 219

A scalable service-oriented architecture for
multimedia analysis, synthesis and consumption

Steffen Heinzl*
Department of Mathematics and Computer Science
University of Marburg
Hans-Meerwein-Str. 3
D-35032 Marburg, Germany
E-mail: heinzl@informatik.uni-marburg.de
*Corresponding author

Dominik Seiler
Department of Mathematics and Computer Science
University of Marburg
Hans-Meerwein-Str. 3
D-35032 Marburg, Germany
and
Information Systems Institute
University of Siegen
Hölderlinstr. 3
D-57068 Siegen, Germany
E-mail: seiler@informatik.uni-marburg.de
E-mail: d.seiler@fb5-uni-siegen.de

Ernst Juhnke, Thilo Stadelmann
and Ralph Ewerth
Department of Mathematics and Computer Science
University of Marburg
Hans-Meerwein-Str. 3
D-35032 Marburg, Germany
E-mail: ejuhnke@informatik.uni-marburg.de
E-mail: stadelmann@informatik.uni-marburg.de
E-mail: ewerth@informatik.uni-marburg.de

Manfred Grauer
Information Systems Institute
University of Siegen
Hölderlinstr. 3
D-57068 Siegen, Germany
E-mail: grauer@fb5.uni-siegen.de

 Copyright © 2009 Inderscience Enterprises Ltd.

 220 S. Heinzl et al.

Bernd Freisleben
Department of Mathematics and Computer Science
University of Marburg
Hans-Meerwein-Str. 3
D-35032 Marburg, Germany
E-mail: freisleb@informatik.uni-marburg.de

Abstract: Although Service-Oriented Architectures (SOAs) were not designed
for multimedia processing, they speed up the development of distributed
multimedia applications by allowing the composition or reconfiguration of
existing services. For example, the Business Process Execution Language for
Web Services (BPEL) is a powerful tool to orchestrate, model and execute
workflows. However, due to its process-oriented approach, it is not directly
applicable to data-intensive applications, such as those from the multimedia
domain. In this paper, a comprehensive service-oriented infrastructure for
multimedia applications is presented that (a) overcomes some drawbacks of
BPEL for data-intensive applications and (b) provides tools that further ease the
development and use of web services for a broad scope of multimedia
applications covering video content analysis, audio analysis and synthesis and
multimedia consumption. The proposed service-oriented infrastructure can be
easily integrated into existing business processes by using BPEL. A dynamic
allocation of cloud computing resources ensures the scalability of a multimedia
application. To allow efficient and flexible data transfers in BPEL workflows,
an implementation of the Flexible SOAP with Attachments (Flex-SwA)
architecture is used that allows data transmission in conjunction with SOAP
messages. The protocol requirements of services in the case of real-time,
streaming or file transfer can be described by a communication policy. Three
use cases of multimedia applications are evaluated.

Keywords: multimedia; service-oriented architectures; SOAs; distributed
analysis; mash-up; workflow; Business Process Execution Language; BPEL;
Visual Grid Orchestrator; ViGO; video content analysis; audio resynthesis.

Reference to this paper should be made as follows: Heinzl, S., Seiler, D.,
Juhnke, E., Stadelmann, T., Ewerth, R., Grauer, M. and Freisleben, B. (2009)
‘A scalable service-oriented architecture for multimedia analysis, synthesis and
consumption’, Int. J. Web and Grid Services, Vol. 5, No. 3, pp.219–260.

Biographical notes: Steffen Heinzl is a Research Assistant at the Department
of Mathematics and Computer Science of the University of Marburg, Germany.
He received his Diploma in Computer Science from the University of Applied
Sciences, Fulda, Germany, in 2004. He is currently pursuing his PhD at the
University of Marburg. His research interests include web services, web service
policies, data transfers and usability in service-oriented environments and the
combination of multimedia and the SOA paradigm.

Dominik Seiler received his Diploma in Computer Science in 2008 from
the University of Marburg, Germany. He is currently working as a
Research Assistant at the Information Systems Institute of the University
of Siegen, Germany, and pursuing his PhD at the University of Marburg.
His research interests include SOA, cluster/grid computing and distributed
multimedia processing.

 A scalable SOA for multimedia analysis, synthesis and consumption 221

Ernst Juhnke is a Research Assistant at the Department of Mathematics
and Computer Science of the University of Marburg, Germany. He is
currently pursuing his PhD at the University of Marburg, where he received
his Diploma in 2007. His research interests include SOA, workflows and
cluster/grid computing.

Thilo Stadelmann received his Diploma in Computer Science from the
Giessen-Friedberg University of Applied Sciences, Germany, in 2004. He is
currently working towards his PhD at the University of Marburg, Germany,
where he is also a Research Assistant at the Department of Mathematics and
Computer Science. His current research interests include artificial intelligence,
pattern recognition and machine learning, especially in the field of automatic
speaker recognition.

Ralph Ewerth received his Diploma in Computer Science in 2002 and his PhD
in Computer Science in 2008, both from the University of Marburg, Germany.
He is currently a Research Assistant at the Department of Mathematics and
Computer Science of the University of Marburg. His research interests include
distributed multimedia processing and content-based multimedia retrieval.

Manfred Grauer received his Diploma in Engineering/Cybernetics in 1970 from
the Moscow Institute of Technology, Moscow, Russia, and his PhD in 1975
and his Habilitation in 1979 from the Technical University of Merseburg,
Germany. Since 1989, he has been the Director of the Information Systems
Institute of the University of Siegen, Germany. From 1991 to 1995, he was
elected as the Dean of the Faculty and served from 1997 to 2002 and again
from 2006 until now as a Vice President of the University of Siegen, Germany.
His research interests shifted from interactive decision systems towards the
design of information systems and he is currently focusing on product life cycle
management and cluster/grid computing, including multidisciplinary analysis
and optimisation.

Bernd Freisleben is a Full Professor of Computer Science at the Department
of Mathematics and Computer Science of the University of Marburg,
Germany. He received his MSc in Computer Science from Pennsylvania
State University, USA, in 1981 and his PhD and Habilitation in Computer
Science from Darmstadt University of Technology, Germany, in 1985
and 1993, respectively. His research interests include distributed/parallel
systems, cluster/network/grid computing and middleware for internet
application development.

1 Introduction

With the continuous growth of video data, there is an increasing demand for video
content analysis and indexing to effectively support video databases and retrieval
systems. The typical tasks for video content analysis (such as cut, face or text detection)
are computationally demanding and require distributed (high-performance) resources for
parallel processing to guarantee an acceptable run-time behaviour. Since media analysis
deals with computation-intensive tasks, it is reasonable to divide the analysis as a
whole into several steps, such that single analysis steps can be distributed to different
nodes. The paradigm of a Service-Oriented Architecture (SOA) promises that these

 222 S. Heinzl et al.

computation-intensive tasks can be exposed as services and effectively combined to new
applications, thus speeding up the development of applications. For the combination of
these services (called ‘orchestration’), it is reasonable to use the Business Process
Execution Language for Web Services (BPEL), the de facto standard for workflows in
the industry, to allow companies to integrate multimedia services into their existing
service portfolios. However, since all service data pass the BPEL engine, the application
of BPEL to data-intensive applications from the multimedia domain is not very efficient.
Furthermore, the development of web services is still difficult and time-consuming and in
practice, it is almost impossible for ordinary end users. To obtain a broader user basis, it
is necessary to simplify the use of web services. Also, to provide a timely execution, a
distributed infrastructure for multimedia processing should be easily scalable.

In this paper, we present an SOA for multimedia applications to address these
issues. The used Flexible SOAP with Attachments (Flex-SwA) framework enables the
modelling of data flows in BPEL. In this way, an efficient and flexible data transfer is
possible in BPEL workflows for multimedia applications. In addition, several tools are
offered to ease the development of web services, namely:

• a web/grid service browser

• a mash-up editor to easily use services

• the Visual Grid Orchestrator (ViGO) to create new services from existing ones.

Scalability is achieved by the possibility of dynamically allocating resources from a
computational cloud, such as the Amazon Elastic Compute Cloud (EC2) (Amazon Web
Services LLC, 2009a). Finally, it is shown how a communication policy (Heinzl et al.,
2008a) embedded in the service’s Web Services Description Language (WSDL)
document can be used to describe the protocol requirements of services to support
real-time, streaming or file transfer. Three case studies covering a broad multimedia
scope are presented to show how technologies and tools provide conceptual
improvements as well as improvements in terms of usability, ease of development and
efficiency. An audio resynthesis service, a face detector service and a video-on-demand
service are analysed in detail, along with the experimental results.

The rest of the paper is organised as follows. Section 2 discusses the requirements
for a multimedia SOA, introduces a layer model for it and explains the tools and
technologies needed to fulfil the requirements. Section 3 presents the services that the
multimedia SOA currently offers and describes the services that have been selected
as use cases, as well as their implementation. Section 4 presents a quantitative evaluation
of the use cases, whereas Section 5 presents a qualitative evaluation providing deeper
insights into the feasibility of the provided tools. Section 6 gives an overview of the
related work. Section 7 concludes the paper and outlines areas for future work.

2 A service-oriented architecture for multimedia processing

At first glance, the SOA paradigm seems to be an appropriate solution for multimedia
tasks. But to build such a multimedia SOA with a suitable set of tools and technologies,
the general roles of an SOA, the structure of typical multimedia workflows and the
implications of using BPEL, scalability issues and topics like ease of use should be taken
into account.

 A scalable SOA for multimedia analysis, synthesis and consumption 223

2.1 General roles in a multimedia SOA

Many roles can be distinguished in a typical SOA (Kajko-Mattsson et al., 2007).
However, for an SOA for multimedia analysis, a coarse distinction between different
roles is sufficient. Figure 1 shows a model of the general actors involved in a multimedia
SOA, along with some of their requirements.

Figure 1 The general roles in a multimedia SOA (see online version for colours)

A service developer is interested in an easy way to develop new applications and
services. He/She is assisted in this task by using additional middleware technologies for
the transfer of large amounts of data that cannot be managed efficiently via SOAP.
Furthermore, using a workflow editor, a service developer combines low-level services
such as feature extraction and classification with new high-level services such as face
detection or cut detection in videos, speaker recognition in audio streams and so on.

The service provider is interested in efficient services in that the response time
is minimised for users. File transfers should be handled efficiently, thus reducing the
response time of the service for the user.

The service user is interested in using services in an easy manner. For this reason,
a browser able to handle the WSDL description of web services is useful. Some users
might be interested in modifying their application or creating a new one. This can be
achieved by a mash-up editor. A mash-up editor should be offered as an Rich Internet
Application (RIA) based on widely spread technologies like Flash, JavaScript or other
highly compatible technologies for users to avoid performing difficult installations.

