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Abstract

Self-attention is essential to Transformer architec-
tures, yet how information is embedded in the self-
attention matrices and how different objective func-
tions impact this process remains unclear. We present
a mathematical framework to analyze self-attention
matrices by deriving the structures governing their
weight updates. Using this framework, we demon-
strate that bidirectional training induces symmetry
in the weight matrices, while autoregressive train-
ing results in directionality and column dominance.
Our theoretical findings are validated across multi-
ple Transformer models — including ModernBERT,
GPT, LLaMA3, and Mistral — and input modalities
like text, vision, and audio. Finally, we apply these
insights by showing that symmetric initialization im-
proves the performance of encoder-only models on
language tasks. This mathematical analysis offers a
novel theoretical perspective on how information is
embedded through self-attention, thereby improving
the interpretability of Transformer models.

1. Introduction

Transformer models now achieve state-of-the-art
performance across a wide range of tasks and do-
mains [Radford et al., 2019, Dosovitskiy et al., 2021,
Radford et al., 2023]. Despite their success, the in-
ternal mechanisms governing their decision-making
processes remain poorly understood, raising con-
cerns regarding model alignment, reliability, and
safety [Wang et al., 2023, Yao et al., 2024]. A key
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challenge in understanding these models is unrav-
eling the structures of self-attention, which is es-
sential to Transformer architectures. Current lit-
erature largely overlooks the nature of the self-
attention weight matrices during autoregressive train-
ing, where the model predicts the next token in a
sequence given previous ones [Radford et al., 2019,
Black et al., 2021, Touvron et al., 2023] and bidirec-
tional training, where the model predicts a missing
token given the full sequence [Devlin et al., 2019,
Bao et al., 2022, Warner et al., 2024]. Understand-
ing self-attention requires answering two fundamen-
tal questions: How can we interpret the structures
learned in the self-attention matrices? What is the
impact of different objective functions on these ma-
trices?

Previous work used sparse auto-encoders to iden-
tify interpretable features [Huben et al., 2024,
Bricken et al., 2023], circuit analysis to interpret
Transformer components [Olah et al., 2020, Elhage
et al., 2021, Olah, 2022], and techniques like the
logit lens to analyze self-attention mechanisms [Geva
et al., 2021, Dar et al., 2023] (for a detailed discus-
sion, see Section 5). However, these methods do not
reveal the structural patterns in self-attention matri-
ces or the transformations they encode. Crucially,
how autoregressive and bidirectional training shape
specific weight structures remains unclear.

To address this gap, we introduce a novel frame-
work for analyzing self-attention matrices and un-
derstanding how different objective functions de-
fine their weight updates. We then use this frame-
work to derive understandable mathematical struc-
tures that should emerge from such updates. Finally,
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we verify these interpretable structures numerically
on many pre-trained and custom models across dif-
ferent modalities, supporting the universality of our
results. Identifying these universal structures is fun-
damental not only for improving the performance of
Transformer models, but also for their safety, align-
ment, and interpretability [Olah, 2022].

Specifically, we connect the matrix Wqk =WqW⊤
k

of self-attention with bilinear forms, offering novel
insights compared to studying query and key matri-
ces alone. We reveal structured patterns in the im-
plicit weight updates of Wqk, uncovering key differ-
ences between encoder-only and decoder-only mod-
els:

1. Decoder-only models: Training with an autore-
gressive objective produces a few columns with
disproportionately high norms, introducing di-
rectionality in Wqk.

2. Encoder-only models: Bidirectional optimiza-
tion induces symmetric structures in Wqk, re-
flecting the balanced nature of the training ob-
jective.

3. We validate these theoretical findings across
diverse Transformer architectures and input
modalities, showing that they generalize across
models and tasks.

4. Empirically, we find that symmetric structures
in Wqk enhance training efficiency for encoder-
only models, leading to higher accuracy and
faster convergence in language tasks.

2. Autoregressive and bidirectional
training leads to directional and
symmetric weight updates

In this section, we introduce a novel framework
that links the self-attention matrices Wqk to bilin-
ear forms, enabling us to analyze how an objective
function influences their structure. This approach re-
veals fundamental patterns in Wqk that are not appar-
ent when examining Wq and Wk separately. For ex-
ample, we prove that autoregressive and bidirectional
training induce directional and symmetric structures
in the Wqk matrices. In the following sections, we
define and formalize these concepts.

2.1. Interpreting self-attention with bilinear
forms

Self-attention [Vaswani et al., 2017, Radford et al.,
2019] is a type of score function A : RN,d × RN,d →

RN,N that maps a sequence of N token embeddings
with dimension d into a matrix of attention scores.
Except for the row-wise softmax function σ(·), self-
attention is a linear transformation of the embedded
tokens. In particular,

A(X) = σ
(

1
√

d
Â(X)

)
= σ

(
1
√

d
QKT

)
= σ

(
1
√

d
XWqkXT

)
,

(1)

where Â(X) is the linear part of self-attention (raw
unscaled attention scores), X = [x⊤1 , . . . , x

⊤
N] ∈ RN,d

is the sequence of N token embeddings xi ∈ R
d,

and Wqk = WqW⊤
k ∈ R

d,d. This equation shows
that the linear transformation Wq and Wk are always
combined to compute attention scores with one sin-
gle matrix Wqk. While the matrices Wq and Wk are
defined separately for computational efficiency, this
formulation remains mathematically equivalent [see
also Elhage et al., 2021, Olsson et al., 2022, Dar et al.,
2023].

We observe that XWqkX⊤ corresponds to a bilin-
ear form (see Definition S1.2). Specifically, the entry
α̂i j = [Â]i j can be formulated in two equivalent ways:
(1) as the canonical dot product between a query qi

and a key k j (like in standard Transformer models),
or (2) as the dot product between tokens xi and x j

under the bilinear form Wqk,

α̂i j = ⟨qi, k j⟩ = ⟨xi,Wqkx j⟩ = ⟨xi, x j⟩Wqk . (2)

Intuitively, this indicates that Wq and Wk define
an alternative metric Wqk in the embedding space,
which quantifies the score of xi and x j without re-
quiring explicit query and key vectors. We formalize
this intuition in the following,

Proposition 2.1. (Self-attention scores preserve the
structure of geometrical projections). Let X ∈ RN,d

be the embedding of a sequence of N tokens such
that X = [x⊤0 , x

⊤
1 , . . . , x

⊤
N] and xi ∈ R

d ∀ i. Let A
be the matrix of attention scores, and let αi j = [A]i j

be the (i, j) element of the attention matrix. We de-
fine Wqk = WqW⊤

k . The self-attention transforma-
tion maps the i-th token xi into x̂i as follows,

x̂⊤i = x⊤i +
N∑

j=1

αi j x jWv , (3)

where the coefficients {αi j} represent a convex com-
bination of x j within the subspace spanned by X =

2



{x⊤0 , x
⊤
1 , . . . , x

⊤
N}. These coefficients preserve the or-

dering of the geometrical projection of xi onto the
subspace X given by the bilinear form Wqk,

α̂i j(Wqk) = ⟨xi,Wqkx j⟩ = ⟨xi, x j⟩Wqk , (4)

such that,

αi j < αi j′ ⇔ α̂i j < α̂i j′ ∀i, j, j′ . (5)

A proof of this proposition and its generalization
for multi-head attention is in Appendix S1.2. The or-
der of the attention scores is thereby preserved from
the raw attention scores to the final attention scores
(after soft-max).

It follows that Wqk defines the geometric structure
that encodes the relevance of the token embedding x j

in predicting xi through projections within the sub-
space (see Equation (3)). Therefore, token prediction
depends on learning an optimal bilinear form Wqk

to project tokens in the embedding space effectively.
We note that Wv is a linear transformation that is
applied independently to each projection in the sum
and thus does not influence our derivation. In the
following sections, we demonstrate how this equiv-
alent formulation of self-attention provides a useful
framework for analyzing the training of Transformer
models. Specifically, we show that the choice of the
objective function such as autoregressive prediction
[Radford et al., 2019] or bidirectional training [De-
vlin et al., 2019] produces distinct structural patterns
in Wqk.

2.2. Deriving the gradients of self-attention
with bilinear forms

To show the connection between the objective func-
tion and the structures of self-attention matrices, we
derive a convenient formulation for the weight up-
date of Wqk. We first formulate a sequence modeling
problem with self-supervised training as follows. Let
U = {t1, . . . , tN} be a sequence of N tokens from a vo-
cabulary of dimension V . Let L(U) be the negative
log-likelihood of each token ti, expressed as

L(U;W) =
∑

i

L(ti) = −
∑

i

log p(ti | {t j : j ∈ Ci};W) ,

(6)
where W is the set of trainable parameters, and
Ci ⊂ [0, 1, . . . ,N] is the set of indices defining the set
of tokens {t j} of the conditional probability distribu-
tion. This allows us to isolate the contribution of each
token t j to the prediction of the target token ti. Here,

+

+

+

backward

forward

sequence of
embedded 

tokens

+

Figure 1: Illustration of the computation of the
self-attention score between token xi and token x j

(forward pass, see Equation (3)), and its correspond-
ing contribution to the weight update of Wqk (back-
ward pass, see Equation (8)). The symbols ”⊕”, ”⊗”,
and ”⊙” refer to the addition, multiplication, and dot
product operations, respectively.

we demonstrate that the updates to the matrix Wqk

follow a structured pattern: the contribution of the
token t j in the prediction of the embedding ti results
in adding a rank-1 matrix Ki j to the matrix Wqk. As
a result, the total weight update to Wqk is expressed
as a linear combination of these rank-1 matrices. We
formalize this observation in the following proposi-
tion.

Proposition 2.2. (The implicit weight update as
sum of rank-1 matrices). Let U = {t1, . . . , tN} be
a sequence of N tokens, and let L(U) be the negative
log-likelihood

L(U;W) =
∑

i

L(ti) = −
∑

i

log p(ti | {t j : j ∈ Ci};W) ,

(7)
with the conditional probability modeled with a
Transformer model with learnable parameters W.
Let the self-attention function be defined with a bilin-
ear form as in Equation (1). Following the gradient
of L(U), the implicit weight update of Wl

qk at the l-th
layer is proportional to the sum of the contributions

3



of each t j ∈ Ci in predicting ti, as follows,

∆Wl
qk ∝

∑
i

∑
j∈Ci

∆Wl
qk

∣∣∣∣
ti←t j
=

∑
i

∑
j∈Ci

βl
i jK

l−1
i j (8)

or equivalently to the sum of the contribution of each
ti ∈ P j when predicted by t j,

∆Wl
qk ∝

∑
i∈P j

∑
j

∆Wl
qk

∣∣∣∣
ti←t j
=

∑
i∈P j

∑
j

βl
i jK

l−1
i j , (9)

where βl
i j is a scalar given by the contribution of the

token embedding x j to the error in predicting the to-
ken embedding xi at the l-th self-attention layer, and
where Kl−1

i j ∈ Md is a rank-1 matrix given by the
outer product of the token embeddings at the previ-
ous layers l − 1,

Kl−1
i j = xl−1

i xl−1
j
⊤
. (10)

We provide proof for this proposition with related
remarks in Appendix S1.3, and an illustrative de-
scription of the forward and backward pass in Figure
1.

2.3. The relation between objective functions
and structures in self-attention matrices

Finally, we show how the formulation of ∆Wqk en-
ables the analysis of the contribution of any given
token t∗ to the weight updates, how this affects the
properties of Wqk, and how to relate these properties
to the specific objective function. Indeed, Proposi-
tion 2.2 indicates that a token t∗ impacts the updates
of Wqk differently when serving as context for pre-
dicting other tokens or being itself predicted. When
a token t∗ serves as context (t j = t∗), the embeddings
of all predicted tokens contribute to the column space
of Wqk, where the update of the k-th column w·,k is
given by

∆w·,k
∣∣∣∣∣
t j=t∗
= [xt∗]k

∑
i∈Pt

βi jxi

 . (11)

Only the embedding of t∗ is instead added to the row
space, where the update of the m-th row ∆wm,· is
given by

∆wm,·

∣∣∣∣∣
ti=t∗
=

∑
i∈Pt

βi j[xi]k

 xt∗ . (12)

Intuitively, using t∗ as context increases the dimen-
sionality of the column space proportionally to the

embeddings of the predicted tokens, while reducing
the row space along the direction of the embedding of
t∗. Conversely, when t∗ is being predicted (ti = t∗), all
token embeddings from the context are added to the
row space of Wqk, while only the embedding of t∗ is
added to the column space. Importantly, any token t∗

is used differently as context or as prediction depend-
ing on the training objective. Autoregressive train-
ing implicitly introduces directionality by predicting
each token based solely on its preceding tokens. In
contrast, bidirectional training uses tokens as context
and as predictions symmetrically. This fundamen-
tal difference between the two objective functions
affects the weight updates of Wqk, and in turn, the
structures encoded in its columns and rows. We de-
scribe this in the following two informal Theorems.