 224 S. Heinzl et al.

2.2 Structure of a multimedia workflow

Most approaches for content analysis are built in a monolithic fashion following a
sequential structure (see Figure 2 and Eide et al., 2002) and are divided into two phases:
training and classification. In general, preparatory tasks are executed to generate the
smallest entities of interest needed to solve the problem in question, e.g., retrieving
images from a database, decoding video frames or decompressing audio signals. Next,
some preprocessing is done, such as transforming or filtering. Then, the basic step of
feature extraction will be performed, followed by the actual classification. Sometimes, a
post-processing step is needed, e.g., building a representation of the analysis results. The
training phase is similar, but a training step instead of a classification step is performed.

Figure 2 The multimedia analysis procedure (see online version for colours)

Furthermore, the classification step can be seen as a feature extraction step offering
the opportunity to combine it with other features for building more complex
analysis approaches.

The different tasks in the sequential structure are candidates to be separated and
wrapped as services. By allowing the composition or reconfiguration of the existing
services, workflow languages speed up the development of distributed multimedia
analysis applications.

2.3 Modelling the data flow in BPEL

BPEL as an orchestration language for business processes defines a workflow as a
set of activities. These activities are divided into two groups: basic and structured. The
basic activities describe single steps for interaction with a service and/or the manipulation
of data passing the engine. With the help of structured activities, the order of activity
execution is dictated. Thus, BPEL provides a rich set of elements to explicitly model
the control flow (i.e., sequence of invocations, fault handling, etc.), but the data flow is
only modelled implicitly by the manipulation and assignment of data encapsulated in
request/response messages. For example, the normal way of modelling the data exchange
between two simple web services is as follows: invoke the first service with a request
message, wait for the corresponding response from the service, assign all needed data to
the input variable of the second service, invoke it with a request message encapsulating
the data and wait for the response. In the context of highly frequent data exchange and
transfer of large amounts of data, this way of modelling the data flow is not efficient.

 A scalable SOA for multimedia analysis, synthesis and consumption 225

Figure 3(a) shows the typical sequence of service invocations and the corresponding

data flow. For example, the workflow engine invokes a preprocessing service and sends
the multimedia data (A) to it. The service returns the results (B) to the workflow engine
and these results are again transferred to one or more other services that perform the next
step of multimedia analysis. Clearly, some of the data ((B) and (C)) are transferred at
least twice. If, for example, Service 1 is a video splitter service, the video would be
transferred to the video splitter and the video parts are moved back to the BPEL engine
and then to different services. This induces a significant load on the BPEL engine.

Figure 3 The data flow via a BPEL engine (see online version for colours)

To reduce the load on the BPEL engine, references can be used to achieve efficient data
transmissions in BPEL workflows. Figure 3(b) shows the data flow via references under
the full control of the BPEL engine. A reference points to a resource location in memory
or to a file. The service can then directly pull the data from the resource location. The
data does not have to be sent to the BPEL engine; only the references have to be sent.
Since the references are very small, the load on the BPEL engine is very small, too. Thus,
the use of references circumvents to transfer data twice.

For the services to which data are sent repetitively (for example, video frames are
sent repetitively), two ways to model the data flow are proposed in this paper:

1 For each resulting processing unit (video part, frame, audio sample, etc.), a reference
passes the BPEL engine and is sent to the destination service. This way, the BPEL
engine keeps full control over the data flow. Furthermore, the control flow resides at
the engine. Thus, it is possible to model conditional elements in reaction to the
responses sent by the services. Failure and compensation handling is also possible in
the workflow.

2 For communication to each service, a reference to a memory location is generated
and the data are ‘streamed’ from there. This way, it is possible to write to a memory
location which the target service can read from. The BPEL engine is only able to
select the services that should then communicate via the references, i.e., BPEL builds
the streaming chain and then eventually waits for a callback or control messages.
Since even less data are transferred, this approach is expected to be very efficient.

 226 S. Heinzl et al.

2.4 Scalability

When using workflows, the end point of each service invocation is typically set statically
(Andrews et al., 2003). However, if the demand for an actual workflow increases (Elson
and Howell, 2008), the service invocations on a particular machine increase as well. With
this increased demand, it is possible that these systems become overloaded, resulting in
the service not being available anymore. If no explicit fault handling is performed within
the workflow, the latter one will abort and the computation time is wasted.

To keep services available, an easy way is to extend the (hardware) platform on
which the services are executed. In this way, the variety of resources for a certain service
is bigger and the load can be reduced to keep services available. This is done manually by
starting machines, deploying the necessary software and, if necessary, adapting the
workflow. But preferably, this should be done automatically.

A workflow engine should be used to track the load of the platform and, if the
system gets overloaded, it should dynamically provide new machines and perform
service invocations on these new machines. This can be done by utilising cluster or grid
desktop resources (Tanaka et al., 2009). Since it is unlikely that as many machines
as needed are available in-house for this dynamic growth, the use of so-called cloud
resources is possible. The EC2 is one candidate for such cloud resources and can
dynamically provide new resources to be used for the platform to keep the system load at
an acceptable quality level. It offers each user a set of virtual machines in which his or
her applications are deployed.

Because the start-up (and shutdown, if the load decreases) of virtual machines are not
performed by the EC2 itself (but by an external client), the workflow engine should
handle these tasks.

2.5 Ease of use

When offering web services in an SOA, there is often the problem that such services
cannot be used easily. Client programs or portlets have to be written by developers and a
portal has to be offered by the service provider. Most WSDL files miss a working and
easy-to-use client to invoke web services. Potential web service users have to write their
own client software to test and use a web service. Even if clients are available, they are
often built for specific platforms, such as the Microsoft .NET framework. This limits
their use to people using the Microsoft Windows operating system or computer experts
who know how to compile or build their own client software. Therefore, familiar web-
based
environments that can be installed easily, like a web browser or websites with server-side
software based on widespread technologies like Hypertext Markup Language (HTML),
JavaScript, Java and Flash, are desirable.

2.6 Multimedia SOA layer model

Taking into account the requirements of different actors, the restrictions imposed by
modelling the data flow with BPEL, the structure of typical multimedia workflows
and scalability and ease-of-use requirements, a layer model for a multimedia SOA (as
shown in Figure 4) is proposed, consisting of five layers: interaction layer, services and
workflow layer, middleware layer, transport layer and platform layer.

 A scalable SOA for multimedia analysis, synthesis and consumption 227

Figure 4 The layer model for a multimedia analysis framework (see online version for colours)

The interaction layer provides a front end to communicate with the multimedia SOA.
A developer uses a BPEL workflow editor like the grid-enabled ViGO (see Dörnemann
et al., 2007) to define new workflows out of existing services and workflows from
the services and workflow layer. Workflows and single services can be executed by the
web and grid services browser (Heinzl et al., 2008b) handling user interface generation
and service execution. Service users may even create new applications by using a
grid-enabled mash-up editor that allows the combination of a predefined set of services
(e.g., face detection) and web applications like Flickr and so on.

The workflow layer consists of services from the services layer and possibly, of other
workflows. A workflow may already indicate a binding of services to actual compute
nodes, i.e., which compute nodes are used for which services.

The services and workflow layer consists of workflows and services arranged in
an arbitrary number of sublayers. Workflows consist of services and possibly other
workflows. The services sublayers range from low-level services such as feature
extraction and feature classification over higher-level services such as face detection and
cut detection to high-level services like actor detection (answering questions such as
‘How many minutes was Actor A on the screen?’). Services can be combined with new
services across all sublayers. A communication policy (Heinzl et al., 2008a) describes
the protocols on which a service relies when data transfers or streaming capabilities
are needed.

 228 S. Heinzl et al.

The middleware layer uses Flex-SwA (Heinzl et al., 2006; Seiler et al., 2008) to
provide references to resources. These references are mainly used for streaming
capabilities such as repetitive sending of frame data or when large files, e.g., videos, have
to be transferred, as SOAP is not well suited for both tasks. With the help of Flex-SwA,
the proposed data flow modelling approaches are integrated into the multimedia SOA.

The transport layer realises the actual transmission of data from the interaction
layer to services, between services on specific platforms and from services to the
interaction layer.

The platform layer provides the resources needed to execute services. This includes
dedicated and dynamic resources. The former ones are in-house desktop pools or cluster
nodes. Dynamic resources can be virtual machines provided by Amazon EC2. A scalable
infrastructure can be achieved using a dynamic provisioning component within the
workflow engine, as proposed by Dörnemann et al. (2009a).

2.7 Flex-SwA

Flex-SwA (Heinzl et al., 2006) uses references to flexibly and efficiently handle data
transfers. The references in Flex-SwA point to data locations. For instance, these data
locations can be files hosted by third-party servers or the client itself or buffers in
the client’s main memory or in the memory of third-party servers. The references to
memory locations can, for example, be represented by a Uniform Resource Identifier
(URI) containing a Universally Unique Identifier (UUID). Also, the repetitive sending of
data is handled via references, such that a reference can be forwarded to the node(s) that
should actually consume the data.

Flex-SwA also offers different behaviours related to the transmission of binary data
and the execution of services. These are service execution patterns, data transmission
patterns, concurrency patterns and blocking mode patterns. For each service, a
combination of these behaviours can be chosen by the application developer.

• Service execution patterns – there are two possible behaviours regarding the
handling of data transmission and the execution of a service. In the non-overlapping
mode, the platform performs all data transfers prior to the invocation of the service;
in the overlapping mode, data transmission and service execution are performed
in parallel.

• Data transmission patterns – the platform can be instructed to perform an eager or
lazy transmission of referenced data resources, meaning that references are resolved
as soon as possible or only upon a real attempt to access their content. The latter is
especially useful when a data resource can be omitted, e.g., if an error has occurred.

• Concurrency patterns – data resources can be transmitted in an iterative or
concurrent fashion. If data resources are transmitted iteratively, only one data
resource at a time is retrieved. If the data resources are transmitted concurrently, all
data resources are retrieved in parallel.

• Blocking mode patterns – two blocking mode patterns are offered: blocking and
nonblocking. If a service is in blocking mode, it requests the retrieval of a data
resource and waits until it is fully available. If a service is in nonblocking mode,
service execution resumes directly after the retrieval request.

 A scalable SOA for multimedia analysis, synthesis and consumption 229

The reasonable combinations of data transmission, service execution, concurrency and
blocking mode patterns are shown in Figure 5.