Theorem 2.3. (Informal) (Autoregressive training
leads to directional weight upates). Let ∆Wqk be the
weight update from Proposition 2.2, derived from an
autoregressive objective function. There are, on av-
erage, more columns with high norms than rows with
high norms, that is, there exist a γ ∈ R such that,

Pr[||w·,k|| > w] > Pr[||wm,·|| > w] ∀w > γ , (13)

for any k-th column and m-th row, thereby inducing
column dominance.

Theorem 2.4. (Informal) (Bidirectional training
leads to symmetric weight upates). Let U be an or-
dered sequence of N tokens U = [t1, . . . , tN]. Let
∆Wqk be the weight update from Proposition 2.2, de-
rived from a bidirectional objective function. Every
pair (i, j) with i , j contributes to the weight update
with a term that is approximately symmetric,

∆Wqk
∣∣∣
ti↔t j
≈ ∆Wqk

∣∣∣⊤
ti↔t j
, (14)

thereby inducing symmetric structures.

We provide a formal definition and proof of these
two Theorems, and the related Propositions and Lem-
mas in Appendix S1.4.

3. Symmetric and directional struc-
tures are predominant in Trans-
former models

In this section, we validate our theoretical findings
by quantifying empirically the degree of symmetry
and directionality in different families of open-source
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Figure 2: a) Left) Median symmetry score of the matrix Wqk as a function of the total number of parameters.
Each dot corresponds to the median and the interquartile range across layers of a given pre-trained model (see
Tables in Appendix S3). Right) Example of structures in the Wqk matrix of an encoder-only model (BERT
Tiny, layer 1 [Turc et al., 2019]) b) Left) Same as in a for the median directionality score of the matrix Wqk.
Right) Example of structures in the Wqk matrix of a decoder-only model (TinyStories GPT, layer 1 [Eldan and
Li, 2023])

Transformer models. To do so, we define two scores
for symmetry and directionality in square matrices.
First, we define the symmetry score s ∈ R as follows,

Definition 3.1. (Symmetry score). Given a square
matrix M ∈ Mn we define the symmetry score,

s = 2
||Ms||

2
F − ||Mn||

2
F

||M||2F
, (15)

where || · ||F is the Frobenious norm, and Ms and Mn

are the symmetric and skew-symmetric parts of the
Toeplitz decomposition of M, respectively,

Ms =
1
2
(
M +M⊤) ; Mn =

1
2
(
M −M⊤) . (16)

Here, positive and negative symmetry scores indi-
cate the presence of symmetric and skew-symmetric
structures, respectively (see Appendix S1.5). Sec-
ond, we define the directionality score d ∈ R as fol-
lows,

Definition 3.2. (Directionality score). Given a
square matrix M ∈ Mn we define the directionality
score,

d =
r̄M − c̄M

r̄M + c̄M
, (17)

where c̄M is the sum of the norm of the columns that
are higher than a given threshold, as follows,

c̄M =
∑
k∈C

||m·,k||2 with C = {k | ∥m·,k∥2 > µc + γσc} ,

(18)

where || · ||2 is the L2 norm, ||m·,k||2 is the norm of the
k-th column, µc = E[||m·,k||2] and σc =

√
Var||m·,k||2

are the mean and standard deviation of the column
norms, γ is a scaling factor, and similarly r̄M is the
sum of the norm of the rows that are higher than a
given threshold,

r̄M =
∑
k∈R

||mk,·||2 with R = {k | ∥mk,·∥2 > µr + γσr} ,

(19)
with ||mk,·||2 as the norm of the k-th row, µr =

E[||mk,·||2] and σr =
√

Var||mk,·||2 as the mean and
standard deviation of the row norms.

Here, positive and negative directionality scores
indicate the dominance of high norm rows or
columns, respectively (see Appendix S1.6). Finally,
we compute the matrix Wqk for every layer, calculate
the median symmetry and directionality score across
layers, and analyze the differences between encoder-
and decoder-only variants.

We find that encoder-only models remarkably
show a higher degree of symmetry than decoder-only
(Figure 2a). This difference is consistent across mul-
tiple families of models and input modalities, such
as BERT [Devlin et al., 2019], GPT [Radford et al.,
2018, 2019], LLAMA3 [Touvron et al., 2023], Phi
[Hughes, 2023, Abdin et al., 2024], MISTRAL [Jiang
et al., 2023], ModernBERT [Warner et al., 2024], and
many others (see Figure S1 for vision and audio mod-
els). Strikingly, we observe that decoder-only models
have higher degrees of directionality than encoder-
only models (Figure 2b). Again, this difference is

5



consistent across all the models and input modali-
ties we consider. We show in Figure S2 that a simi-
lar pattern is observed when including full encoder-
decoder Transformers (e.g. the language T5 models
[Xue et al., 2021]), despite these models having an
overall lower degree of directionality.

4. Experiments

In this final section, we test if using structural priors
based on our previous results can improve the pre-
training of Transformer models. To do so, we train
Transformer models from scratch and perform a se-
ries of experiments to analyze how symmetric and
directional structures develop during training across
layers.

4.1. Evolution of symmetric and directional
structures during learning

To test the applicability of our result, we first train
12-layer transformer models in both encoder and de-
coder modes and quantify the median symmetry and
directionality scores across epochs. At initialization,
the symmetry and directionality score of the ma-
trix Wqk at any layer is zero (see Definition 3.1 and
Definition 3.2 and related Appendix S1.5 and S1.6).
The incremental update of Wqk we described in the
previous sections predicts that decoder-only mod-
els develop high-norm columns incrementally during
training (see Theorem 2.3). Likewise, as symmet-
ric weight updates are added to Wqk in encoder-only
models, Theorem 2.4 predicts that symmetric struc-
tures emerge incrementally during training.

Consistent with our results on pre-trained models,
encoder-only models show a higher degree of sym-
metry than decoder-only models (Figure 3a). In con-
trast, decoder-only models have a higher directional-
ity score (Figure 3b). We observe this difference on
all datasets we tested (Jigsaw [cjadams et al., 2017],
Wikipedia [Foundation, 2022], Red Pajama [Com-
puter, 2023], see Figure S3). Furthermore, late lay-
ers of encoder-only models are more symmetric and
converge faster than early layers when training bidi-
rectionally. At the same time, decoder-only mod-
els learn almost non-symmetric matrices with strong
skew-symmetric matrices in the middle layers (Fig-
ure 3c). When training unidirectionally, both encoder
and decoder models show a higher degree of direc-
tionality for late layers, which is remarkably stronger
for decoder-only models (Figure 3d). We observe

Table 1: The final loss at the end of training and the
speed-up for the 4 and 12-layer models trained on
the Jigsaw dataset [cjadams et al., 2017], Wikipedia
[Foundation, 2022], and Red Pajama [Computer,
2023], with and without symmetry initialization (see
Appendix S2.1). Speed-up (%) is calculated by sub-
tracting the epoch at which the symmetrically initial-
ized model reaches the non-symmetric model’s fi-
nal loss from the total number of epochs, and then
dividing by the total number of epochs. For ex-
ample, a 50% speed-up means that the model with
symmetric initialization achieves the final loss of the
non-symmetric model in half the number of training
epochs.

Model Loss Speed-up

4-layer model

Jigsaw 2.782
Jigsaw (+ symm) 2.758 26 %

Wikipedia 0.984
Wikipedia (+ symm) 0.812 73 %

Red Pajama 1.106
Red Pajama (+ symm) 0.907 69 %

12-layer model

Jigsaw 1.419
Jigsaw (+ symm) 1.430 0 %

Wikipedia 0.256
Wikipedia (+ symm) 0.247 20 %

Red Pajama 0.297
Red Pajama (+ symm) 0.274 35 %

similar differences across layers with all the datasets
we tested (Figure S4), despite these models having
less significant differences in directionality scores.
See Appendix S2 for a detailed description of the ex-
periments.

4.2. Enforcing symmetry at initialization im-
proves the training of encoder-only mod-
els

The previous section showed that symmetric struc-
tures incrementally emerge during training in the
Wqk matrices of encoder-only models. Here, we first
provide evidence that these findings can be exploited
to speed up training using symmetry as an inductive
bias. Specifically, we explore how symmetric initial-
ization influences the training dynamics of the model
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Figure 3: a) Evolution of symmetry score during training. Shown are the median and the interquartile range.
Models were trained on the Wikipedia dataset [Foundation, 2022]. Encoder-only and decoder-only models are
color-coded in blue and purple, respectively (see legend). b) Same as in panel a for the median directionality
score. c) Evolution of the median symmetry score across layers of the encoder-only (left) and decoder-only
(right) models. Each layer is color-coded as shown on the legend. d) Same as panel c for the median direction-
ality score.

and whether it enhances learning efficiency and over-
all performance.

We train 4-layer and 12-layer encoder-only mod-
els, comparing two initialization strategies: initialize
the self-attention matrices independently versus ini-
tializing the Wq and Wk in each self-attention layer
to ensure that Wqk is symmetric (see Appendix S2).
We report the results of our experiments in Table 1.
We observe that enforcing symmetry at initialization
leads to lower loss values at the end of training for
most of the models. Importantly, symmetric initial-
ization significantly accelerates convergence, reach-
ing the final loss value faster than those with random
initialization (up to 75% faster for 4-layer models
and 35% faster for 12-layer models, see also Figure
S5a). Moreover, we observe that self-attention ma-
trices initialized symmetrically lose symmetry dur-
ing training but converge to higher symmetry levels
than random initialization (Figure S5b) This sym-
metric initialization decreases the gap in symmet-
ric scores between layers compared to random ini-
tialization (Figure S5c). These results highlight that

embedding symmetry as an inductive bias across all
Transformer layers can enhance training efficiency
and model performance.

5. Related work

Mechanistic Interpretability (MI) In contrast to
interpretability approaches that focus on explaining
specific data instances by analyzing features [Wu
et al., 2020, Lundstrom et al., 2022], attention scores
[Hoover et al., 2020, Barkan et al., 2021, Yeh et al.,
2023], or output variations [Jin et al., 2020, Wang
et al., 2022a], mechanistic interpretability (MI) seeks
to provide a more general understanding of Trans-
former models. MI is based on the study of “circuits,”
analyzing the between activations across different
components of a Transformer [Olah et al., 2020].
Following the categorization by [Rai et al., 2024], MI
techniques include: (i) The logit lens [nostalgebraist,
2020, Geva et al., 2021] projects layer activations or
weights into the vocabulary space V, allowing the
derivation of logits and revealing the influence of in-
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dividual components on the prediction. This tech-
nique can also be applied to query-key matrices Wqk

to study how attention heads transform source into
target tokens [Dar et al., 2023]; (ii) Probing tech-
niques allow to identify correlations between layer
activations and features by training a linear classi-
fier or shallow neural network (the probe) to predict
the presence of a feature in layer activations [Dalvi
et al., 2019, Gurnee et al., 2023]; (iii) Sparse autoen-
coders map activations into a higher-dimensional yet
sparse representation, facilitating the identification of
independent (monosemantic) features [Huben et al.,
2024, Bricken et al., 2023]; (iv) Visualization tech-
niques facilitate the analysis of attention scores [Ols-
son et al., 2022, Lieberum et al., 2023] and neuronal
activity patterns [Elhage et al., 2022] by rendering
them in a graphical format. However, their utility
often depends on human comprehension of the re-
sulting visualizations; (v) Ablation studies assess the
importance of model components by systematically
removing or modifying them and observing the re-
sulting behavioral changes [Olsson et al., 2022, Wang
et al., 2022b]; (vi) Causal mediation analysis (CMA)
analyzes the importance of components [Vig et al.,
2020, Meng et al., 2022] or connections [Wang et al.,
2022b, Goldowsky-Dill et al., 2023] between them
by introducing perturbations (e.g., noise) and selec-
tively patching them to measure the recovery of lost
capabilities. Our work adds a new perspective on MI
by providing a scalable and generalizable approach
to the mechanistic understanding of self-attention. In
contrast to existing work, it is not limited to analyz-
ing fully trained models but investigates the influence
of learning and can analyze models of different sizes
across all modalities.

MI for model enhancement Insights from MI
have been instrumental in various applications, in-
cluding improving model safety [Belrose et al.,
2023], updating the model’s learned knowledge
[Meng et al., 2022], and guiding the generation pro-
cess of generative models [Geva et al., 2022]. One
of the most exciting applications is leveraging MI
techniques to improve model performance. For in-
stance, [Marks et al., 2024] identify and eliminate
spurious features, leading to improved generaliza-
tion in classification tasks. Similarly, [Trockman and
Kolter, 2023] observe that query-key matrices (Wqk)
frequently exhibit a pronounced negative diagonal,
prompting them to initialize it with approximately
the identity matrix, leading to enhanced accuracy in

image classification tasks. Similar to [Trockman and
Kolter, 2023], we demonstrate that findings about the
structure of Wqk can inform initialization strategies
that improve Transformer performance. However,
since the identity matrix is one instance of a sym-
metric matrix, we consider the work by [Trockman
and Kolter, 2023] as a special instance of our broader
approach, confirming our findings in the image do-
main.

6. Discussion

In this work, we demonstrate how bidirectional
and autoregressive objective functions influence the
structure of the query-key matrix Wqk in self-
attention, enhancing our understanding of Trans-
former models. Our mathematical framework shows
that bidirectional training induces symmetric struc-
tures in Wqk, whereas autoregressive training results
in matrices characterized by directionality and col-
umn dominance. To empirically validate our analy-
sis, we develop and apply symmetry and direction-
ality scores to various Transformer encoder and de-
coder models across multiple modalities, including
text, audio, and images. Our results reveal that bidi-
rectionally trained encoder models exhibit high sym-
metry, while autoregressively trained decoder models
demonstrate strong directionality, thereby supporting
the predictions of our mathematical framework. This
suggests that self-attention inherently reflects these
structural properties, contributing to the mechanistic
interpretability of Transformer models. Finally, we
leverage our findings to improve convergence speed
during bidirectional training by initializing Wq and
Wk matrices such that Wqk is symmetric.

While our findings mark an initial step toward
leveraging symmetry for more efficient Transformer
training, further research is required to assess the
scalability of symmetric initialization in large-scale
models and across diverse domains. Furthermore,
it is important to explore strategies for leveraging
the directionality structures of decoder-only models.
For instance, incorporating structural constraints into
the objective function or weight regularization could
enhance training efficiency and stability in autore-
gressive settings. By bridging theoretical insights
with practical improvements, our work not only ad-
vances the interpretability of self-attention but also
provides a foundation for optimizing Transformer ar-
chitectures. Ultimately, these findings contribute to a
deeper understanding of the mechanisms governing

8



self-attention, paving the way for more reliable and
efficient Transformer-based models.
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S1. Mathematical proofs

S1.1. Preliminaries

Following the notation in [Vaswani et al., 2017, Radford et al., 2018], we define a Transformer architecture as,

Definition S1.1. (Transformer architecture). Let U ∈ RN,V be a matrix representing the sequence of N one-
hot encoded tokens of dimension V . A Transformer architecture consists of L stacked attention blocks, each
one composed of a self-attention layer and a feedforward layer, as follows,

X0(U) = UWe +Wp{X̂l = Xl−1 + al(Xl−1; Wl
q,W

l
k,W

l
v)

Xl = X̂l + ml(X̂l; Wl
1,W

l
2)

∀l ∈ [1, L]

σ
(
Z
)
= σ

(
XLWu

)
,

(S1)

where We ∈ R
V,d represents the linear transformation from the vocabulary space to the embedding space of

dimension d, Wp ∈ R
V,d represents the positional encoding, X0 ∈ R

N,d is the initial embedding of the sequence,
al(·) is a self-attention function given by

a(Xl−1) = Al(Xl−1)Vl(Xl−1) (S2)

where the matrix of attention scores Al(Xl−1) is given by
Ql(Xl−1) = Xl−1Wl

q

Kl(Xl−1) = Xl−1Wl
k

Al(Xl−1) = σ
(

1√
d

QlKlT
)
,

(S3)

where 1/
√

d is a constant normalization factor, and Wl
q ∈ R

d,d and Wl
k ∈ R

d,d represent linear transformations
within the embedding space, Vl(Xl−1) = Xl−1Wl

v represents a linear transformation within the embedding
space, ml(·) is a position-wise feedforward layer with hidden dimension d f and learnable matrices Wl

1 ∈

Rd,d f and Wl
2 ∈ Rd f ,d, Wu ∈ R

d,V represents the linear transformation from the embedding space back to
the vocabulary space, σ(·) is the row-wise softmax function, and σ

(
Z
)
∈ RN,V is the estimated probability

distribution over the vocabulary. We omit layer normalization and biases for simplicity (see also [Elhage et al.,
2021]).

Furthermore, we use the following definition of a bilinear form,

Definition S1.2. (Bilinear form). A bilinear form on a vector space V over a field F is a map M : V × V → F
that is linear in each argument separately, that is,

M(ax + by, z) = aM(x, z) + bM(y, z)

M(x, ay + bz) = aM(x, y) + bM(x, z) ,
(S4)

for all x, y, z ∈ V and a, b ∈ F. Let {e1, . . . , ed} be a basis for the vector space V . The matrix M such that
[M]i j = M(ei, e j) is the matrix of the bilinear form on this basis, and it follows

M(x, y) = x⊤My (S5)

Finally, we provide the following definition of autoregressive and bidirectional training objectives,

Definition S1.3. (Autoregressive and bidirectional objectives) Let U = {t1, . . . , tN} a sequence of tokens.
The joint probability of U is factorized autoregressively as follows,

Pr[U] = Pr[t1, . . . , tN] = ΠN
i=1 Pr[ti|t1, . . . , ti−1] . (S6)
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During autoregressive training, a model with set of parameters W is optimized to minimize the following
negative log-likelihood

L(U;W) = −
N∑

i=1

log p(ti | {t j} : j < i ;W) , (S7)

where the conditional probabilities are modeled with learnable parametersW. The join probability of U can
also be factorized bidirectionally as follows,

Pr[U] = Pr[t1, . . . , tN] = ΠN
i=1 Pr[ti|t1, . . . , ti−1, ti+1, . . . , tN] . (S8)

During bidirectional training, a model with set of parametersW is optimized to minimize the following nega-
tive log-likelihood

L(U;W) = −
N∑

i=1

log p(ti | {t j} : j , i ;W) . (S9)

In practice, only a subset M ∈ [1, . . . ,N] of the tokens are predicted as in Masked Language Modelling (MLM)
[see Devlin et al., 2019, Warner et al., 2024], leading to the following negative log-likelihood

L(U;W) = −
∑
i∈M

log p(ti | {t j} : j < M ;W) . (S10)

S1.2. Proof of Proposition 2.1 and related remarks

Proof. Let A be the matrix of attention scores in a self-attention layer as in Definition S1.1. It follows that,

X̂(X) = X + A(X)V(X) = X + σ
(

1
√

d
XWqkXT

)
XWv , (S11)

where Wqk = WqW⊤
k , and where we refer to a general layer in a Transformer model, omitting the subscript l.

It follows that the entry αi j = [A]i j of the attention score matrix is given by,

αi j =
exp (x⊤i Wqkx j)∑
j exp (x⊤i Wqkx j)

=
exp (α̂i j)
Ni

, (S12)

where we neglect the scaling factor 1/
√

d for simplicity, every α̂i j is a coefficient given by α̂i j = x⊤i Wqkx j, and
Ni is a normalization factor defined by the row-wise softmax function σ(·) and shared across all entries in the
i-th row of A,

Ni(X; Wqk) =
∑

j

exp (x⊤i Wqkx j) =
∑

j

exp (α̂i j) . (S13)

The coefficients {α̂i j} in the second term represent the projection of xi onto span{X} (the subspace spanned by
X = {x⊤0 , x

⊤
1 , . . . , x

⊤
N}) in the transformed embedding space defined by Wqk,∑

j

α̂i j x j =
∑

j

x⊤i Wqkx j x j =
∑

j

⟨xi,Wqkx j⟩ x j . (S14)

It follows from the monotonically increasing property of the soft-max function that the coefficients {αi j} defined
in Equation (S12) preserve the order of the coefficients {α̂i j}while exponentially suppressing negative and near-
zero values,

αi j < αi j′ ⇔ α̂i j < α̂i j′ ∀i, j, j′ . (S15)

Therefore, the coefficients {αi j} specify a convex combination that restricts the resulting vector in the convex
hull Conv(X) ⊂ span{X}, where the i-th row of X corresponding to the i-th token in the sequence is transformed
into the row vector x̂i as follows,

x̂⊤i = x⊤i +
∑

j

αi j x jWv , (S16)

thus concluding the proof. □
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Remark S1.4. Each element of the sum in Equation (S14) implicitly defines an operator in the subspace spanned
by X = {x⊤0 , x

⊤
1 , . . . , x

⊤
N} given the transformed embedding space defined by Wqk,∑

j

αi j(Wqk) x j =
∑

j

x⊤i Wqkx j x j =
∑

j

PWqk (xi, x j) , (S17)

where PWqk ( · , x j) are operators over the subset X. The set X is in general linearly dependent, and the number
of tokens N in the sequence differs from the embedding space dimension d. Furthermore, Wqk represents
a general bilinear form (see Definition S1.2), which may not satisfy all the defining axioms of a formal inner
product — namely, linearity, conjugate symmetry, and positive definiteness. Finally, the operators PWqk (·x j) are
not formal projection operators since they are not nilpotent (PWqk ( · x j)◦PWqk ( · x j) , PWqk ( · x j)). Nonetheless,
the bilinear map Wqk : Rd × Rd → R still associates any pair of vectors with a scalar value quantifying their
alignment as determined by the geometric relations encoded in Wqk. Therefore, self-attention computes a
generalized decomposition of xi on Conv(X) in the transformed embedding space defined by Wqk. A convex
combination ensures that the resulting vector remains within the region enclosed by the basis vectors X.

Remark S1.5. Following Definition S1.1, multi-head attention consists of parallelizing the self-attention oper-
ation across H different heads with an embedding space dh < d,

X̂(X) = X + concat
(
A1V1,A2V2, . . . ,AhVh

)
Wo (S18)

where Ah = σ(d−1/2 X Wq,h W⊤
k,h XT ) is the self-attention of the h-th head, Wq,h ∈ R

d,dh , Wk,h ∈ R
d,dh and

Wv,h ∈ R
d,dh are the query, key, and value matrices of the h-th attention head, respectively, and Wo ∈ R

d,d is
a linear transformation [Vaswani et al., 2017]. Operationally, the self-attention computation is performed in
parallel by factorizing the Wq and Wk matrices into H rectangular blocks, as follows,

Wq =
[
Wq,1

∣∣∣Wq,2
∣∣∣ . . . ∣∣∣Wq,H

]
Wk =

[
Wk,1

∣∣∣Wk,2
∣∣∣ . . . ∣∣∣Wk,H

]
,

(S19)

and performing the matrix multiplication Wq,hW⊤
k,h per every h-th head independently in one step. It follows

that the full Wqk matrix is given by the sum of the bilinear forms Wqk,h of every head, as follows,

Wqk =WqW⊤
k =

∑
h

Wq,hW⊤
k,h =

∑
h

Wqk,h (S20)

where each Wqk,h ∈ R
d,d is a square matrix with rank(Wqk,h) ≤ dh. Therefore, each head perform independent

projections onto Conv(X) that are then summed together, as follows,∑
j

α̂i j x j =
∑

j

x⊤i Wqkx j x j =
∑

j

x⊤i
(∑

h

Wqk,h
)
x j x j =

∑
j

∑
h

⟨xi,Wqk,hx j⟩ x j , (S21)

thus performing the same operations as in Equation (S14).