Figure 5 The communication patterns in Flex-SwA (see online version for colours)

A combination of non-overlapping transmission handling and the eager transmission
mode (Figure 5a) results in the transfer of every data resource before the service starts.
This scheme is similar to the transmission via SwA (see Barton et al., 2000). The
transmission of data resources can also be done concurrently (Figure 5b), for example, by
using several threads, thus providing the possibility of improving the transfer rate.
Combining overlapping and eager transmission handling (Figure 5c) results in the
immediate start of data transmission and the service. This mode is useful if the service
has a certain warm-up time or does not need any data resources at the service’s start.
Here again, a concurrent transmission of data resources (Figure 5d) possibly provides a
better transfer rate than the iterative approach. Lazy data transmission in combination
with overlapping transmission handling results in an on-demand transmission of data

 230 S. Heinzl et al.

resources. If the service needs a data resource, transmission is triggered at that time. This
can be done in a blocking manner (Figure 5e), i.e., the service is blocked until data
are retrieved from the remote source and stored locally by the infrastructure, or in a
non-blocking manner (Figure 5f), i.e., the service only triggers the transmission and
continues directly; the transferred data may be accessed by the service upon reception.
The blocking mode is used if the service needs the complete data resource before the
service can resume execution. The non-blocking mode can be used if only a part of the
data resource is needed by the service.

In addition to the communication patterns, a service can be configured to persist
data as a file prior to accessing the data or to keep the data in memory. Direct memory
access promises a faster processing of data, while persisting data has the advantage of
huge amounts of data being handled better since disk space is available in larger amounts
compared to the main memory.

2.8 ViGO

ViGO (see Dörnemann et al., 2007) is a tool for graphical workflow creation. It has
been especially designed (i.e., web services according to the Web Service Resource
Framework or WSRF). This tool complies with the BPEL 1.1 standard (Andrews et al.,
2003) and allows the use of ‘normal’ web services. When creating workflows, the user
is assisted by several wizards, minimising the need to know the details of the BPEL
syntax. Furthermore, all operations in the editor are designed such that the whole process
remains consistent.

ViGO is based on the Domain-Adaptable Visual Orchestrator (DAVO) (Dörnemann
et al., 2009b). DAVO is a domain-adaptable, graphical BPEL workflow editor. The
key benefits that distinguish DAVO from other graphical BPEL workflow editors
are the adaptable data model and user interface that permit customisation to specific
domain needs.

2.9 Web and grid service browser

The web and grid service browser (Heinzl et al., 2008b) is a familiar entry point for
end users to ‘enter’ and use a service-oriented grid and easily invoke web services. It
extends the functionality of portals and renders WSDL files directly in addition to normal
HTML files, such that a service developer does not need to develop a client anymore and
a service provider does not need to host and maintain a portal. For the end user, a
graphical front end is generated that eases the invocation of web and grid services or the
submission of a job. A user does not need to create a client anymore. Data transfers
are integrated into the service invocation using an implementation of the Flex-SwA
architecture, such that a user does not need to know the location he/she has to transfer
data to and does not need to learn how to use data transfer mechanisms like Secure Shell
(SSH) or GridFTP. Furthermore, the web and grid service browser takes care of security
and certificate handling.

 A scalable SOA for multimedia analysis, synthesis and consumption 231

2.10 Mash-up editor

The goal of the mash-up editor is to provide an easy-to-use front end for a predefined
set of services of the multimedia SOA as well as for popular web applications such
as YouTube, Flickr, GoogleMaps, etc. In contrast to other mash-up editors, this mash-up
editor converges the use of web and grid services with popular web applications. The
editor provides two views:

• an application developer view

• an application view.

In the application developer view, new applications can be defined and
saved as new components. The components are saved in an Extensible Markup Language
(XML) format from which Adobe Flex components and BPEL workflows can be
generated. An application developer mostly handles specific parts of the output of one
service or application and supplies other services or applications with it. He/She deals
mainly with result sets, i.e., with arrays or lists of one type of data like images, videos,
etc. By connecting the inputs and outputs of existing components, new components can
be generated.

Instead of working on a large scale (with arrays of images and videos), the user can
simply use the mash-up editor in the application view, where he/she can work
with concrete search results, single videos and images.

To invoke grid services, the capabilities of the web and grid service browser are used.
More precisely, a remote execution engine that can be triggered via a Hypertext Transfer
Protocol (HTTP) request handles the invocation of the grid service.

3 Services of the multimedia SOA

The goal of the multimedia SOA is to offer several analysis services and tools to easily
use and recombine these services. Currently, the service offer comprises audio analysis
services, video analysis services and consumer services.

1 Audio analysis services

• Automatic speaker diarisation – The service provides state-of-the-art techniques
to perform speaker diarisation: for a given input audio or video file, an index
is automatically created that tells ‘who spoke when’. This means finding all
segments of speech and assigning those segments that have been spoken by
the same speaker to the same cluster.

• Feature extraction – This service provides access to 21 different feature
extraction methods, including well-known Mel-Frequency Cepstral Coefficients
(MFCCs). Taking an audio or video file as input, the feature vectors according
to the chosen method and parameter settings are returned.

• Voice model building – Acoustic models (dedicated, but not limited to speech)
can be built using this service. The user can choose among all prevailing model
types, including Gaussian mixture models, hidden Markov models or one-class
support vector machines.

 232 S. Heinzl et al.

• Audio resynthesis – The single steps of an audio analysis process bear many
sources of confusion for a potential user: the different methods for feature
extraction or model building are complex in themselves and a great number of
available parameters for each method makes it difficult – even for an expert – to
tell what effect a certain choice may have on the final result. The service offers
methods to resynthesise the results of a specific analysis step using a specific
parameter setting. A user can then listen to the result and gain intuitive insight
into the effects of his/her selections from the way it sounds. By resynthesis, we
mean the synthesis of a sound from features or models (that have previously
been built from an audio file, thus ‘re’-synthesis) in a way that strives not for
a pleasing or natural sound, but for an audible representation that makes the
settings of the feature/model perceivable.

2 Video analysis services

• Decoder – This service decompresses MPEG-1 and MPEG-2 video files and
outputs single video frames.

• Feature extractor – This service computes the dissimilarity of consecutive video
frames by means of colour histogram differences and motion-compensated pixel
differences. These features are used by the shot boundary detector.

• Shot boundary detector – Temporal segmentation into meaningful units is
an essential prerequisite for video indexing and retrieval purposes. Shots are
separated in a video by abrupt shot changes (cuts) and gradual shot transitions
such as fade and dissolve.

• MP7 converter – MPEG-7 (Salembier, 2002) is an ISO standard that
formalises the description of metadata for multimedia documents. Basically,
the MP7 service transforms analysis results (e.g., the result of temporal video
segmentation) into a description that complies with the MPEG-7 standard and
the service outputs corresponding MP7 files. Furthermore, the service is capable
of merging several MPEG-7 input files into a single MPEG-7 representation.

• Video face detector – This service detects frontal faces in a video frame. This
service is based on Intel’s Open Source Computer Vision Library (OpenCV)
(Intel Corporation, 2008) implementation of the face detector that was originally
proposed by Viola and Jones (2004).

• Video splitter – The video splitter splits MPEG-1 and MPEG-2 video files into
MPEG-1 and MPEG-2 video parts.

3 Consumer services

• Video on Demand (VOD) – A user may invoke the VOD service to either
subscribe to a VOD multicast based on Real-time Transport Protocol (RTP)
(Schulzrinne et al., 2003) or as a front end to YouTube to receive a streamed
Flash video.

3.1 Use cases

For evaluation purposes, three use cases have been selected, one from each domain.

 A scalable SOA for multimedia analysis, synthesis and consumption 233

3.1.1 Audio resynthesis

For audio analysis, the audio resynthesis service called WebVoice is evaluated. It
offers four different operations that make the intermediate result at specific points in
the analysis process audible:

1 wav2splice – This operation produces a ‘spliced’ version of the input audio. The
original signal is segmented into blocks of specifiable length and the time order of
these blocks is then randomised. This helps in analysing the effect of time ordering
on the perception of an audio signal.

2 wav2features – Here, MFCCs are extracted from the given audio signal based
on the given parameter setting. The feature vectors are then resynthesised into a
signal, helping the user understand the effects of different parameter settings
like pre-emphasis, filter bank size or the number of coefficients.

3 wav2gmm – This is one of two operations to build a statistical model from audio
features (that are automatically extracted from the given audio signal). It allows the
configuration of the creation of a Gaussian mixture model with a full or diagonal
covariance matrix. The result is a signal resynthesised from the feature vectors
(MFCCs) drawn from the model according to the probability density function it
represents. Listening to it evokes a sense of what the model represents in general.

4 wav2hmm – This operation uses a hidden Markov model for resynthesis, as
stated above.

The evaluation of this use case will show that Flex-SwA is a more efficient and flexible
technology for transferring bulk data (in this case, a wave file) than standard mechanisms
like SwA and SOAP itself. The different communication patterns allow an investigation
of the best configuration for data transfers that may also rely on the underlying hardware
(e.g., multicore or single-core processors). Furthermore, for interaction with the service,
the functionality of the web and grid service browser as a tool dealing with web or grid
services in general and multimedia services in particular is shown.

3.1.2 Video face detection

From the domain of video analysis, a simple workflow consisting of three services for
face detection in videos is presented. Three variations of this workflow are discussed,
each of them using a different style of data transmission.

A monolithic implementation for face detection typically consists of the
following steps:

Step 1 An MPEG decoder sequentially produces a series of frames from a given
input video.

Step 2 Each decoded frame is processed by a face detection algorithm mainly
consisting of feature extraction and classification. The results of this algorithm
are bounding rectangles stored in a simple list.

Step 3 After processing the whole input video in this manner, a final list is given to a
component, which uses this information to build an MPEG-7 file containing
meta-information for multimedia data.

 234 S. Heinzl et al.

This monolithic implementation can be decomposed by wrapping the functionality
performed in the steps into services. A service-oriented realisation could, for example,
cover three services: MPEG decoder, face detector and MPEG-7 converter. Three
different workflows have been designed using these services, each with a different data
transfer style:

1 The first workflow relies strictly on the exchange of SOAP messages. Decoded
frames and detected faces are encapsulated in these messages and delegated by the
orchestration engine to the face detection service and MPEG-7 converter service.

2 The second workflow uses Flex-SwA’s reference concept; the data remain in the
memory of the data producer (decoder or face detector) and only a small reference
is transmitted in a SOAP message from the producer (via the orchestration engine)
to the consumer (face detector or MPEG-7 converter), who can then pull the
data directly.

3 The last workflow also uses Flex-SwA. Just one reference is delegated from the
decoder over the engine to the face detector and another reference, from the face
detector over the engine to the MPEG-7 converter. These two references are used to
install a fixed connection between the services for frame and face data transmission,
such that a service can repeatedly read the data directly from the producer.

The evaluation of this use case will show that the two proposed approaches to model
the data flow explicitly by using Flex-SwA in BPEL workflows are significantly more
efficient than modelling the data flow implicitly. One approach leaves full control of the
data flow with the BPEL engine; the other approach shifts control of the data flow to
Flex-SwA. The design of the three workflows has been alleviated by the ViGO workflow
editor. The interaction between the user and the services takes place again by using the
web and grid service browser.