S1.3. Proof of Proposition 2.2 and related remarks

Proof. Let U = {t1, . . . , tN} be a sequence of N tokens from a vocabulary of dimension V . Let L(U) be the
negative log-likelihood of each token ti, expressed as

L(U) =
∑

i

L(ti) = −
∑

i

log p(ti | {t j : j ∈ Ci}) , (S22)

where Ci ⊂ [0, 1, . . . ,N] is the set of indices defining the set of tokens {t j} of the conditional probability
distribution. Let U = [t0, t1, . . . , tN] be the sequence of N one-hot encoded tokens ti ∈ R

V associated with U,
where V is the dimension of the vocabulary. Let L(ti) be the cross-entropy of the one-hot encoded token ti and
the estimated probability distribution σ(zi) ∈ RV , as follows,

L(U) =
N∑

i=1

L(ti) =
N∑

i=1

ti log(σ(zi)) , (S23)
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where we let zi be the prediction of the i-th token ti from the representations in the last layer of a Transformer
model, following Definition S1.1, 

x0
i
⊤
= ti

⊤We +Wp

xl
i
⊤
= Fl(xl−1

i ) ∀l ∈ [1, L]

σ
(
zi
)
= σ

(
xL

i
⊤Wu

)
,

(S24)

where xl
i
⊤
= Fl(xl−1

i ) is a short notation for the self-attention and multi-layered perception transformation of
the l-th layer,

Fl(xl−1
i ) =

x̂l⊤
i = x̂l−1⊤

i + al(xl−1
i )

xl⊤
i = x̂l⊤

i + ml(x̂l
i)

, (S25)

where the self-attention function is given by

al(xl−1
i ) =

∑
j∈Ci

αl
i j(w

l) xl−1
j
⊤Wl

v . (S26)

Let attention coefficients αl
i j ≡ α

l
i j(w

l) of the l-th layer be parameterized with a general parameter wl. Let the
gradient of L(ti) w.r.t. wl (the parameterization of the attention scores) be factorized as follows,

∇wlL(ti) =
∂L(ti)
∂αl

i j

∂αl
i j

∂wl . (S27)

It follows that,

∂L(ti)
∂αl

i j

=
∂L(ti)
∂zi

∂zi

∂xL
i

∂xL
i

∂x̂l
i

∂x̂l
i

∂αl
i j

= (ti − σ(zi))⊤W⊤
u
∂xL

i

∂x̂l
i

Wl
v
⊤

∑
j∈Ci

xl−1
j ,

(S28)

where the term ∂xL
i /∂x̂

l
i includes the set of partial derivatives that define the gradient of the representation xL

i
at the last layer w.r.t. the self-attention representation x̂l

i at the l-layer, as follows,

∂xL
i

∂x̂l
i

=

1 + L−1∑
m=l

F ′l (xm
i )

 (1 + m′l(x̂
l
i)
)
, (S29)

where
F ′l (xm

i ) =
∂

∂xl
i

Fl(xm
i ) ; m′l(x̂

l
i) =

∂

∂x̂l
i

ml(x̂l
i) . (S30)

Let δli be the error at the last layer propagated to the self-attention function at the l-th layer, as follows,

δli
⊤
= (ti − σ(zi))⊤W⊤

u
∂xL

i

∂x̂l
i

Wl
v
⊤
, (S31)

thus obtaining the following equation for the gradient,

∇wlL(ti) = δli
⊤

∑
j∈Ci

xl−1
j

∂αl
i j

∂wl . (S32)

Let the attention scores be computed without the row-wise softmax operation and explicitly with the bilinear
form Wqk, such that the following expression gives the score between the i-th and jth token,

αl
i j ≡ α

l
i j(W

l
qk) = xl−1

i
⊤Wl

qkxl−1
j , (S33)
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from which we obtain
∂αl

i j

∂Wl
qk

= xl−1
i xl−1

j
⊤
= Kl−1

i j , (S34)

where Kl−1
i j ∈ Mn is a square rank-1 matrix given by the outer product between the i-th and j-th token from the

l − 1-th layer. It follows that the total gradient of L(ti) is given by

∇Wl
qk
L(ti) = δli

⊤
∑
j∈Ci

xl−1
j Kl−1

i j , (S35)

where we notice that, for every j, the term δli
⊤xl−1

j is a scalar quantity that we define as βl
i j, thus obtaining,

∇Wl
qk
L(ti) =

∑
j∈Ci

βl
i jK

l−1
i j , (S36)

and therefore,
∇Wl

qk
L(U) =

∑
i

∑
j∈Ci

βl
i jK

l−1
i j ∀Wl

qk, l ∈ [1, L] . (S37)

Equivalently, we can rewrite the double summation as follows,

∇Wl
qk
L(U) =

∑
i∈P j

∑
j

βl
i jK

l−1
i j ∀Wl

qk, l ∈ [1, L] , (S38)

where P j ⊂ [0, 1, . . . ,N] is the set of indices defining the set of tokens {ti} that are predicted by t j, thus
concluding the proof. □

In standard Transformer models, the bilinear form Wqk is not directly computed, and as such, it is not
explicitly updated through gradient descent. Nonetheless, Wqk is implicitly updated with a combination of the
weight updates of Wq and Wk having the same form as in Proposition 2.2, see the following.

Remark S1.6. Let L(U) be the negative log-likelihood of a given sequence of one-hot encoded tokens U.
Let Wl

q and Wl
k be the query and key transformation matrices of the l-th layer of Transformer models, see

Definition S1.1. Let Wl
q and Wl

k be updated via gradient descent, that is, Wl
q → Wl

q + η∇Wl
q
L(U) and

Wl
k → Wl

k + η∇Wl
k
L(U), where η is the learning rate. It follows that the matrix Wl

qk = Wl
qWl

k
⊤ is implicitly

updated following,

Wl
qk →

(
Wl

q + η∇Wl
q
L(U)

)(
Wl

k + η∇Wl
k
L(U)

)⊤
=Wl

qWl
k
⊤
+ η

(
Wl

q ∇Wl
k
L⊤(U) + ∇Wl

q
L(U)Wl

k
⊤ )
+ o(η2)

=Wl
qk + η

∑
i

∑
j∈Ci

βl
i j
(
Wl

qWl
q
⊤Kl−1

i j +Kl−1
i j Wl

kWl
k
⊤)
+ o(η2)

=Wl
qk + ∆Wl

qk + o(η2) ≃Wl
qk + ∆Wl

qk ,

(S39)

assuming that the learning rate η is small. Therefore, the implicit weight update of Wl
qk following gradient

descent is given by

∆Wl
qk = η

∑
i

∑
j∈Ci

βl
i j

[(
Wl

qWl
q
⊤Kl−1

i j
)
+

(
Kl−1

i j Wl
kWl

k
⊤)]
∝

∑
i

∑
j∈Ci

βl
i j Kl−1

i j , (S40)

where both Wl
qWl

q
⊤Kl−1

i j and Kl−1
i j Wl

kWl
k
⊤ are rank-1 matrices,

Wl
qWl

q
⊤Kl−1

i j =
(
Wl

qWl
q xl−1

i

)
xl−1

j
⊤
= x̄l−1

i xl−1
j
⊤

Kl−1
i j Wl

kWl
k
⊤
= xl−1

i

(
xl−1

j
⊤Wl

kWl
k
⊤)
= xl−1

i x̄l−1⊤
j .

(S41)
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S1.4. Formal proofs for the connection between objective functions, directionality, and symme-
try

In this section, we provide a formal mathematical derivation of the informal Theorems 2.3 and 2.4 introduced
in the main text. To do so, we provide a formal description and proof of the Theorems for the directionality
and symmetric structures during autoregressive and bidirectional training, respectively with Theorem S1.12
and Theorem S1.14. We also introduce a series of related Propositions and Lemmas.

S1.4.1 Different implicit update of rows and columns

First, we show that a token t∗ contributes differently to the updates of Wqk depending on whether it serves as
context for predicting other tokens or is itself predicted. When t∗ is used to predict a set of tokens:
• All predicted tokens contribute to the column space of Wqk with the update of the k-th column scaled by

the associated entry [xt∗]k.
• Only the token t∗ contributes to the row space, with the update to the m-th row scaled a linear combination

of [xi]m for all predicted tokens.
On the other hand, when t∗ is predicted by a set of tokens:
• Only the token t∗ contributes to the column space, with the update to the k-th row scaled a linear combi-

nation of [xi]k for all predicted tokens.
• All context tokens contribute to the row space with the update of the m-th column scaled by the associated

entry [xt∗]m.
We formalize this in the following Proposition.

Proposition S1.7. (Different implicit updates for context and prediction). Let U = [t0, . . . , tN] be a sequence
of tokens and let xi ∈ R

d be the embedding of the i-th token. Let ∆Wqk be the weight update from Proposition
2.2. Let t∗ be a given token in U. When using t∗ as context, the k-th column of ∆Wqk is given by

∆w·,k
∣∣∣∣∣
t j=t∗
= [xt∗]k

∑
i∈Pt∗

βi jxi

 , (S42)

while the m-th row of ∆Wqk is given by

∆wm,·

∣∣∣∣∣
t j=t∗
=

∑
i∈Pt∗

βi j[xi]m

 xt∗ , (S43)

where Pt∗ is the set of tokens predicted by t∗. When predicting t∗, the k-th column of ∆Wqk is given by

∆wk,·

∣∣∣∣∣
ti=t∗
=

∑
j∈Ct∗

βt∗ j[x j]k

 xt∗ , (S44)

while the m-th row of ∆Wqk is given by

∆wm,·

∣∣∣∣∣
ti=t∗
= [xt∗]m

∑
j∈Ct∗

βt∗ jx⊤j

 . (S45)

where Ct∗ is the set of context tokens for t∗.

Proof. Let U = [t0, . . . , tN] a sequence of tokens with the embedding of every i-th token be given by xi ∈ R
d.

The implicit weight update of Proposition 2.2 can be decomposed with two equivalent regrouping of the double
summations, as follows,

∆Wqk =
∑

(i, j)∈U
βi jxixT

j =
∑

j

∑
i∈P j

βi jxi

 x⊤j =
∑

i

xi

∑
i∈Ci

βi jx⊤j

 , (S46)
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where Pi ⊂ U is the set of tokens predicted by a given token ti, while C j ⊂ U is the set of tokens that
predict a given token t j. We neglect any constant of proportionality - such as a learning rate - for simplicity.
For simplicity, we do not assume any specific structure on Pi and C j (autoregressive training, bidirectional
training, or others). First, the contribution of t∗ ∈ U to the weight update when t∗ is used as context to predict
a set of tokens Pt∗ ⊂ U is

∆Wqk

∣∣∣∣∣
t j=t∗
=

∑
i∈Pt∗

βit∗xi

 x⊤t∗ . (S47)

The associated weight update of the k-th column is then given by

∆w·,k
∣∣∣∣∣
t j=t∗
=

∑
i∈Pt∗

βit∗xi

 [xt∗]k = [xt∗]k

∑
i∈Pt∗

βit∗xi

 , (S48)

while the update of the m-th row is

∆wm,·

∣∣∣∣∣
t j=t∗
=

∑
i∈Pt∗

βit∗[xi]m

 xt∗ . (S49)

A complementary argument can be made when predicting a given token t∗ from a set of tokens Ct∗ . Indeed, the
contribution to the weight update when t∗ is predicted by set of tokens Ct∗ ⊂ U is given by

∆Wqk

∣∣∣∣∣
ti=t∗
=

∑
j∈Ct∗

βt∗ jxt∗

 x⊤j . (S50)

The associated weight update of the k-th column is then given by

∆wk,·

∣∣∣∣∣
ti=t∗
=

∑
j∈Ct∗

βt∗ j[x j]k

 xt∗ , (S51)

while the update of the m-th row is

∆wm,·

∣∣∣∣∣
ti=t∗
=

∑
j∈Ct∗

βt∗ jx⊤j

 [xt∗]m = [xt∗]m

∑
j∈Ct∗

βt∗ jx⊤j

 . (S52)

Therefore, the weight update of each column (row) when a set of tokens predicts t∗ is equivalent to the weight
update of each row (column) when t∗ is used to predict a set of tokens. This concludes the proof. □

S1.4.2 Asymmetric growth of rows and columns during weight update

Next, we demonstrate that under reasonable assumptions about the statistical distribution of token embeddings,
the expected norm of column updates exceeds that of row updates when using the token t∗ to predict other
tokens. Conversely, when t∗ is being predicted by other tokens, the row updates become dominant. We begin
by assuming that the token embeddings xi are independent and identically distributed (i.i.d.) random vectors
drawn from a probability distribution D with zero mean, E[xi] = 0, and covariance matrix Cov(xi) = Σ. This
assumption holds true at initialization for any Transformer model with learnable embeddings. Additionally, we
assume that the covariance matrix satisfies Σ , σ2I,. More specifically, we posit that there is partial alignment
between the embeddings xi due to the semantic and predictive relationships between tokens, which typically
emerge in the vector embeddings during training. Similar to Proposition S1.7, the scenarios where t∗ is used
to predict other tokens and where t∗ is being predicted by other tokens are complementary. In the following
Proposition, we focus solely on the case where t∗ serves as context to predict a set of tokens. A formal
derivation for the opposite case where t∗ is predicted by other tokens is provided in a subsequent Corollary.
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Proposition S1.8. (Asymmetric growth of columns and rows for context). Let U = [t0, . . . , tN] a sequence
of tokens, and let t∗ be a token representing the context of every token ti ∈ U. Let {x1 . . . , xN} be the token
embedding associated with U such that each xi ∼ D is a i.i.d. random vector drawn from a probability
distribution D with zero mean and non-isotropic covariance Cov(xi) = Σ. Let y be the independent random
embedding of t∗ with zero mean and covariance Cov(y) = σ2

yI. Let ∆Wqk be the weight update from Proposition
2.2. Then the squared norm of the m-th row and k-th column of Wqk satisfies

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] > 1 ∀k ∈ {1, . . . , d},∀m s.t. Σm,m <
Tr(Σ)

d
(S53)

Proof. Let U = [t0, . . . , tN] a sequence of tokens, and let t∗ be the context of every token ti ∈ U. Let {xi} be the
set of token embeddings associated with U and let y be the token embedding of t∗. It follows from Proposition
S1.7 that the squared norm of the weight update of the k-th column is given by

∆w·,k =
∑
j∈{t∗}

∑
i∈P j

βi jxi[xj]k =

N∑
i=1

βit∗xi[y]k ⇒ ||∆w·,k||2 = [y]2
k ||

N∑
i=1

βit∗xi||
2 , (S54)

while the squared norm of the weight update of the m-th row by

∆wm,· =
∑
j∈{t∗}

∑
i∈P j

βit∗[xi]mx j =

N∑
i=1

βit∗[xi]my ⇒ ||∆wm,·||
2 =

( N∑
i=1

βit∗[xi]m
)2
||y||2 . (S55)

Let {xi} ∼ D be a set of i.i.d. random vectors from a probability distribution D such that E[xi] = 0 and
Cov(xi) = Σ ∈ Rd,d. Therefore, each k-th coordinate [xi]k is such that E[[xi]k] = 0 and Var([xi]k) = Σk,k. We
also assume that y is statistically independent from xi ∀i with E[y] = 0 and covariance Cov(y) = σ2

yI. It follows
that the expected value of ||∆w·,k||2 overD is given by

E
[
||∆w·,k||2

]
= E

[y]2
k ||

N∑
i=1

βit∗xi||
2

 = E [
[y]2

k

]
E

|| N∑
i=1

βit∗xi||
2

 . (S56)

Given the statistical independence between the entries of xi, the second term is equal to

E

|| N∑
i=1

βit∗xi||
2

 =∑
i,i′
E

[
βit∗βi′t∗x⊤i xi′

]
=

∑
i

β2
it∗E

[
x⊤i xi

]
+

∑
i′,i

βit∗βi′t∗E
[
x⊤i xi′

]
=

∑
i

β2
it∗Tr

(
E

[
xix⊤i

] )
+

∑
i′,i

βit∗βi′t∗E
[
x⊤i xi′

]
= Tr(Σ)

∑
i

β2
it∗ ,

(S57)

and therefore
E

[
||∆w·,k||2

]
= Γk,kTr(Σ)

∑
i

β2
it∗ . (S58)

Similarly, the expected value of ||∆wm,·||
2 is given by

E
[
||∆wm,·||

2
]
= E

( N∑
i=1

βit∗[xi]m
)2
||y||2

 = E
( N∑

i=1

βit∗[xi]m
)2

E [
||y||2

]
. (S59)

The first term can be decomposed as

E

( n∑
i=1

βit∗[xi]m
)2
 = n∑

i=1

β2
it∗E

[
[xi]2

m

]
+

∑
i′,i

βit∗βi′t∗E [[xi′]m[xi]m] = Σm,m

n∑
i=1

β2
it∗ , (S60)
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and therefore
E

[
||∆wm,·||

2
]
= Σm,mTr(Γ)

∑
i

β2
it∗ . (S61)

The ratio of the expected value of these squared norms is

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] = Γk,kTr(Σ)
Σm,mTr(Γ)

=
Γk,k

Tr(Γ)
Tr(Σ)
Σm,m

=
1
d

Tr(Σ)
Σm,m

. (S62)

We assume a non-isotropic covariance structure in Σ, that is, the average variance per dimension is lower than
the total variance across all dimensions. This implies Tr(Σ) > d Σm,m for some m. It follows that,

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] = 1
d

Tr(Σ)
Σm,m

>
1
d

d Σm,m

Σm,m
= 1 ∀m s.t. Σm,m <

Tr(Σ)
d
, (S63)

thus concluding the proof. □

Again, a complementary argument on asymmetric weight update can be made when a set of tokens U =
{t1, . . . , tN} is used to predict a given token t∗, that is, Ci = {t∗} ∀ti ∈ U. We formalize this in the following
Corollary.

Corollary S1.9. (Asymmetric growth of columns and rows for prediction). Let U = [t0, . . . , tN] a sequence
of tokens, and let every token ti ∈ U be the context of a given token t∗. Let the associated embedding be drawn
i.i.d. from a probability distributionD as in Proposition S1.8. Let ∆Wqk be the weight update from Proposition
2.2. Then the squared norm of the m-th row and k-th column of Wqk satisfies

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] < 1 ∀m ∈ {1, . . . , d},∀k s.t. Σk,k <
Tr(Σ)

d
(S64)

Proof. Let U = [t0, . . . , tN] a sequence of tokens, and let t∗ be predicted by every token ti ∈ U. Let {xi} be the
set of token embeddings associated with U and let y be the token embedding of t∗. It follows from Proposition
S1.7 that the squared norm of the weight update of the k-th column is given by

∆w·,k =
∑
i={t∗}

∑
j∈Ci

[x j]kxi =

N∑
j=1

[x j]ky ⇒ ||∆w·,k||2 =
( N∑

i=1

[x j]k
)2
||y||2 , (S65)

while the weight update of the m-th row follows

∆wm,· =
∑
i={t∗}

∑
j∈Ci

x j[xi]m =

N∑
j=1

x j[y]m ⇒ ||∆wm,·||
2 = [y]2

m||

N∑
i=1

x j||
2 . (S66)

Therefore, following the same arguments as in Proposition S1.4.2, the ratio of the expected value of the square
norms is given by

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] = Σk,kTr(Γ)
Γm,mTr(Σ)

= d
Σk,k

Tr(Σ)
<

d Σk,k

d Σk,k
= 1 ∀k s.t. Σk,k <

Tr(Σ)
d
, (S67)

thus concluding the proof. □

S1.4.3 Average contribution of a given token for context and prediction

Additionally, we demonstrate that during autoregressive training, the expected number of tokens predicted by a
specific token t∗ can differ from the expected number of tokens that predict t∗. More specifically, in autoregres-
sive training, the ratio between these two expected numbers is influenced by the statistical correlations between
tokens in the dataset. In contrast, for bidirectional training, the expected number of tokens predicted by t∗ and
the number of tokens that predict t∗ are always equal. This equality holds true regardless of how tokens are
correlated within the corpus, resulting in a ratio of 1. We formalize this in the following Proposition.
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Proposition S1.10. LetV = [t0, . . . , tV ] be a set of tokens. LetU be the sample space of all possible sequences
of N tokens, and let U ∈ U be a sequence U = [t1, . . . , tN]. Let Pr[t j = t∗] be the probability that the token
at index j in is given by t∗ ∈ V. Let E[µc(t∗)] be the expected number of tokens that are predicted by a given
token t∗, and E[µp(t∗)] the expected number of tokens that predict a given token t∗. For autoregressive training,
the ratio

E[µc(t∗)]
E[µp(t∗)]

=

∑N
k=1(N − k) Pr[tk = t∗]∑N
k=1(k − 1) Pr[tk = t∗]

, (S68)

depends on Pr[t j = t∗], while for bidirectional training the same ratio is given by

E[µc(t∗)]
E[µp(t∗)]

= 1 . (S69)

Proof. Let V = [t0, . . . , tV ] be a set of tokens. Let U be the sample space of all possible sequences of N
tokens, and let U be a sequence U = [t1, . . . , tN] ∈ U. Let E = {U ∈ U : tk = t∗} the event of all sequences
where the k-th token is t∗. The indicator function 1{E}(U) is a random variable defined as

1{E}(U) =

1 if tk = t∗

0 otherwise ,
(S70)

and as such its expected value overU is

E
[
1{tk = t∗}(U)

]
=

∑
U∈U

1{tk = t∗}(U) Pr[U] =
∑

U∈U : w j=t∗
Pr[U] = Pr[tk = t∗] . (S71)

Let µc(t∗) be the random variable quantifying the number of tokens predicted by t∗, while µp(t∗) is the ran-
dom variable quantifying the number of tokens predicted by t∗. We analyzed the case of autoregressive and
bidirectional training separately.

During autoregressive training, each time the token t∗ appears at position k it is used as context to predict
N − k tokens, and it is predicted by k − 1 tokens. It follows that µc(t∗) is given by

µc(t∗) =
N∑

l=2

l−1∑
k=1

1{tk = t∗} =
N∑

k=1

(N − k)1{tk = t∗} , (S72)

while µp(t∗) is given by

µp(t∗) =
N−1∑
l=1

l−1∑
k=1

1{tl = t∗} =
N∑

k=1

(k − 1)1{tk = t∗} . (S73)

Therefore, the expected value of µc(t∗) over all possible sequences is

E[µc(t∗)] = E

 N∑
k=0

(N − k)1{tk = t∗}

 = N∑
k=0

(N − k) Pr[tk = t∗] , (S74)

the expected value of µp(t∗) is

E[µp(t∗)] = E

 N∑
k=0

(k − 1)1{tk = t∗}

 = N∑
k=0

(k − 1) Pr[tk = t∗] , (S75)

and their ratio is given by
E[µc(t∗)]
E[µp(t∗)]

=

∑N
k=1(N − k) Pr[tk = t∗]∑N
k=1(k − 1) Pr[tk = t∗]

. (S76)

During bidirectional training, each time the token t∗ is masked at position k, it is predicted by N − 1 tokens.
We assume that the token t∗ significantly contributes to the context of a masked token only if it is itself not
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masked. During bidirectional training, whenever a token t∗ at position k is masked, it is predicted using the
other N − 1 tokens in the sequence. We assume that t∗ significantly contributes to the context for predicting
the masked token only if t∗ itself is not masked. Additionally, we assume that the probability ρ of masking any
given position k is the same for all positions and does not depend on the specific token tk at that position. It
follows that µc(t∗) is given by

µc(t∗) =
N∑

k=1

1{tk = t∗}1{mask(k) = 0}
∑
k′,k

1{mask(k′) = 1} , (S77)

while µp(t∗) is given by

µp(t∗) =
N∑

k=1

1{tk = t∗}1{mask(k) = 1}
∑
k′,k

1{mask(k′) = 0} . (S78)

Therefore, their expected values are given by

E[µc(t∗)] = E

 N∑
k=1

1{tk = t∗}1{mask(k) = 0}
∑
k′,k

1{mask(k′) = 1}


=

N∑
k=1

E

1{tk = t∗}1{mask(k) = 0}
∑
k′,k

1{mask(k′) = 1}


=

N∑
k=1

E
[
1{tk = t∗}1{mask(k) = 0}

] ∑
k′,k

[
1{mask(k′) = 1}

]
=

N∑
k=1

Pr(tk = t∗)Pr(mask(k) = 0)
∑
k′,k

Pr(mask(k′) = 1)

= Nρ(N − 1)(1 − ρ)
N∑

k=1

Pr(tk = t∗) ,

(S79)

and

E[µp(t∗)] = E

 N∑
k=1

1{tk = t∗}1{mask(k) = 1}
∑
k′,k

1{mask(k′) = 0}


= Nρ(N − 1)(1 − ρ)

N∑
k=1

Pr(tk = t∗) ,

(S80)

and their ratio is
E[µc(t∗)]
E[µp(t∗)]

= 1 , (S81)

thus concluding the proof.
□

Let us assume that there is no statistical correlation between the tokens in U, we can factorize the joint
probability Pr[U] as follows

Pr[U] = Pr[t1, . . . , tN] = ΠN
i=1 Pr[ti] . (S82)

Additionally, let us assume that each token is identically distributed independently of the position. Therefore,
during autoregressive training, the expected number E[µc(t∗)] can be simplified as

E[µc(t∗)] =
N∑

k=0

(N − k) Pr[tk = t∗] =
N∑

k=0

(N − k) Pr[t∗] = Pr[t∗]
N(N − 1)

2
, (S83)
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and the same is true for E[µp(t∗)]

E[µp(t∗)] =
N∑

k=0

(k − 1) Pr[tk = t∗] =
N∑

k=0

(k − 1) Pr[t∗] = Pr[t∗]
N(N − 1)

2
. (S84)

It follows that, in the case of statistical independence between tokens, the expected number of tokens predicted
by t∗ and the expected number of tokens predicting t∗. Under these assumptions, there is no difference between
autoregressive and bidirectional training.