3.1.3 Video on demand

An evaluation of a VOD service is presented from the area of consumer services. The
integration of the VOD service will show the limits of web services with respect to
streaming, soft real-time requirements and file transfers.

There are two main ways to organise the transmission of a video in a
VOD application:

1 The video is completely transferred to the end user before playback is started. Thus,
the user can skip parts of the video.

2 The video is streamed in ‘real time’ to the user or partially buffered. Thus, the user
cannot jump forward to parts that have not yet received.

The first possibility is not very well suited if a user wants to watch a video ad hoc, since
transferring the video may take a lot of time. Using SOAP even makes the situation
worse. The second possibility is more suitable (and very popular, e.g., YouTube) for
watching videos in an ad hoc manner. If the video is sent to several customers,
RTP will possibly be used for transmission. Another possibility is to use Transmission
Control Protocol (TCP) for point-to-point communication and buffer parts of the video
locally before watching the video. To integrate the VOD application into an SOA with
standardised web service technologies, RTP packets have to be sent over SOAP.

 A scalable SOA for multimedia analysis, synthesis and consumption 235

The evaluation of this service shows that it is hard to achieve an SOAP-based VOD

service with a sufficient performance. Three scenarios are presented, each showing a
different degree of integration into the SOA. The first scenario presents a standard VOD
application that is not integrated into the SOA. The second scenario presents a service
that realises the RTP communication over SOAP. The third scenario shows how a
communication policy (Heinzl et al., 2008a) can be utilised to express the need for RTP
as the communication protocol and integrate it into the SOA.

For interaction with the user, the Flash variant of the service is shown with the help of
the mash-up editor.

3.2 Implementation issues

The implementation of the described services has been realised either as web or grid
services. Web services are basically stateless, meaning that between two invocations, a
web service does not remember information about its clients. Grid services, on the other
hand, manage states according to the WSRF (see Graham et al., 2006) and can provide
information about their current progress, which is usable for long service runs. An
advantage of web services over grid services is that clients can be built more easily for
web services, since better tool support exists for this task.

The WebVoice service for audio resynthesis is based on the Speaker Classification
Library (SCLIB). This C++ class library is currently under development at the
University of Marburg, Germany, and provides state-of-the-art speaker recognition and
related algorithms, methods and tools under a unified interface. The service has been
implemented as a web service in Apache Axis 1.4 since it takes ‘only’ a plain 16 kHz,
16-bit mono-channel MS-RIFF WAV file as input and returns another wave file
representing the selected features. Until now, the service works in a monolithic fashion,
such that parallelisation is not yet possible. But since the implementation of the service is
efficient, it might be sufficient to replicate the service.

The video face detection service has been realised by implementing several grid
services in Java with the help of the ‘Service Generator’ of the Grid Development Tools
(GDT) (see Friese et al., 2006). As a grid middleware, the widespread Globus Toolkit
(Foster, 2005) was used. Since the feature extraction task of the face detection algorithm
is the most time-consuming task, it is desirable to parallelise that task. The use of grid
services enables us to move these services to a virtualised cluster in the future.

The first grid service wraps an MPEG decoder written in C++; the second one
is the video face detector that uses the algorithms of the OpenCV library (Intel
Corporation, 2008) and the third one converts the analysis results of the preceding
service into a standard MPEG-7 file. All services publish several methods to support
different workflows.

The additional features that grid services offer also require a more complex
implementation. Since the use of grid services is not directly supported by graphical
workflow modelling tools in the BPEL environment, the BPEL-based workflows have
been designed with ViGO, a BPEL editor able to design workflows consisting of grid
services and a modified ActiveBPEL engine (Dörnemann et al., 2007) able to handle grid
service invocations and platform integration (e.g., Amazon EC2).

 236 S. Heinzl et al.

The VOD service was implemented with help of the Java Media Framework, which
provides an RTP implementation that can be used to stream videos over the network. The
YouTube front end has been implemented as an Adobe Flex component.

4 Quantitative evaluation of the use cases

After describing the use cases and their implementation, a quantitative evaluation of the
use cases is presented.

4.1 Audio resynthesis (WebVoice)

The WebVoice service was tested with different Flex-SwA communication and memory
patterns to determine the most efficient pattern for the underlying hardware and operating
system (dual-core Pentium D 3GHz processor with 3 GB of RAM and a Microsoft
Windows XP Professional SP2 operating system). The client was executed on another
computer with the same specifications on the same LAN. The implementation of the
service may depend on the pattern used. If a lazy pattern is used, the implementation
effort may increase. Listing 1 shows the implementation of the wav2splice operation
of the WebVoice service used for all communication and memory patterns except for
lazy nonblocking.

Listing 1 Implementation of the wav2splice operation (exception handling omitted)

public Reference [] wav2splice (Reference [] ref,
 boolean usePhaseSynthesis, int preservedBlockSize,
 int intermediateFrameCount, double steepness,
 double olaErrorTarget, int olaMaxIterationCount)
{
 Reference [] res = new Reference [ref. length];
 for (int i = 0; i < ref. length; i++)
 {
 InputStream is = ref[i].acquire ();
 SC_Wrapper wrapper = new SC_Wrapper();
 String fName = wrapper.wav2splice (is,
 "fb12_webvoice/webvoice.ini",
 FlexSwAConstants.getFileServerDir(), usePhaseSynthesis,
 preservedBlockSize, intermediateFrameCount, steepness,
 olaErrorTarget, olaMaxIterationCount);
 res[i] = returnReferenceFromString(fName);
 is.close();
 return res;
 }
}

The wav2splice operation of the WebVoice service takes an array of references
and the parameters for the actual C++ wav2splice function. The command
ref[i].acquire() loads the referenced data either from the local disk or memory or
from the remote machine to the local disk or memory, depending on the communication
or memory pattern specified. For the lazy nonblocking variant of the service, the
implementation is shown in Listing 2.

 A scalable SOA for multimedia analysis, synthesis and consumption 237

The loading of the referenced data is initiated for all files before the analysis of

the first wave file starts. Since the nonblocking pattern is used for the service,
the ref[i].acquire() command does not block. Before a wave file is given to the
SCLIB, asking the SemaphoreRegistry ensures that the data referenced by the
reference object are completely transferred, which is a requirement for the SCLIB.

Listing 2 Implementation of the lazy nonblocking variant of the wav2splice operation
(exception handling omitted)

public Reference[] wav2splice(Reference[] ref,
 boolean usePhaseSynthesis, int preservedBlockSize,
 int intermediateFrameCount, double steepness,
 double olaErrorTarget, int olaMaxIterationCount)
{
 Reference[] res = newReference[ref.length];
 InputStream[] is = new InputStream[ref.length];
 for (int i = 0; i < ref.length; i++)
 {
 is[i] = ref[i].acquire();
 }
 for (int i = 0; i < ref.length; i++)
 {
 SemaphoreRegistry.getInstance().acquire(ref[i].getUrid());
 SC_Wrapper wrapper = new SC_Wrapper();
 String fName = wrapper.wav2splice(is[i],
 "fb12_webvoice/webvoice.ini",
 FlexSwAConstants.getFileServerDir(), usePhaseSynthesis,
 preservedBlockSize, intermediateFrameCount, steepness,
 olaErrorTarget, olaMaxIterationCount);
 res[i] = returnReferenceFromString(fName);
 is[i].close();
 return res;
 }
}

As a reference implementation, an SwA implementation of the wav2splice operation
was used, as shown in Listing 3.

In the SwA implementation, the attachments have to be detached from the SOAP
message (if needed) by iterating over the attachment parts of the SOAP message. From
each attachment part, the input stream is given to the wav2splice C++ function.

The average processing time of the service was measured for 50 runs from the client’s
machine. The measurements consist of transferring five wave files, each with a size of
9.5 MB, to the service, analysing the files and returning a reference to the spliced files.
The red bar (Analysis) in Figure 6 indicates the time needed to analyse these five audio
files. The other bars additionally show the time of the data transfers (i.e., analysis and
data transfers) for different communication patterns and SwA.

 238 S. Heinzl et al.

Figure 6 The average processing time of the wav2splice operation (see online version
for colours)

The analysis of the five audio files took 10.87 sec on average. When using SwA for data
transfer, the time for analysis and data transfers was 19.82 sec when directly handling the
content of the SOAP message (SwA Mem) or 21.88 sec when the received attachments
are first been written to the local disk and then processed by the SCLIB (SwA).
When using one of the concurrent memory modes, the processing time speeds
up to 15.62 sec (ENC mem), 15.51 sec (EOC mem) and 15.60 sec (LN mem). The
concurrent persistent modes are a little slower: 16.51 sec (ENC), 16.33 sec (EOC) and
16.31 sec (LN). The modes where the data transfer is done iteratively before the analysis
are slower compared to SwA because five different connections are used to transfer
the data: 26.25 sec (ENI mem), 26.55 sec (LB mem), 27.35 sec (ENI) and 27.06 sec
(LB). Although the EOI mem and EOI modes are iterative modes, they perform a
little faster than SwA and SwA mem due to the overlapping of service execution
and data transmission. After the first file arrives, analysis and the data transfers are
executed concurrently. Generally, when handling the data in memory, the processing is
a little faster.

Listing 3 Implementation of the wav2splice operation with SwA (exception handling omitted)

public Reference [] wav2splice (boolean usePhaseSynthesis,
 int preservedBlockSize, int intermediateFrameCount,
 double steepness, double olaErrorTarget, int olaMaxIterationCount)
{
 int i = 0;
 Message m = MessageContext.getCurrentContext().getCurrentMessage();
 Reference[] res = new Reference[m.countAttachments()];
 Iterator<AttachmentPart> it = m.getAttachments();
 while (it.hasNext())
 {
 AttachmentPart a = it.next();
 InputStream in = (InputStream) a.getContent();
 SC_Wrapper wrapper = new SC_Wrapper();
 String fName = wrapper.wav2splice(in,
 "fb12_webvoice/webvoice.ini",
 FlexSwAConstants.getFileServerDir(),
 usePhaseSynthesis, preservedBlockSize, intermediateFrameCount,

 A scalable SOA for multimedia analysis, synthesis and consumption 239

 steepness, olaErrorTarget, olaMaxIterationCount);
 res[i] = returnReferenceFromString(fName);
 i++;
 }
 in.close();
 return res;
}

Figure 7 shows the standard deviation; it is below 0.7 sec for all experiments.