On the other hand, let us assume a general joint probability between tokens, Pr[U] = Pr[t1, . . . , tN]. When
conditioning the probabilities over the future tokens, we obtain a factorization of the joint probability as fol-
lows,

Pr[U] =
N∏

i=1

Pr[ti | ti+1, . . . , tN] . (S85)

The probability of the k-th token being t∗ across the possible sequences is thus given by

Pr[tk = t∗] =
∑

t1,...,tN

1{tk = t∗}Pr[t1, . . . , tn]

=
∑

t1,...,tk−1,tk+1,...,tN


T∏

l=1
l,k

Pr[tl|tl+1, . . . , tN]

 · Pr[tk = t|tk+1, . . . , tN] ,
(S86)

leading to the ratio

E[µc(t∗)]
E[µp(t∗)]

=

∑N
k=1(N − k)

∑
t1,...,tk−1,tk+1,...,tN

(∏T
l=1
l,k

Pr[tl|tl+1, . . . , tN]
)
· Pr[tk = t|tk+1, . . . , tN]

∑N
k=1(k − 1)

∑
t1,...,tk−1,tk+1,...,tN

(∏T
l=1
l,k

Pr[tl|tl+1, . . . , tN]
)
· Pr[tk = t|tk+1, . . . , tN]

. (S87)

Therefore, when t∗ has a high probability of occurring before a given set of tokens, or when t∗ is likely to occur
at the beginning of sentences and specific pieces of text, this ratio is likely to be higher than 1.

S1.4.4 Theorem on the emergence of directionality

Here, we show that, under the same assumptions as in Proposition S1.8, the weight updates of Wqk induce
column dominance during autoregressive training. Specifically, there are on average more columns with high
norms than rows with high norms. We assume that, at initialization, the entries of Wqk are drawn from a
probability distribution P with finite mean µ and variance σ2. This assumption holds for any standard machine
learning initialization scheme. This implies that each k-th column w·,k and m-th row wm,· have the same mean
µ and variance σ2/

√
n. Furthermore, the squared norm of both rows and columns have equal mean n(σ2 + µ2)

and variance n(2σ4 + 4µ2).
To demonstrate the column dominance, we first show that if one probability distribution has a higher variance

than another, it is more likely to produce samples with higher values. We formalize this in the following
Lemma.

Lemma S1.11. Let two probability distributions a, b have the same mean µ and different variance σ2
a > σ

2
b.

The probability of a random sample of each distribution being larger than a value z is higher for samples from
a than from b for z >

√
σaσb − µ,

Pr [Xa > z] ≥ Pr [Xb > z] ∀z >
√
σaσb − µ (S88)

Proof. Our goal is to find a z such that

Pr [Xa > z] ≥ Pr [Xb > z] (S89)
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for which we need the following steps: A lower bound for Pr [Xa > z], an upper bound for Pr [Xb > z], and a
value of z that makes the upper bound lower than the lower bound.

We start by using Chebyshev’s inequality, to derive an upper bound for Pr [Xb > z],

Pr [Xb > z] = Pr
[
Xb − µ > qσb

]
≤

1
q2 =

(
σb

z − µ

)2

. (S90)

Now compute a lower bound for Pr [Xb > z] through the second moment method (which is very similar to
the previous one, but inverted),

Pr [Xa > z] = Pr [Xa − z > 0] ≥
(E [Xa − z])2

E
[
(Xa − z)2

] = (
µ − z
σa

)2

(S91)

Thus, we now only need to find z satisfying (
σb

z − µ

)2

<

(
z − µ
σa

)2

(S92)

for the case z > µ, the inequality is fulfilled when

z >
√
σaσb − µ. (S93)

□

We now formalize the connection between this result and the asymmetric growth of columns in the following
Theorem.

Theorem S1.12. (Autoregressive training induces directionality) Let V = [t0, . . . , tV ] be a set of tokens. Let
U be an ordered sequence of N tokens U = [t1, . . . , tN] where Pr[t j = t∗] is the probability that the token at
index j in U is given by t∗ ∈ V. Let {x1 . . . , xn} be the embedding associated with V such that each xi ∼ D

is drawn i.i.d. from a probability distribution D with zero mean and semipositive covariance Cov(xi) , σ2
xI.

Let ∆Wqk be the weight update of Wqk from Proposition 2.2. Let ∆Wqk be derived from an autoregressive
objective function as in Definition S1.3. Then, there exists a value γ ∈ R such that,

Pr[||w·,k|| > w] > Pr[||wm,·|| > w] ∀w > γ (S94)

Proof. Let E[µc(t∗)] be the expected number of tokens that are predicted by a given token t∗, and E[µp(t∗)] the
expected number of tokens that predict a given token t∗. When assuming autoregressive training, it follows
from Proposition S1.10 that

E[µc(t∗)]
E[µp(t∗)]

=

∑N
j=1(N − j) Pr[t j = t∗]∑N
j=1( j − 1) Pr[t j = t∗]

. (S95)

Let the statistical correlation between tokens in U,

E[µc(t∗)]
E[µp(t∗)]

> 1 , (S96)

for most t∗ ∈ V. It follows that the average number of tokens that are predicted by t∗ is smaller than the average
number of tokens that predict it. Therefore, the number of times t∗ contributes to the weight update of Wqk as
predicted token is on average smaller than the number of times it contributes as context token. It follows from
Proposition S1.8 that the number of times the following is true,

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] > 1 , (S97)
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is on average higher than the number of times the following is true,

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] < 1 . (S98)

Therefore, the net increase of the norm of the columns is bigger than the net increase of the norm of the rows.
We now prove that the number of columns with a high norm exceeds the number of rows with a high norm.
At initialization, let each (k,m) entry of Wqk be an i.i.d. random variable drawn from a probability distribution
with mean µ and variance σ2. It follows that the mean norm of rows and columns are equal at initialization, as
follows,

E
[
|wm,·|

] ∣∣∣∣∣
init
= E

[
|w·,k|

] ∣∣∣∣∣
init
= µ ∀k,m . (S99)

Furthermore, the variance of the norms of the rows σ2
rows and of the columns σ2

cols are equal at initialization,

Var
(
|wm,·|

) ∣∣∣∣∣
init
= Var

(
|w·,k,·|

) ∣∣∣∣∣
init
= σ2 ∀k,m . (S100)

Therefore, the following inequality holds at the end of training,

Var
(
|wm,·|

)
> Var

(
|w·,k|

)
∀k,m . (S101)

Finally, we obtain from Lemma S1.11 that the following inequality holds,

Pr[||w·,k|| > w] > Pr[||wm,·|| > w] ∀w > γ (S102)

where γ =
√

Var
(
|wm,·|

)
Var

(
|w·,k|

)
− µ, thus concluding the proof. □

S1.4.5 Theorem on the emergence of symmetry

Finally, we prove that the weight updates of Wqk induce symmetry during bidirectional training. Importantly,
the column dominance is present only during autoregressive training. Indeed, it follows from Proposition S1.10
that, during bidirectional training, the net increase of the norm of the columns is equal to the net increase of
the norm of the rows. We formalize this in the following Corollary.

Corollary S1.13. (Bidirectional training induces rows and columns with equal norm) LetV = [t0, . . . , tV ] be
a set of tokens. Let U be an ordered sequence of N tokens U = [t1, . . . , tN] where Pr[t j = t∗] is the probability
that the token at index j in U is given by t∗ ∈ V. Let {x1 . . . , xn} be the random embedding of the tokens as
in Theorem S1.12. Let ∆Wqk be the weight update of Wqk from Proposition 2.2. Let ∆Wqk be derived from
a bidirectional objective function as in Definition S1.3. Then, the variance of the norm of the rows and the
columns at the end of training is equal,

Var
(
|wm,·|

)
= Var

(
|w·,k|

)
∀k,m . (S103)

Proof. It follows from Proposition S1.10 that the number of times the following is true,

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] > 1 , (S104)

is on average equal to the number of times the following is true,

E
[
||∆w·,k||2

]
E

[
||∆wm,·||

2] < 1 . (S105)

Therefore, the net increase of the norm of the columns is equal to the net increase of the norm of the rows.
Following the same initialization assumptions as in Theorem S1.12, it follows that at the end of training,

Var
(
|wm,·|

)
= Var

(
|w·,k|

)
∀k,m . (S106)

thus concluding the proof. □
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Now, we show that the bidirectional nature of the training objective is such that every pair of tokens (i, j)
in a given sequence contributes to a term that is approximately symmetric. Here, we assume that predicting
the i-th token from the j-th token is correlated to predicting the j-th token from the i-th token. In other words,
predicting one token from the other gives similar predictions, that is, the term βi j and β ji from Proposition 2.2
are correlated. We formalize this in the following Theorem.

Theorem S1.14. (Bidirectional training induces symmetry) Let U be an ordered sequence of N tokens U =
[t1, . . . , tN]. Let ∆Wqk be derived from a bidirectional objective function as in Definition S1.3. It follows that
the weight update of Wl

qk is given by

∆Wl
qk =

N∑
i=1

N∑
j=1

βl
i jK

l−1
i j , (S107)

and that every pair (i, j) with i , j contributes to the weight update with a term

∆Wl
qk

∣∣∣ti↔t j
= βl

i jK
l−1
i j + β

l
jiK

l−1
i j

T
, (S108)

that is approximately symmetric,
∆Wl

qk

∣∣∣ti↔t j
≈ ∆Wl

qk

∣∣∣⊤ti↔t j
. (S109)

Proof. Let U be an ordered sequence of N tokens U = [t1, . . . , tN]. It follows from Proposition 2.2 that the
weight update for Wl

qk following the gradient of L(U) w.r.t. Wl
qk is given by

∆Wl
qk =

N∑
i=1

N∑
j=1

βl
i jK

l−1
i j , (S110)

where we neglect any constant of proportionality - such as a learning rate - for simplicity. The double summa-
tion in Equation (S110) contains N2 elements. We can rewrite the double summation as follows,

N∑
i=1

N∑
j=1

βl
i jK

l−1
i j =

N∑
i=1

βl
iiK

l−1
ii +

N∑
i, j=1
i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
ji ) (S111)

where the first term includes the diagonal terms, and the second includes the contributions of every pair (i, j)
with i, j ∈ [0, . . . ,N]. The second term can be written as,

N∑
i, j=1
i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
ji ) =

N∑
i, j=1
i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
i j
⊤

) , (S112)

and by decomposing Kl−1
i j in its symmetric and skew-symmetric parts, such that Kl−1

i j = Sl−1
i j +Nl−1

i j , we obtain,

N∑
i, j=1
i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
i j
⊤

) =
N∑

i, j=1
i< j

[
βl

i j(S
l−1
i j + Nl−1

i j ) + βl
ji(S

l−1
i j + Nl−1

i j )T ]

=

N∑
i, j=1
i< j

[
(βl

i j + β
l
ji)S

l−1
i j + (βl

i j − β
l
ji)N

l−1
i j

]
.

(S113)

Let ∆Wl
qk

∣∣∣ti↔t j
= βl

i jK
l−1
i j + β

l
jiK

l−1
i j

T , and let βl
i j and βl

ji be such that sign(βl
i j) = sign(βl

ji) and |βl
i j| ≈|β

l
ji|. It

follows that

∆Wl
qk

∣∣∣ti↔t j
≈

N∑
i, j=1
i< j

βl
i jS

l−1
i j =

N∑
i, j=1
i< j

βl
i jS

l−1⊤
i j = ∆Wl

qk
⊤∣∣∣ti↔t j

(S114)

thus concluding the proof. □
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Encoder-only models are typically not trained to predict every token in a sequence, but rather a random
subset of tokens, and the model can attend to tokens bidirectionally. This is usually called Masked Language
Modeling (MLM) [Devlin et al., 2019, Liu et al., 2019, Lan et al., 2020, Warner et al., 2024]. Therefore, only
a subset of terms in the double summation of Equation (S113) has the symmetric properties described above.
We generalize the proof to this case in the following.