Figure 7 The standard deviation to invoke the wav2splice operation (see online version
for colours)

The memory footprint at the client’s side is lower when using Flex-SwA, which is an
additional advantage. The client-side memory usage for the different patterns and SwA
is shown in Figure 8. While the WebVoice Flex-SwA client does not need more than
4.41 MB of heap size for the different patterns, the WebVoice SwA client already needs
268.67 MB. The problem is even more severe for larger files; this is due to the
implementation of SwA in Apache Axis. But the problem of an attachment being loaded
to memory as a whole on the client or server’s side persists.

Figure 8 Client-side heap space consumption (see online version for colours)

 240 S. Heinzl et al.

To summarise, the evaluation of Flex-SwA communication and memory patterns
exemplified by an audio resynthesis service has shown that selecting the correct
communication patterns can speed up the processing time of the service by either
overlapping data transfers and service execution or handling data transfers concurrently.
In addition, the use of Flex-SwA reduces the development effort compared to SwA.

4.2 Face detection in videos

For the face detection service, four different scenarios are investigated and compared
with the performance of the monolithic implementation to determine the overhead of
using ActiveBPEL and Globus Toolkit and of distributing this scenario within a LAN.

In the first scenario, the original implementation of the video analysis running on a
dual-core Pentium D 3GHz processor with 3 GB of RAM and a Microsoft Windows XP
Professional SP2 operating system is tested. In the second scenario, the different video
analysis services are deployed to the Globus service container and executed by the
ActiveBPEL engine. The ActiveBPEL engine and Globus service container run on
the same computer. For the third scenario, four computers are used. The ActiveBPEL
engine runs on a Core 2 Duo processor with 3GHz and 2 GB RAM and a Fedora 9
operating system. The Globus middleware is distributed to three computers, each with a
dual-core Pentium D 3GHz processor with 3 GB of RAM and a Microsoft Windows XP
Professional SP2 operating system. The computers are connected by a 100 Mbit/s Fast
Ethernet network.

For the second and third scenario, the total time of the analysis is measured:

• when decoded frames and detected faces are sent in SOAP messages

• when a Flex-SwA reference is sent for each decoded frame and detected face

• when data are streamed directly without passing the ActiveBPEL engine at all.

Normally, SwA would be used for binary data instead of normal SOAP, but SwA is
not supported by Globus Toolkit 4.0.x. Because the sending of uncompressed frame
information as an array in SOAP messages leads to large messages of approximately
5 MB, all array structures are transformed to simple strings, leading to a size of
approximately 1 MB.

A fourth scenario tests how much time the face detection service needs on the
Amazon EC2. Normal SOAP messages are sent in this scenario.

In the first three scenarios, two videos from the TRECVID 2006 test set were
analysed. In the last scenario, only the second TRECVID video was tested. Each analysis
was run 20 times. The results of the first three analyses (consisting of the average of the
measured total times) are shown in Figures 9 and 10. In all scenarios, the video is
transferred to the first service before the service is invoked and the measurement begins.

The total time of the original implementation is used as a reference for the other
scenarios. Figure 9 shows the results for the first video and Figure 10 shows the
results for the second video. In the diagrams, the time measurements for four different
local implementations are presented. The first local implementation is the original
monolithic implementation; analysing the first video took approximately 180 sec and
analysing the second video took 244 sec (188/244). Analysing the same videos using
SOAP took approximately 490/631 sec. When using references, the analysis speeded
up (219/286 sec) compared to the SOAP version. Using streaming capabilities is even

 A scalable SOA for multimedia analysis, synthesis and consumption 241

slightly faster than the original implementation: the analysis took approximately 170/225
sec. While the original monolithic implementation is not multithreaded, the services are
capable of using several threads leveraging the parallel processing capability provided by
the dual-core processors, thus resulting in a faster execution of the analysis.

Figure 9 The analysis runtimes for video 20051227_125800_CNN_LIVEFROM_ENG.mpg
(see online version for colours)

Figure 10 The analysis runtimes for video 20051209_125800_CNN_LIVEFROM_ENG.mpg
(see online version for colours)

 242 S. Heinzl et al.

In tests with a distributed environment, each service is placed on a different computer.
Data transmission via SOAP messages took approximately 683/896 sec. The references
approach speeded up the total time of the distributed analysis to 570/749 sec. The
distributed streaming approach, however, is the fastest approach; it is nearly as fast as the
local streaming approach and needs only 200/264 sec.

In the distributed environment, the reference approach is slower than the streaming
approach since a SOAP message has to be sent and processed for each frame, whereas in
the streaming approach, only one SOAP message has to be sent and processed.

The two proposed approaches based on the extended Flex-SwA framework
outperform normal SOAP messages. The streaming approach is much faster than the
other approaches at the price of breaking the normal orchestration approach. The
communication is shifted to the services or Flex-SwA framework, respectively, bypassing
the BPEL engine. However, the workflow engine can – with additional implementation
effort – control the data flow via callbacks.

For applications that do not necessarily need the best possible runtime behaviour, the
proposed reference approach is a suitable compromise between good runtime behaviour
and leaving full control at the workflow engine. Furthermore, it is possible to send several
frames via one reference, resulting in a tradeoff between data flow control and efficiency.
This way, a developer may gradually shift from full data flow control to more efficiency.

To get a comparison between the execution on physical hosts and virtual machines,
analysis was also performed in a virtualised environment, namely Amazon EC2. The start
of a virtual machine within the EC2 needs a special image, a so-called Amazon Machine
Image (AMI), that has to be prepared beforehand. Such an image contains the operating
system and all the necessary user libraries and codes. In the presented case, this means
that an Ubuntu-based Linux operating system was used and the necessary native code and
middleware had to be deployed.

The ActiveBPEL workflow engine allows the use of a special InvokeHandler to
process service invocations. The solution proposed by Dörnemann et al. (2009a) utilises
this mechanism to obtain a scalable infrastructure. For this aim, a service is assumed
to be reachable via a prepared virtual machine. Listing 4 shows the corresponding
PartnerLink of the decoder when the dynamic scheduler is used. It can be seen that all
the necessary information for the EC2 (like AccessID and SecretKey) is passed to the
InvokeHandler. When an invocation is performed on this particular PartnerLink,
the load balancer checks all the hosts offering that special portType for their load and
performs the actual invocation on the host with the least load. If no such host is available,
a new virtual machine within the EC2 is started and invocation is carried out there.

Listing 4 The dynamic InvokeHandler within the BPEL process

<partnerLink name = "decoderPL">
 <partnerRole endpointReference = "dynamic"
 invokeHandler = "java:LoadBalancer
 ?threshold = 1.0;accessID=***;secretKey=***;
 imageID = ami-95cc28fc; availZone = us-east-1c"/>

Amazon EC2 uses a ‘pay-as-you-go’ model to price its resources. The storage, e.g.,
for the AMI, is priced by the Amazon Simple Storage Service (Amazon Web Services
LLC, 2009b) so that each GB costs $0.15. Computing power is priced per hour; the actual

 A scalable SOA for multimedia analysis, synthesis and consumption 243

amount depends on the so-called instance type. Different instance types describe different
machine set-ups. In the presented measurements, only ‘small instances’1

and ‘high-CPU
medium instances’2

are used. The former costs $0.10 and the latter, $0.20 per hour.

Figure 11 The process runtimes in a virtual environment (see online version for colours)

As before, a video from the TRECVID 2006 test (20051209_125800_CNN_LIVEFROM
_ENG.mpg) was used, and the messages were exchanged using pure SOAP. It can be
seen in Figure 11 that when the small instance type was used, analysing the video took
around 1823.82 sec, whereas when the high-CPU instance type was used, the analysis
only took 941.29 sec. In comparison to Figure 10, the slowdown is around a factor of
2.04 for the small instance type and around a factor of 1.05 for the high-CPU instance
type. Since the algorithms are single-threaded and the code runs in a virtual machine, this
slowdown is acceptable. However, the advantage of a dynamically scalable infrastructure
redeems this small performance decrease.

4.3 Video on demand

The VOD service was evaluated in three different scenarios, as described in Section 3.1.
In the first scenario, a video and audio stream is transmitted from and to the local host via
RTP. The time to pack and unpack the data was measured on a computer with an Intel
Centrino processor with a 1.5GHz clock speed and 2GB RAM. Windows XP SP2 was
the operating system. The RTP packets were sent via User Datagram Protocol (UDP). At
the sender, the time for packaging an RTP packet to a UDP datagram and initiate the
transmission was measured. At the receiver, the multimedia stream was read and shown
to the user. Here, the time to receive the datagram and extract the RTP packet from the
datagram was measured. The transmission of the video lasted 30 sec and was repeated
five times.

 244 S. Heinzl et al.

In the second scenario, the sender transmits each RTP packet over SOAP, i.e., every
RTP packet is embedded into a SOAP message and then transmitted. Again, the time for
packaging and unpackaging measured, including SOAP processing. The SOAP messages
were sent via UDP. The Apache Axis serialiser and deserialiser were extracted from the
Axis package so that their capabilities could be used without using the SOAP engine
as a whole. The sender serialises the RTP data with the Axis serialiser as Base64Binary
and then sends the SOAP message to the receiving end point as a UDP datagram.
The receiver reads the datagram and then deserialises the RTP packet from the
SOAP message. The time measured is expected to be higher since serialisation and
deserialisation take place before transmission and after reception. Again, the transmission
of the video lasted 30 sec and was repeated five times.

Table 1 summarises the results of these measurements. When the RTP
communication is encapsulated over SOAP, the time for serialisation induces an
overhead of a factor of approximately 10 compared to the preparation time. The
decapsulation process even introduces an overhead of a factor of 1000 and more. The
standard deviation for one of the runs was especially high at approximately 113 ms. Since
a VOD application is a real-time application; outliers like this may not be neglected.

Table 1 The average time and standard deviation to prepare the transmission and reception of
a multimedia stream

Transfer method Time for ‘packaging’ (in ms) Time for ‘unpackaging’ (in ms)

RTP 0.1331–0.136 avg 0.0098–0.0137 avg

 0.0436–0.077 stdev 0.0072–0.0497 stdev

RTP over SOAP 1.571–1.664 avg 16.3163–18.9898 avg

 11.1056–11.947 stdev 27.096–113.1239 stdev

When comparing the quality of the video-watching experience, it was noticeable that the
video – when transmitted via SOAP messages – got stuck sometimes, even though it was
not even transmitted over the network, so that network latencies can be excluded as a
cause. Furthermore, the standard deviation of the receiving process shows that the time
for deserialisation varies more strongly than in the normal RTP case. Hence, when
realising RTP communication over SOAP, the quality of a VOD service is not adequate
for end users. One conclusion is that this type of application is simply not suitable for
web service technologies. Nevertheless, it makes sense to leverage the advantages of web
services like selfdescribing interfaces, loose coupling, etc., for this application.

This problem can be solved by relying on the protocols especially designed for this
type of application, like RTP. When using a communication policy, as done in the third
scenario, it is possible to declare which protocols an application depends on.

In the third scenario, it is shown how the VOD service can be integrated into an SOA
using a communication policy. Instead of handling RTP communication over SOAP, the
communication policy describes the protocols suitable for such an application.

A simple VOD web service that starts a video transmission when invoked has been
developed. It returns the end point of the multimedia stream to the client. The client uses
the end point to receive the multimedia stream. An excerpt of the service’s WSDL with
an embedded communication policy is shown in Listing 5.

 A scalable SOA for multimedia analysis, synthesis and consumption 245

Listing 5 The policy embedded in WSDL for a simple VOD service

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 xmlns:cp="http://fb12.de/2007/05/communicationpolicy"...>
 <wsp:Policy>
 <wsp:All>
 <wsp:ExactlyOne>
 <cp:protocol name="rtp" protocolID="RTPv2"
 operationref="streamVideo"/>
 </wsp:ExactlyOne>
 </wsp:All>
 </wsp:Policy>
 <wsdl:message name="streamVideoResponse">
 <wsdl:part name="streamVideoReturn" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="streamVideoRequest">
 <wsdl:part name="videoname" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="VideoOnDemand">
 <wsdl:operation name="streamVideo">
 parameterOrder ="videoname"
 <wsdl:input message="impl:streamVideoRequest"
 name="streamVideoRequest"/>
 <wsdl:output message="impl:streamVideoResponse"
 name=streamVideoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

The policy shows that the service will use RTP and that the client has to support this
protocol to invoke the service.

The time needed in the third scenario for RTP communication is in the same
dimension as the times of the first scenario, since only the pure packaging and
unpackaging times have been measured. The service invocation itself is the only
overhead compared to using the application without services. However, this could be
anticipated since communication is still realised via RTP.

Thus, using this communication policy allows the integration of services with soft
real-time requirements into the multimedia SOA, which could otherwise hardly be
integrated. The communication policy provides a standard way for these services to
describe protocol needs for file transfers, streaming and real-time.

 246 S. Heinzl et al.

5 Qualitative evaluation of the use cases

5.1 Audio resynthesis (WebVoice)

To achieve a user-friendly but also generic interface for services, the web and grid
service browser (realised as a Firefox plugin) is used. The web and grid service browser
automatically generates a user interface when browsing to the WSDL of a service. It
handles security configuration and proxy certificate generation when invoking grid
services and helps users provide relevant information to invoke services; it also takes care
of service invocation itself according to style/use combinations. For multimedia data, the
web and grid service browser provides special result presentations to make audio files
audible and visualise images and videos.

When normally browsing to a WSDL of a service, an XML tree appears, as shown in
Figure 12.

Figure 12 A screenshot of Mozilla Firefox showing a WSDL file (see online version for colours)

 A scalable SOA for multimedia analysis, synthesis and consumption 247

With the WSDL alone, a user without a computer science background will have severe
problems invoking a service. The web and grid service browser, however, automatically
generates a user interface when the user browses to the WSDL description of the service.
The user interface generated when browsing to the WebVoice service’s WSDL
description is shown in Figure 13.

Figure 13 A screenshot of the WebVoice service user interface (see online version for colours)

When the user slides over the drop-down operations menu, a tooltip helps in choosing the
right operation. The form fields are already filled with the default values set in the XML
schema part of the WSDL file. To transfer an audio file, the user pushes the browse
button and selects a file from the hard disk. The audio file is then transferred to the web
service via Flex-SwA. The data are pushed to the service when the user is in a private
network. If the user has a public Internet Protocol (IP) address, the local file is streamed
to the service, such that the processing of the data can overlap with transmission. After
the analysis, the result presentation engine generates an HTML page giving the user the
choice of downloading or listening to the resynthesised audio (see Figure 14).

In the first section of the results page, the data of the resulting SOAP message are
shown. When the mouse slides over the white exclamation mark, the data type is shown
as a tooltip. The second section is reserved for the original SOAP message (hidden in the
screenshot). By clicking on the green ‘down’ arrow, sections can be hidden and shown
again. In the third section, a media player is embedded into the results page that plays the
resynthesised audio file.

Therefore, normal computer users can simply invoke web services found on the web,
especially web services processing and offering multimedia content.

 248 S. Heinzl et al.

Figure 14 The result of the wav2splice operation (see online version for colours)

5.2 Face detection in videos

The workflow built for face detection was already exposed as a web service for
quantitative evaluation. To enable a user to invoke the service easily, it is again
reasonable to use the web and grid service browser. The user interface to invoke the
service is similar to the user interface of the WebVoice service. The results presentation,
however, looks different; an array of images is returned with the detected faces
highlighted according to the MP7 file. The images are automatically visualised by the
web and grid services browser, as shown in Figure 15.

 A scalable SOA for multimedia analysis, synthesis and consumption 249

Figure 15 A screenshot of the results of the face detection workflow service for a Meat Loaf

music video (see online version for colours)

Figure 16 A screenshot of the face detection workflow in ViGO (see online version for colours)

 250 S. Heinzl et al.

For the developer, the work is eased by using ViGO to design the workflow, as shown in
Figure 16. When creating the workflow, the user is guided by wizards to add all the
necessary invocations. Afterwards, the user has to add all assign operations, model the
data transfer and create the links between activities to express the control flow.

The use of ViGO in tandem with the Grid-enabled workflow engine leads to
considerable simplifications in the development and the treatment of Grid workflows.
Grid services can be handled like classic web services, making no difference neither in
the development nor in the execution.

Because of the inherent startup of virtual machines, the use of the load balancer even
allows to achieve a scalable infrastructure.

5.3 Video on demand

For interaction with the Flash-based VOD streaming, our first prototype of the mash-up
editor was used. The mash-up editor was created with Adobe Flex. A Flex component
(shown in Figure 17) was built as an interface for YouTube, which allows clicking on an
image preview of the search results to play this video in a player component, as shown in
Figure 18.

A user can easily use the YouTube component to watch videos inside the mash-up
editor. The next step is to provide components to convert the FLV video format to MPEG
video and then use the video face detector service.

Figure 17 A screenshot of the Flex YouTube component (see online version for colours)

 A scalable SOA for multimedia analysis, synthesis and consumption 251

Figure 18 A screenshot of the Flex YouTube player component (see online version for colours)

6 Related work

In this section, an overview of the related work is given. First, other work on
service-oriented video analysis is reviewed. Then, the existing approaches considering
the issue of decentralised data transmission in centralised workflows are presented.
Furthermore, other browser-based approaches to invoke web and grid services are
presented and the Web 2.0 applications and mash-up editors that act as a front end for
SOAs are summarised. Finally, the related work dealing with dynamic resource
provisioning using BPEL is presented.

6.1 Service-oriented video analysis

The CASSANDRA framework (Nesvadba et al., 2005) is a distributed multimedia
content analysis system based on an SOA and aims to facilitate the composition of
applications from the distributed components on a network of cooperating devices
(like personal computers or consumer electronics equipment). The individual analysis
components are encapsulated into functional units called ‘service units’. All units on one
particular device are managed by a local component repository synchronised by a master
repository. Service composition is initiated by a special coordination component. Each
service unit has a control and data-streaming interface. The control interface is based on
the Universal Plug and Play (UPnP) framework, while the streaming interface is based on
TCP/IP. This framework does not use web services to build an SOA neither for the

 252 S. Heinzl et al.

service definition nor for workflow composition; it uses UPnP. Since service composition
is performed by a special component, the abovementioned coordination component is
just used to set up the workflow. In general, this framework is similar to our streaming
approach, but does not leverage the expressiveness of BPEL or the flexibility of
Flex-SwA. Data transport is fixed to TCP/IP, whereas the use of Flex-SwA allows the use
of custom protocols, e.g., Reliable File Transfer (RFT), GridFTP, HTTP or UDP. The use
of UPnP may be useful for controlling consumer electronics, but is critical in terms of
security and will probably not find a broad adoption by network administrators.

Barker et al. (2008) presented an architecture and an Application Programming
Interface (API) to support a distributed data flow model in conjunction with a centralised
control flow. To provide a noncentralised data flow from one service to another, the
authors made use of proxies that are responsible for data management and service
invocation. The proxies are placed near the service that they should administrate. A
service invocation has to be passed over a proxy, the produced data are saved through the
proxy and a reference to this data is delegated back to the calling centralised workflow
engine. This solution is just focused on WSDL-based web services and does not directly
support WSRF-based services, which are often more suited for multimedia content
analysis tasks. Although this approach leads to a distributed data flow with reduced data
movement, it also introduces an additional indirection stage for service calls. Since the
proxies should be placed on the same web server or domain and the reference system
needs to store the service results on a local disk, a resource competition between service
and proxies may occur.

Zeng and Miao (2006) presented an approach to avoid a centralised data transmission
in BPEL-based workflows in terms of grid computing. They also distinguished between
intraworkflow and inte-workflow data communication. While the first model focuses on
direct data transmission between two services in one workflow, the second model also
covers data transmission between several grid workflows. Both models make use of two
special grid services. In the case of intraworkflow communication, a so-called Data
Transmission Factory Service (DTFS) is called from the workflow engine to set up a
Data Transmission Service (DFS) that handles direct data transfer from one grid service
to another and notifies the engine regarding its status. The workflow engine just handles
control messages and small data packages. To support this kind of data transmission
through BPEL, a new language element called <dataTransmission> has been
defined. It specifies the source and target service and transport type, which can be
GridFTP or notifications. In the interworkflow case, a so-called Data Proxy Service
(DPS) is used to manage data transport between different grid workflows and/or services.
The DPS is part of the workflow engine and has the same lifetime as the corresponding
workflow. In contrast to the previous approach, this proposal is specialised for grid
services and does not support ‘normal’ web services. Since BPEL is extended with an
additional element, it does not conform to the standard; workflows cannot be executed on
standard BPEL engines. Furthermore, in the case of interworkflow data transfers, a
specially adopted workflow engine must be used for DPS instances.

Blower et al. (2006) developed a system for creating a new service type called Styx
Grid Service (SGS). The system wraps command-line programs and allows them to be
run over the internet. It is based on a Java implementation of the Styx file-sharing
protocol and allows data streaming from service to service over transport protocols like
TCP/IP or UDP. An SGS can be used in a web service or WSRF environment. An
orchestration into workflows is also possible through simple shell scripts or a graphical

 A scalable SOA for multimedia analysis, synthesis and consumption 253

workflow system like the Taverna workbench.3 In contrast to SGS, our architecture is
based on the de facto standard for business workflows (BPEL) and can be integrated
into business processes. The granularity of an SGS is very coarse, since it can only
wrap whole executables. Our approach works at the web or grid service level, that is, on
methods or functions.