Remark S1.15. Let Ci = [0, 1, . . . ,N] and let the summation indexed by i to run over a random subset of tokens
M ⊂ [0, 1, . . . ,N]. The weight update of Wqk is then given by

∆Wl
qk =

∑
i∈M

N∑
j=1

βl
i jK

l−1
i j . (S115)

The double summation contains N |M| elements, where |M| is the cardinality of the subset M. We can rewrite
the double summation as follows,

∑
i∈M

N∑
j=1

βl
i jK

l−1
i j =

∑
i∈M

βl
iiK

l−1
ii +

∑
i, j∈M

i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
ji ) +

∑
i∈M

∑
j∈M̄

βl
i jK

l−1
i j , (S116)

where the first term includes the diagonal terms, the second includes the contributions of the pairs (i, j) with
i, j ∈ M, and the third includes the remaining terms with M̄ = [1, . . . ,N] \ M. The second term can be written
as, ∑

i, j∈M
i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
ji ) =

∑
i, j∈M

i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
i j
⊤

) , (S117)

and by decomposing Kl−1
i j in its symmetric and skew-symmetric parts, such that Kl−1

i j = Sl−1
i j +Nl−1

i j , we obtain,∑
i, j∈M

i< j

(βl
i jK

l−1
i j + β

l
jiK

l−1
i j
⊤

) =
∑

i, j∈M
i< j

[
βl

i j(S
l−1
i j + Nl−1

i j ) + βl
ji(S

l−1
i j + Nl−1

i j )T ]
=

∑
i, j∈M

i< j

[
(βl

i j + β
l
ji)S

l−1
i j + (βl

i j − β
l
ji)N

l−1
i j

]
,

(S118)

with a similar structure as in Equation (S113).

Let |M| = pN with 0 < p < 1 being the percentage of tokens to be predicted during bidirectional training.
The total number of pairs in the second term of Equation (S116) is given by a binomial coefficient, thus the
total number of elements in the summation is pN(pN − 1). The total number of elements in the third term is
instead the product pN(N − pN). Therefore, the percentage of symmetric weight updates from the second term
over the total number of updates in the third term is given by

pN(pN − 1)
pN(N − pN)

≈
pN

(N − pN)
, (S119)

in the limit of large N. In practice, p is set to be around 15%-30% [Devlin et al., 2019, Liu et al., 2019, Lan
et al., 2020, Warner et al., 2024], leading to ≈ 25% of symmetric weight updates on average.

S1.5. Properties of the symmetry score in Definition 3.1 and related proofs

The score s we introduce in Section 3 indicates the degree of symmetry of a matrix M by quantifying the
contribution to the Frobenious norm of its symmetric and skew-symmetric parts. In particular, s equals 1 and
-1 for a fully symmetric and skew-symmetric matrix. Accordingly, positive (negative) values of s indicate the
presence of symmetric (skew-symmetric) structures. Here, we provide a proof for these properties. First, we
show that the Frobenious norm of any square matrix M can be decomposed in the sum of the Frobenious norm
of its symmetric and skew-symmetric components, as in the following Lemma,
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Lemma S1.16. For any square matrix M ∈ Mn the following equivalence holds

||M||2F = ||Ms||
2
F + ||Mn||

2
F . (S120)

Proof. The Frobenius norm of a matrix M can be defined as ||M||F =
√

Tr(MM⊤), and as such we observe that
for any square matrix M we get

||M||F =
√

Tr
(
MM⊤

)
=

√
Tr

(
(Ms +Mn)(Ms +Mn)⊤

)
=

=

√
Tr(MsM⊤

s ) + Tr(MsM⊤
n ) + Tr(MnM⊤

s ) + Tr(MnM⊤
n ) .

(S121)

It follows from the cyclic property of the trace operator that the mixing terms cancel out as follows,

Tr(MsM⊤
n ) + Tr(MnM⊤

s ) = −Tr(MsMn) + Tr(MsMn) = 0 , (S122)

resulting in

||M||F =
√

Tr(MsM⊤
s ) + Tr(MnM⊤

n ) . (S123)

Therefore, as both terms on the right-hand side are semi-positive definite, we conclude the proof as follows,

||M||2F = Tr(MsM⊤
s ) + Tr(MnM⊤

n ) = ||Ms||
2
F + ||Mn||

2
F . (S124)

□

Next, we formulate the properties of the symmetry score as follows,

Proposition S1.17. The symmetry score s quantifies the degree of symmetry or skew-symmetry of a given
square matrix M. In particular,
1) The symmetry score s is a scalar value bounded in the range [−1, 1].
2) A symmetry score s = ±1 indicates a fully symmetric or skew-symmetric matrix, respectively.
3) The symmetry score of a random matrix M ∈ Mn with entries Mi j ∼ p(0, σ) from a probability distribution
with zero mean and finite variance tends to zero as 8/n in the limit n→ ∞.

Proof. To prove the points (1) and (2), we first show that it follows from Lemma S1.16 that the squared
Frobenious norm of Ms and Mn are in an orthogonal relation

||M||F =
√
||Ms||

2
F + ||Mn||

2
F . (S125)

Therefore, for any given M, the norms ||Ms||
2
2 and ||Mn||

2
2 are such that a higher value of the first leads to to a

lower value of the second, and vice versa. In particular, it is straightforward to observe that ||Ms||2 = ||M||2
and ||Mn||2 = 0 if M is symmetric. Next, we derive a decomposition of the squared Frobenious norm of the
symmetric and skew-symmetric part of M. From the definition of Ms we obtain that

||Ms||
2
F = Tr

(
MsM⊤

s
)
=

1
4

Tr
[
(M +M⊤)(M⊤ +M)

]
=

1
4

[
Tr(MM⊤) + Tr(MM) + Tr(M⊤M⊤) + Tr(M⊤M)

]
=

1
2

[
Tr(MM⊤) + Tr(MM)

]
=

1
2

[
||M||2F + Tr(MM)

]
.

(S126)

Since the upper bound for ||Ms||
2
F is given by ||M||2F , the second term on the left-hand side has an upper bound

given by,

Tr(MM) ≤
1
2
||M||2F , (S127)
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A complementary relation holds for the skew-symmetric component of M,

||Mn||
2
F =

1
4

Tr
[
(M −M⊤)(M⊤ −M)

]
=

1
2

[
||M||2F − Tr(MM)

]
, (S128)

which, following the same logic, defines a lower-bound for Tr(MM) as follows,

−
1
2
||M||2F ≤ Tr(MM) . (S129)

Given Definition 3.1 we can write,

s =
||M||2F + Tr(MM) − ||M||2F + Tr(MM)

||M||2F
= 2

Tr(MM)
||M||2F

(S130)

and by combining the bounds derived previously we obtain,

−1 ≤ s ≤ 1 (S131)

with  s = 1 if M =M⊤

s = −1 if M = −M⊤
(S132)

To prove the point (3), let each entry mi j = [M]i j be an independent, identically distributed sample from a
random distribution with mean zero and a finite variance σ2. We compute the Frobenius norm of the symmetric
and skew-symmetric parts as follows,

∥Ms∥
2
F =

∑
i, j

(
Mi j +M ji

)2
+

∑
i

(2Mii)2

∥Mn∥
2
F =

∑
i, j

(
Mi j −M ji

)2
.

(S133)

Here, the skew-symmetric part has a zero diagonal term (because of the subtraction), and the symmetric part
has twice the diagonal of the original matrix M (because of the addition). Since the entries are independent,
Mi j is independent of M ji for all j , i, and thus we can treat the off-diagonal entries of the Ms and Mn terms as
a sum and difference of two independent random samples having mean zero and the same variance. It follows
that the resulting distribution has a mean zero and a variance of 2σ2 in both cases,∑

i, j

(
Mi j ±M ji

)2
= 2

n∑
i=1

n∑
j=i+1

(
Mi j ±M ji

)2
≈

n→∞
n(n − 1)Var

[
Mi j ±M ji

]
= n(n − 1)2σ2 , (S134)

where the approximation is due to the central limit theorem. Applying a similar logic to the second term on the
symmetric norm, each entry is the double of a random i.i.d. distribution with

N∑
i=1

(2Mii)2 ≈
N→∞

nVar
[
Mi j

]
= n4σ2 . (S135)

Finally, we take the Frobenius norm of the random matrix itself and apply the same logic, where there are n2

entries with a variance of σ2,
∥M∥2F ≈

n→∞
n2σ2 . (S136)

It follows that the symmetry score is given by

s = 2
∥Ms∥

2
F − ∥Mn∥

2
F

∥M∥2F
≈

n→∞

8σ2n
σ2n2 =

8
n
, (S137)

where the symmetry score is zero in the limit n→ ∞ with convergence from the positive side. □
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S1.6. Properties of the directionality score in Definition 3.2 and related proofs

The score d we introduce in Section 3 quantifies the directional bias of a square matrix M by comparing the
total norm of the ”outliers” rows and columns, that is, that are higher than γ times the standard deviations
of the norms. A directionality score d of 1 indicates the presence of rows with high “outlier” norms and the
absence of outliers in the distribution of the column norms. The opposite is true for a directionality score d of
-1. Accordingly, positive (negative) values of d indicate the presence of row (column) dominance in the matrix.
Here, we provide a proof for these properties.

Proposition S1.18. The symmetry score d provides a quantitative measure of the degree of directional bias in
a given square matrix M.
1) The directionality score d is a scalar value that lies within the range [−1, 1].
2) For any given γ > 0, a directionality score d = ±1 indicates that vectors satisfying the condition defined by
γ are exclusively present in the rows or the column distribution, respectively.
3) The directionality score of a random matrix M ∈ Mn with entries Mi j ∼ p(0, σ) from a probability distribu-
tion with zero mean and a variance that scales as O(n−1) tends to zero in the limit n→ ∞.

Proof. To prove that the directionality score is bounded in the interval [−1, 1], note that c̄M, r̄M > 0 simply
because they are sums of norms. As both are positive,

|c̄M − r̄M| < c̄M < c̄M + r̄M (S138)

and thus
c̄M − r̄M

c̄M + r̄M
< 1 (S139)

and taking the negative sign for the absolute value,

−
r̄M − c̄M

c̄M + r̄M
> −1⇒

c̄M − r̄M

c̄M + r̄M
> −1. (S140)

In the extremes d = ±1, the numerator must be equal to the denominator in absolute value, implying that
either r̄M or c̄M are zero and the other is positive. For completeness, we define the score as zero if both are
zero.

Finally, we study the case of a random matrix. We start by noting that the values of r̄M, c̄M are interchanged
when we take the transpose, hence

r̄M = c̄M⊤ (S141)

Regardless of the scaling of the matrix and the value γ, the key property of a random matrix is that all entries
are drawn from the same distribution. Hence,

Pr
[
Mi j = x

]
= Pr

[
M ji = x

]
⇒ Pr [M = X] = Pr

[
M = X⊤

]
(S142)

for x and X being any arbitrary value or matrix. As a consequence,

Pr [c̄M = x] = Pr [c̄M⊤ = x] = Pr [r̄M = x] (S143)

where the last equality comes from Eq. S141. The main point here is that the probability distribution of both
rows and columns is the same. Pushing this forward, the expected value of r̄M − c̄M is

E [r̄M − c̄M] = E [r̄M] − E [c̄M] =
∫

c̄MPr [M] dM −
∫

r̄MPr [M] dM (S144)

=

∫
r̄MPr

[
M⊤

]
dM⊤ −

∫
r̄MPr [M] dM = 0 (S145)

Furthermore, the expected value of r̄M + c̄M is strictly positive, since both values are positive. Thus, their ratio,
the directionality score of a random matrix, is zero.
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Configuration BERT BERT-Mini

Hidden Size 768 256
Intermediate Size 3072 1024
Number of Attention Heads 12 4
Number of Hidden Layers 12 4
Attention Dropout Probability 0.1 0.1
Hidden Activation Function gelu gelu
Hidden Dropout Probability 0.1 0.1
Layer Normalization Epsilon 1e-12 1e-12
Max Position Embeddings 512 512
Position Embedding Type absolute absolute
Vocabulary Size 30522 30522

Table S1: Configurations for BERT and BERT-Mini models.

Notice that to be thorough we must show that their variance is bounded scales down. Since weight initial-
ization has been extensively studied, we will just make a general reference to it here. In machine learning, all
weights are initialized with zero mean and variances that scale as O(n−1). As M is a product of two matrices
with such scaling, each entry would consist of the sum of n random variables, where each one has a scaling of
O(n−2) since it is the product of two random variables with an O(n−1) scaling. Thus, the entries of M also have
a scaling of O(n−1). Applying the mean value theorem gives us the desired result.

□

S2. Experimental Details

We trained two BERT models [Devlin et al., 2019] to examine the evolution of the symmetry and directionality
scores throughout the training process. Detailed information regarding the training procedure is provided
below.

S2.1. Models

We train the standard BERT model (referred to as BERT) and a smaller version (referred to as BERT-Mini),
following the implementation by [Devlin et al., 2019]. Table S1 provides an overview of the model parameters.
The standard BERT model has 12 layers, 12 attention heads, and embedding dimensions of 768 for the hidden
layers and 3072 for the intermediate layers. In contrast, the smaller BERT-Mini model uses 4 layers, 4 attention
heads, and embedding dimensions of 256 and 1024, respectively.