6.2 Familiar environment for simple service use

To simply use services in a familiar environment, a browser-based service invocation
is reasonable.

Gemstone (Bhatia et al., 2006) is an application based on the Mozilla Application
Framework (Mozilla, 2009a) and XULRunner (Mozilla, 2009b) that allows users to
browse a set of web services and enables the dynamic integration of user interface
elements. The service providers have to specify the service and user interface. Gemstone
is used to select services from a proprietary repository; hence, Gemstone lacks a real
browser integration. It only provides the integration of web services for which
visualisation code is written in XML User Interface Language (XUL) and JavaScript.
This limits the use of Gemstone to service providers offering visualisation code to
their services and using the proprietary repository format supported by Gemstone.
Since Gemstone is built on top of the Mozilla Application Framework, it only supports
Transport Layer Security (TLS) and PKCS12 certificates. The lack of proxy certificate
support considerably limits its use in grid environments. Gemstone strictly supports
client-side processing. For slow clients, it would be better if an option for server-side
processing was available.

Web and grid portals like The GridSphere Project (2009) provide access to a
collection of services and a set of tools such as single sign-on, data management and
certificate management or collaboration capabilities (sharing, interlinking and integrating
multidisciplinary data sets) like the GEON portal (Nambia et al., 2006) directly through
the browser. However, to operate portals, maintenance and administration efforts are
needed. Furthermore, for each new service to add to the portal, a portlet has to be written.

The Web Services Remote Portlet (WSRP) specification (Kropp et al., 2003)
addresses a part of the problem. A user interface defined at a remote site can be included
in the portal. Still, each provider has to define the user interface for each service
description on the web or in a repository.

The Virtual Resource Browser (VBrowser) (Olabarriaga et al., 2006) tries to make
the grid more accessible to end users. It allows easy access to a number of high-level
services like RFT, a job submission service, image analysis, etc. The VBrowser is a
stand-alone application and is not integrated into a browser. But more importantly, it
cannot be used to invoke services that have not been integrated into the application.
Whereas the web and grid service browser generates the user interface on the fly,
the VBrowser can only access the services that programmers have integrated
programmatically into the browser. Therefore, the web and grid service browser is much
more adaptable.

Table 2 shows a detailed classification of the capabilities of the proposed web and
grid service browser, portals and Gemstone for several criteria.

 254 S. Heinzl et al.

Table 2 An overview of the capabilities of the browser extension, portals and Gemstone

Criterion Grid browser Extension Portals (like GridSphere) Gemstone

Integration Direct browser
integration

Direct browser
integration

New application based on
Mozilla XULRunner

Installation Installation is as simple
as installing a Firefox
extension

Complete Globus Toolkit
installation, including
MyProxy server and
GridFTP portlet

Installation is as simple
as installing a web
browser

Ease of use Arbitrary WSDL file is
used to generate GUI

Each service will be
integrated into the portal

WSDL is usable only if
in a proprietary
repository format and
XUL and JavaScript have
been written for it

Functionality Grid and web services Grid and web services Web services

Processing Local and server-side
processing are possible

Server-side processing Local processing

Security level GSI support GSI support Only HTTPS

GridFTP support Can be added by the
Firefox extension
TOPAZ

Yes
The Firefox extension
TOPAZ can be used
separately from Firefox

Certificates Proxy certificates Proxy certificates ‘Ordinary’ certificates

The capabilities of the web and grid service browser, portals and Gemstone can be
classified by several criteria:

• Integration – The web and grid service browser as well as portals like GridSphere
provide direct integration into the web browser, whereas Gemstone is a new
application based on Mozilla XULRunner.

• Installation – The installation of the web and grid service browser is as easy as
installing Firefox extensions, namely via drag-and-drop. A portal needs a completely
installed Globus Toolkit including a MyProxy server and the GridFTP portlet. The
complete Globus Toolkit requires a Unix operating system. The installation of
Gemstone is comparable to the installation of a web browser.

• Ease of use – The web and grid service browser browses the location of an arbitrary
WSDL file to generate the Graphical User Interface (GUI) via which the service
described by the WSDL document can be invoked, whereas for each service to be
integrated into the portal, a portlet and client have to be written. In Gemstone, only
WSDL documents can be used if they have been stored in a proprietary repository
format and the application developer has deposited XUL and JavaScript code, which
is then executed by the Mozilla application.

• Functionality – The web and grid service browser and portals like GridSphere
support grid and web services, whereas Gemstone only supports web services.

 A scalable SOA for multimedia analysis, synthesis and consumption 255

• Processing – This can take place either locally on the client or on the service side.

The web and grid service browser supports both modes depending on whether local
or remote user interface generators, execution engines and results presentation
engines are used. Portals only support service-side processing; Gemstone supports
local processing.

• Security level – The web and grid service browser and portals like GridSphere
support the Grid Security Infrastructure (GSI). Gemstone only supports TLS via
Hypertext Transfer Protocol Secure (HTTPS).

• GridFTP support – Portals like GridSphere support GridFTP. Gemstone and
the web and grid service browser need the TOPAZ Firefox extension to add
GridFTP functionality.

• Certificates – Portals like GridSphere and the web and grid service browser are able
to use proxy certificates that are usually utilised when invoking a secured grid
service. Gemstone only makes use of ordinary certificates.

Although the web and grid service browser has many advantages, it also has a few
disadvantages. The web and grid service browser depends on the Firefox releases of the
Mozilla Foundation. Furthermore, complex user interfaces might be better when they are
tailored to the application than automatically generated.

6.3 Mash-up editors in the SOA context

Until now, only few research efforts have been undertaken in the context of mash-ups
and web service-based SOAs. Approaches based on EzWeb/Fast by Lizcano et al.
(2008) deal with, among others, the adaptability of business processes to changing
environmental situations in the context of mash-ups. But their solution can only deal with
web services based on the Representational State Transfer (REST) architectural style.
This is not sufficient for integration into existing business processes. Our approach can be
seamlessly integrated into existing business processing thanks to the use of BPEL.

Nestler (2008) proposed the use of mash-ups by means of communication between
services and users. Furthermore, simple mash-ups that can be defined by end users are
clearly separated from the complex development of workflows and business process
integration. Nevertheless, the existing services of an SOA should be usable as part of
mash-ups. Besides web services, our mash-up editor also supports grid services for
computationally demanding tasks.

6.4 Dynamic resource provisioning using BPEL

Di Penta et al. (2006) presented a dynamic binding framework called WS-Binder. It
allows the (re)binding of partnerLinks to services during the runtime of a process. For
this aim, the authors used a proxy architecture. Based on a given policy, the framework is
able to schedule an invocation to a specific service. This binding can either be done
before or during the execution of the workflow. In addition, runtime recovery can be
supported. However, the framework does not provide support to extend the pool of usable
services, for example, by booting a virtual machine.

 256 S. Heinzl et al.

TRAP/BPEL, presented by Ezenwoye and Sadjadi (2007), is another framework for
the dynamic adaptation of service compositions. It makes use of a generic proxy pattern.
The proxy is able to query a Universal Description Discovery and Integration (UDDI)
registry to find a suitable service. The binding is performed in an autonomic fashion;
for example, if a service call fails, a substitute is determined and the call is retried.
Furthermore, the selection of a suitable service can depend on a policy. To make a BPEL
process interact with the TRAP/BPEL framework, it has to be adapted. Although policies
can be used for service selection, there is no possibility to specify post-invocation
policies, e.g., for fault handling. Furthermore, the dynamic scaling of the infrastructure is
not supported.

By introducing a new element (find_bind) into the BPEL language, Karastoyanova
et al. (2005) presented their approach for runtime adaptability. The mechanism is
able to find services, e.g., by querying a UDDI registry. Based on policies, it selects
suitable services and binds them to process instances. In case a service call fails,
a process instance repair is guaranteed by rebinding to another port. Selection criteria
can be modified at runtime. There is no support for dynamically providing additional
target hosts.

Ma et al. (2008) presented a grid-enabled workflow management system based on
BPEL. The system allows interaction with stateful resources, dynamic service binding
and the scalability of workflow execution. In the scenario presented in the paper, the
BPEL engine is a bottleneck. Scalability is achieved by placing a load balancer in front of
a cluster of BPEL engines. Calls to the workflow engine are then scheduled with respect
to the engines’ workload. Dynamic service binding at runtime is achieved similar to our
approach. At runtime, a provisioning service is contacted that looks up a host where the
requested service is installed. However, the approach does not take the workload of target
hosts into account. Furthermore, it does not provide any feature to dynamically provide
additional target hosts.

7 Conclusions

In this paper, we presented a service-oriented infrastructure for multimedia processing
that uses BPEL. Hence, the developed multimedia services can be easily integrated into
existing business processes. To efficiently model the data flow in BPEL, Flex-SwA’s
reference concept is used. With the presented web and grid service browser and
mash-up editor, users can easily use the services of the SOA and partially combine
existing services and popular web applications to new services. To provide a scalable
infrastructure, services can dynamically be added by leveraging Amazon’s EC2. By using
ViGO, service developers can easily create new services by combining existing ones. A
communication policy allows services to express protocol requirements for file transfers,
streaming or soft real-time. The evaluation of three use cases demonstrated the feasibility
of our proposal.

Flex-SwA provides more efficiency for data transfers than SOAP and SwA when
configured with the correct communication patterns. It was shown that the overlapping of
service execution and data transmission as well as the concurrent handling of data
transfers lead to better performance. Flex-SwA is well suited for the transfer of bulk data
in multimedia environments, as demonstrated for the audio resynthesis service.

 A scalable SOA for multimedia analysis, synthesis and consumption 257

The streaming capabilities of Flex-SwA speeded up the analysis. Two approaches to

model the data transmission of services were described. In the reference approach, a
service returns a SOAP message with a reference to the calling BPEL workflow instance
that then delegates this message to the destined consuming services. The consumer can
then pull the data directly from the producer. This modelling style reduces the amount of
data delegated via the workflow engine from one service to another. The streaming
approach uses the Flex-SwA reference system to build up communication channels
directly between a set of services. In contrast to the first modelling style, the task of data
exchange is totally decoupled from the BPEL workflow. The BPEL engine just chooses
the partners who will build a communication channel between them. This leads to a
tradeoff between fast execution and control of the flow. Some control might be regained
via callbacks.

For scalability reasons, services can be ‘outsourced’ to the Amazon EC2. Our
evaluation has shown that the high-CPU instances of EC2 provide a similar performance
to the regular computers we used for the analysis. Hence, it is not too hard to calculate
how many additional hosts are needed when the load increases.

The web and grid service browser provides a familiar and simple user interface
for service users. The user interface is automatically generated when the user browses
to a WSDL file. Furthermore, the web and grid service browser helps fill out the
generated forms, handles proxy certificate generation, handles GSI security and takes
care of service invocation and result presentation. For multimedia data, special result
presentations have been integrated into the browser to offer human users an easy way to
see or hear results.

The evaluation of the VOD service has shown that it is hard to integrate certain types
of applications into an SOA because of real-time constraints, streaming requirements
or large file transfers. In the case of the VOD application, sending RTP packages
over SOAP is just too inefficient to allow a user to still watch the video. The delay
between the packages becomes too big. With the help of a communication policy, the
requirements of the service can be described and the services can be integrated into an
SOA. For interaction with the user, the mash-up editor provides a YouTube component
as a front end to the Youtube website. With this component, videos can be searched,
selected and watched.

There are several areas for future work. The next components to be added to the
mash-up editor are a Flash-to-MPEG converter and the face detector service to allow
an analysis of YouTube videos. For the face detection service, the suitable number of
frames per reference to attain a good balance between data flow control and efficiency
will be investigated. Furthermore, more tests of the WebVoice service on different
hardware will be performed. These tests will help evaluate which communication patterns
are especially useful for which hardware (dual core, single core, etc.). Finally, more tests
with Amazon EC2 will be performed to make the transition from dedicated resources to
cloud resources easier.

 258 S. Heinzl et al.

Acknowledgements

This work is partially supported by the German Ministry of Education and Research
(BMBF) (D-Grid Initiative) and the Deutsche Forschungsgemeinschaft (DFG,
SFB/FK 615).

References

Amazon Web Services LLC (2009a) ‘Amazon Elastic Compute Cloud (EC2)’, http://aws
.amazon.com/ec2/.

Amazon Web Services LLC (2009b) ‘Amazon Simple Storage Service (S3)’,
http://aws.amazon.com/s3/.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., et al. (2003)
‘Business Process Execution Language for Web Services Version 1.1’, http://www-128
.ibm.com/developerworks/library/specification/ws-bpel/.

Barker, A., Weissman, J.B. and van Hemert, J. (2008) ‘Orchestrating data-centric workflows’,
CCGRID, IEEE Computer Society, pp.210–217.

Barton, J.J., Thatte, S. and Nielsen, H.F. (2000) ‘SOAP messages with attachments’, W3C Note,
http://www.w3.org/TR/SOAP-attachments.

Bhatia, K., Stearn, B., Taufer, M., Zamudio, R. and Catarino, D. (2006) ‘Extending grid protocols
onto the desktop using the Mozilla framework’, 2nd International Workshop on Grid
Computing Environments (GCE 2006), pp.1–8.

Blower, J.D., Harrison, A.B. and Haines, K. (2006) ‘Styx grid services: lightweight, easy-to-use
middleware for scientific workflows’, International Conference on Computational Science,
Vol. 3, pp.996–1003.

Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo, M. and Nitto, E.D. (2006) ‘WS
binder: a framework to enable dynamic binding of composite web services’, Proceedings of
the 2006 International Workshop on Service-oriented Software Engineering, ACM, pp.74–80.

Dörnemann, T., Friese, T., Herdt, S., Juhnke, E. and Freisleben, B. (2007) ‘Grid workflow
modelling using grid-specific BPEL extensions’, Proceedings of German e-Science
Conference (GES), pp.1–8.

Dörnemann, T., Juhnke, E. and Freisleben, B. (2009a) ‘On-demand resource provisioning for
workflows using amazon’s elastic compute cloud’, Proceedings of the 9th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid ’09), IEEE Press, to appear.

Dörnemann, T., Mathes, M., Schwarzkopf, R., Juhnke, E. and Freisleben, B. (2009b) ‘DAVO:
a domain-adaptable, visual BPEL4WS orchestrator’, Proceedings of the IEEE 23rd
International Conference on Advanced Information Networking and Applications (AINA ’09),
IEEE Press, to appear.

Eide, V.S., Eliassen, F., Granmo, O.C. and Lysne, O. (2002) ‘Scalable independent multi-level
distribution in multimedia content analysis’, Proceedings of the Joint International Workshops
on Interactive Distributed Multimedia Systems and Protocols for Multimedia Systems
(IDMS/PROMS), London, UK: Springer-Verlag, pp.37–48.

Elson, J. and Howell, J. (2008) ‘Handling flash crowds from your garage’, ATC’08: USENIX 2008
Annual Technical Conference, Berkeley, CA: USENIX Association, pp.171–184.

Ezenwoye, O. and Sadjadi, S.M. (2007) ‘TRAP/BPEL: a framework for dynamic adaptation of
composite services’, Proceedings of the International Conference on Web Information
Systems and Technologies (WEBIST 2007).

 A scalable SOA for multimedia analysis, synthesis and consumption 259

Foster, I. (2005) ‘Globus Toolkit Version 4: software for service-oriented systems’, in H. Jin, D.A.

Reed and W. Jiang (Eds.) International Conference on Network and Parallel Computing
(IFIP), Lecture Notes in Computer Science (Springer-Verlag LNCS 3779), Springer,
Vol. 3779, pp.2–13.

Friese, T., Smith, M. and Freisleben, B. (2006) ‘GDT: A toolkit for grid service development’,
Proceedings of the 3rd International Conference on Grid Service Engineering and
Management, pp.131–148.

Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I., Sedukhin, I., Treadwell, J.,
Srinivasan, L., et al. (2006) ‘Web Services Resource Framework (WSRF)’, http://www
.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf.

Heinzl, S., Mathes, M., Friese, T., Smith, M. and Freisleben, B. (2006) ‘Flex-SwA: flexible
exchange of binary data based on SOAP messages with attachments’, Proc. of the IEEE
International Conference on Web Services, Chicago: IEEE Press, pp.3–10.

Heinzl, S., Mathes, M. and Freisleben, B. (2008a) ‘A web service communication policy for
describing non-standard application requirements’, Proc. of the IEEE/IPSJ Symposium on
Applications and the Internet (Saint 2008), IEEE Computer Society Press, pp.40–47.

Heinzl, S., Mathes, M. and Freisleben, B. (2008b) ‘The grid browser: improving usability
in service-oriented grids by automatically generating clients and handling data transfers’,
Proceedings of the Fourth IEEE International Conference on eScience, IEEE Press,
pp.269–276.

Intel Corporation (2008) ‘OpenCV’, http://www.intel.com/technology/computing/opencv/.

Kajko-Mattsson, M., Lewis, G.A. and Smith, D.B. (2007) ‘A framework for roles for development,
evolution and maintenance of SOA-Based systems’, SDSOA ’07: Proceedings of the
International Workshop on Systems Development in SOA Environments, IEEE Computer
Society, p.7.

Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F. and Buchmann, A. (2005)
‘Extending BPEL for run time adaptability’, EDOC ’05: Proceedings of the Ninth IEEE
International EDOC Enterprise Computing Conference, IEEE Computer Society, pp.15–26.

Kropp, A., Leue, C., Thompson, R., Braun, C., Broberg, J., Cassidy, M., Freedman, M., et al.
(2003) ‘Web services for remote portlets specification’, OASIS Standard, August, http://www
.oasis-open.org/committees/wsrp.

Lizcano, D., Soriano, J., Reyes, M. and Hierro, J.J. (2008) ‘EzWeb/FAST: reporting on a
successful mashup-based solution for developing and deploying composite applications in the
upcoming web of services’, Proceedings of the 10th International Conference on Information
Integration and Web-based Applications & Services.

Ma, R.Y., Wu, Y.W., Meng, X.X., Liu, S.J. and Pan, L. (2008) ‘Grid-enabled workflow
management system based on BPEL’, International Journal of High Performance Computing
Applications, Vol. 22, No. 3, pp.238–249.

Mozilla (2009a) ‘Mozilla Application Framework’, http://developer.mozilla.org/en/docs/Mozilla
_Application_Framework_in_Detail.

Mozilla (2009b) ‘XULRunner’, http://developer.mozilla.org/en/docs/XULRunner.

Nambia, U., Ludaescher, B., Lin, K. and Baru, C. (2006) ‘The GEON portal: accelerating
knowledge discovery in the geosciences’, 8th ACM International Workshop on Web
Information and Data Management (WIDM 2006), ACM, pp.83–90.

Nestler, T. (2008) ‘Towards a mashup-driven end-user programming of SOA-based applications’,
Proceedings of the 10th International Conference on Information Integration and Web-based
Applications & Services.

Nesvadba, J., Fonseca, P., Sinitsyn, A., de Lange, F., Thijssen, M., van Kaam, P., Liu, H.,
et al. (2005) ‘Real-time and distributed AV content analysis system for consumer electronics
networks’, Proc. of International Conference on Multimedia and Expo, IEEE Computer
Society, pp.1549–1552.

 260 S. Heinzl et al.

Olabarriaga, S., De boer, P., Maheshwari, K., Belloum, A., Snel, J., Nederveen, A. and
Bouwhuis, M. (2006) ‘Virtual lab for fMRI: bridging the usability gap’, Second IEEE
International Conference on e-Science and Grid Computing (e-Science 2006).

Salembier, P. (2002) ‘Overview of the MPEG-7 standard and of future challenges for visual
information analysis’, EURASIP J. Appl. Signal Process, Vol. 2002, No. 1, pp.343–353.

Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, V. (2003) ‘RTP: a transport protocol for
real-time applications’, http://www.ietf.org/rfc/rfc3550.txt.

Seiler, D., Heinzl, S., Juhnke, E., Ewerth, R., Grauer, M. and Freisleben, B. (2008) ‘Efficient data
transmission in service workflows for distributed video content analysis’, Proceedings of the
6th International Conference on Advances in Mobile Computing & Multimedia, ACM
Press/OCG Book Series, pp.7–14.

Tanaka, K., Uehara, M. and Mori, H. (2009) ‘The performance evaluation of a grid using
Windows PCs’, Int. J. Web and Grid Services, Vol. 4, No. 4, pp.395–417.

The GridSphere Project (2009) ‘GridSphere portal framework’, http://www.gridsphere.org/.

Viola, P. and Jones, M.J. (2004) ‘Robust real-time face detection’, Int. J. Comput. Vision, Vol. 57,
No. 2, pp.137–154.

Zeng, H. and Miao, H. (2006) ‘Data communication model of grid workflow’, ICEBE ’06:
Proceedings of the IEEE International Conference on e-Business Engineering, Washington,
DC: IEEE Computer Society, pp.647–654.

Notes
1 1.7 GB of memory, 1 EC2 Compute Unit (ECU) (1 virtual core with 1 ECU), 160 GB

of instance storage, 32-bit platform. One ECU provides the equivalent CPU capacity of a
1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.

2 1.7 GB of memory, 5 ECUs (2 virtual cores with 2.5 ECUs each), 350 GB of instance storage,
32-bit platform.

3 http://taverna.sourceforge.net/

Website

www.youtube.com