Initialization We optionally initialize the models with either symmetric or skew-symmetric attention weights
by initializing the key and query weight matrices of all self-attention blocks following a specific procedure. For
symmetric initialization, the query weight matrix Wq is initialized randomly, and then the key weight matrix is
set to Wk =Wq. For skew-symmetric initialization, Wq is initialized randomly, and a skew-symmetric matrix
S is generated by first initializing a random matrix, A and then calculating S = A−A⊤. The key matrix is then
defined as Wk =WqS⊤, ensuring that the matrix multiplication WqWk

⊤ is skew-symmetric.

Loss Constraints The loss function L(U) described in Equation (S22) is optionally extended with a con-
straint to either encourage symmetric or skew-symmetric attention weights.

L(U) := L(U) + γLc(W). (S146)
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Here, γ is a coefficient defining the importance of the Lc constraint. To encourage symmetry, we minimize the
condition

Lc(W) =
M2

M2
s
. (S147)

This constraint reaches its minimum if all attention weights have a symmetry score s = 1. To encourage
skew-symmetry, we minimize the condition

Lc(W) =
M2

M2
n
, (S148)

leading to a symmetry score of s = 0.

S2.2. Datasets

The models are trained on three datasets. First, we use the “20220301.en” snapshot from the Wikipedia dataset,
which consists of 6.46 million samples crawled from Wikipedia. Second, we utilize the Jigsaw dataset with
159K samples, originally collected for a toxic comment classification challenge. Finally, we train on the
English “2023-14” snapshot of the RedPajama-V2 dataset, which contains approximately 5.12 billion samples.

S2.3. Training Settings

The models are trained for 200, 000 update steps with a batch size of 32 and 8 gradient accumulation steps,
effectively increasing the batch size to 256 before each parameter update. The optimization is done using the
AdamW optimizer [Loshchilov and Hutter, 2019], and the training schedule includes 200 warmup steps to
stabilize early training, followed by a linear decay learning rate schedule, starting at an initial learning rate of
5×10−5 and weight decay of 0.01. Mixed precision (fp16) training was utilized to maximize training efficiency,
which reduces memory consumption and speeds up computation without significant loss of precision. The
training data was processed with a masked language modeling (MLM) probability of 15%, ensuring that 15%
of tokens were masked during training. The models are trained in the encoder and decoder mode, i.e., to predict
masked tokens and subsequent tokens respectively.

S3. Supplementary Figures
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Figure S1: a) Median symmetry score of the matrix Wqk as a function of the total number of parameters for
vision and audio models. Each dot corresponds to the median and the interquartile range across layers of a
given pre-trained model. b) Same as in a for the median directionality score of the matrix Wqk.
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Figure S2: a) Median symmetry score of the matrix Wqk as a function of the total number of parameters for
vision and audio models. Each dot corresponds to the median and the interquartile range across layers of the
encoder component (blue) and decoder component (purple) of an encoder-decoder Transformer model. The
encoder component of these models shows a high degree of symmetry compared to the decoder component. b)
Same as in a for the median directionality score of the matrix Wqk. The encoder and decoder components of
these models do not show significant differences in directionality scores.

S4. Supplementary Tables
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Table S2: Symmetry score for open-source pretrained language models. All models are available on Hugging
Face [Wolf et al., 2020].

Model Median Interquartile range Model Median Interquartile range

BERT-tiny 0.77 ± [0.07, 0.07] GPT-Neo1.3B 0.14 ± [0.03, 0.03]
BERT-mini 0.62 ± [0.03, 0.05] GPT-Neo2.7B 0.13 ± [0.02, 0.04]
BERT-small 0.69 ± [0.10, 0.08] GPT-J6B 0.11 ± [0.02, 0.03]
BERT-medium 0.60 ± [0.01, 0.02] OpenAI-GPT 0.07 ± [0.04, 0.03]
BERT-base 0.51 ± [0.09, 0.07] GPT2-XL 0.12 ± [0.03, 0.05]
BERT-large 0.44 ± [0.03, 0.08] DistilGPT2 0.19 ± [0.05, 0.05]
DistilBERT 0.43 ± [0.10, 0.13] GPT-Neo125M 0.14 ± [0.09, 0.14]
BERT-2L-128 0.77 ± [0.07, 0.07] GPT-Neo1.3B 0.14 ± [0.03, 0.03]
BERT-4L-256 0.62 ± [0.03, 0.05] GPT-Neo2.7B 0.14 ± [0.03, 0.02]
BERT-4L-512 0.69 ± [0.10, 0.08] GPT-J6B 0.11 ± [0.02, 0.03]
BERT-8L-512 0.60 ± [0.01, 0.02] LLaMA2-7B 0.12 ± [0.02, 0.03]
BERT-base 0.51 ± [0.09, 0.07] LLaMA2-13B 0.17 ± [0.02, 0.02]
BERT-large 0.44 ± [0.03, 0.08] LLaMA3-8B 0.00 ± [0.00, 0.01]
DistilBERT 0.43 ± [0.10, 0.13] LLaMA3.1-8B 0.00 ± [0.00, 0.01]
BEiT-base 0.40 ± [0.08, 0.02] LLaMA3.2-8B 0.01 ± [0.01, 0.01]
BEiT-large 0.33 ± [0.05, 0.07] LLaMA3.2-1B 0.01 ± [0.01, 0.01]
BEiT-base 0.39 ± [0.23, 0.07] LLaMA3.2-3B 0.01 ± [0.01, 0.01]
BEiT-large 0.26 ± [0.17, 0.13] LLaMA2-7B-chat 0.12 ± [0.02, 0.03]
BEiT-base 0.39 ± [0.23, 0.07] LLaMA2-70B 0.02 ± [0.01, 0.02]
BEiT-large 0.26 ± [0.17, 0.13] LLaMA2-7B-chat 0.12 ± [0.02, 0.03]
BEiT-large 0.26 ± [0.17, 0.13] LLaMA2-13B-chat 0.17 ± [0.02, 0.02]
ALBERT-base 0.72 ± [0.00, 0.00] LLaMA3-8B 0.00 ± [0.00, 0.00]
ALBERT-large 0.70 ± [0.00, 0.00] LLaMA3-70B 0.02 ± [0.01, 0.01]
ALBERT-xlarge 0.59 ± [0.00, 0.00] LLaMA3.1-8B 0.00 ± [0.00, 0.01]
ALBERT-xxlarge 0.46 ± [0.00, 0.00] LLaMA3.1-70B 0.01 ± [0.00, 0.01]
RoBERTa-base 0.49 ± [0.03, 0.06] LLaMA3.1-405B 0.03 ± [0.01, 0.03]
RoBERTa-large 0.47 ± [0.06, 0.06] LLaMA3.2-1B 0.00 ± [0.00, 0.00]
XLM-R-base 0.51 ± [0.05, 0.03] LLaMA3.2-3B 0.01 ± [0.01, 0.01]
XLM-R-large 0.49 ± [0.16, 0.12] Mistral-7B 0.00 ± [0.00, 0.01]
RoBERTa-mnli 0.47 ± [0.06, 0.06] Mixtral-8x22B 0.00 ± [0.00, 0.00]
DistilRoBERTa 0.53 ± [0.02, 0.06] MobileLLM125M 0.03 ± [0.02, 0.03]
ModernBERT-base 0.18 ± [0.06, 0.18] MobileLLM350M 0.01 ± [0.01, 0.01]
GPT1 0.07 ± [0.04, 0.03] Phi-1.5 0.09 ± [0.03, 0.03]
GPT2 0.15 ± [0.02, 0.03] Phi-1 0.14 ± [0.02, 0.01]
GPT2-medium 0.17 ± [0.03, 0.05] Phi-2 0.07 ± [0.03, 0.06]
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Table S3: Directionality score for open-source pretrained language models. All models are available on Hug-
ging Face [Wolf et al., 2020].

Model Median Interquartile range Model Median Interquartile range

BERT-tiny -0.79 ± [0.11, 0.11] GPT-Neo1.3B -0.49 ± [0.19, 0.13]
BERT-mini -0.33 ± [0.03, 0.04] GPT-Neo2.7B -0.57 ± [0.15, 0.16]
BERT-small -0.22 ± [0.04, 0.03] GPT-J6B -0.28 ± [0.09, 0.08]
BERT-medium -0.23 ± [0.06, 0.10] OpenAI-GPT -0.18 ± [0.08, 0.07]
BERT-base -0.08 ± [0.02, 0.03] GPT2-XL -0.23 ± [0.11, 0.10]
BERT-large -0.03 ± [0.02, 0.06] DistilGPT2 -0.51 ± [0.03, 0.07]
DistilBERT -0.13 ± [0.00, 0.06] GPT-Neo125M -0.56 ± [0.21, 0.08]
BERT-2L-128 -0.79 ± [0.11, 0.11] GPT-Neo1.3B -0.49 ± [0.19, 0.13]
BERT-4L-256 -0.33 ± [0.03, 0.04] GPT-Neo2.7B -0.49 ± [0.15, 0.21]
BERT-4L-512 -0.22 ± [0.04, 0.03] GPT-J6B -0.28 ± [0.09, 0.08]
BERT-8L-512 -0.23 ± [0.06, 0.10] LLaMA2-7B -0.26 ± [0.09, 0.13]
BERT-base -0.08 ± [0.02, 0.03] LLaMA2-13B -0.15 ± [0.11, 0.03]
BERT-large -0.03 ± [0.02, 0.06] LLaMA3-8B -0.65 ± [0.13, 0.20]
DistilBERT -0.13 ± [0.00, 0.06] LLaMA3.1-8B -0.64 ± [0.17, 0.19]
BEiT-base -0.10 ± [0.06, 0.15] LLaMA3.2-8B -0.59 ± [0.18, 0.22]
BEiT-large -0.15 ± [0.08, 0.07] LLaMA3.2-1B -0.59 ± [0.18, 0.22]
BEiT-base -0.14 ± [0.15, 0.21] LLaMA3.2-3B -0.77 ± [0.08, 0.19]
BEiT-large -0.14 ± [0.04, 0.14] LLaMA2-7B-chat -0.29 ± [0.07, 0.14]
BEiT-base -0.14 ± [0.15, 0.21] LLaMA2-70B -0.24 ± [0.10, 0.06]
BEiT-large -0.14 ± [0.04, 0.14] LLaMA2-7B-chat -0.29 ± [0.07, 0.14]
BEiT-large -0.15 ± [0.03, 0.14] LLaMA2-13B-chat -0.19 ± [0.12, 0.04]
ALBERT-base -0.07 ± [0.00, 0.00] LLaMA3-8B 0.01 ± [0.05, 0.05]
ALBERT-large -0.17 ± [0.00, 0.00] LLaMA3-70B -0.37 ± [0.09, 0.12]
ALBERT-xlarge -0.24 ± [0.00, 0.00] LLaMA3.1-8B -0.57 ± [0.16, 0.13]
ALBERT-xxlarge -0.15 ± [0.00, 0.00] LLaMA3.1-70B -0.37 ± [0.08, 0.11]
RoBERTa-base -0.12 ± [0.11, 0.03] LLaMA3.1-405B -0.17 ± [0.07, 0.07]
RoBERTa-large -0.06 ± [0.03, 0.03] LLaMA3.2-1B -0.02 ± [0.13, 0.08]
XLM-R-base -0.02 ± [0.02, 0.02] LLaMA3.2-3B -0.70 ± [0.07, 0.22]
XLM-R-large -0.02 ± [0.03, 0.02] Mistral-7B -0.58 ± [0.15, 0.13]
RoBERTa-mnli -0.06 ± [0.03, 0.03] Mixtral-8x22B -0.66 ± [0.09, 0.16]
DistilRoBERTa -0.14 ± [0.09, 0.07] MobileLLM125M -0.13 ± [0.15, 0.10]
ModernBERT-base -0.04 ± [0.05, 0.04] MobileLLM350M -0.34 ± [0.13, 0.23]
GPT1 -0.18 ± [0.08, 0.07] Phi-1.5 -0.28 ± [0.22, 0.19]
GPT2 -0.58 ± [0.06, 0.14] Phi-1 -0.40 ± [0.03, 0.04]
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Figure S3: a) Evolution of symmetry score during training. Shown are the median and the interquartile range.
Models were trained on the Jigsaw dataset [cjadams et al., 2017] (left) and on the Red Pajama dataset [Com-
puter, 2023] (right). Encoder-only and decoder-only models are color-coded in blue and purple, respectively
(see legend). b) Same as in panel a for the median directionality score.
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Figure S4: a) Evolution of the median symmetry score across layers of the encoder-only (left) and decoder-
only (right) models. Each layer is color-coded as shown on the legend of Figure 3. Shown are the median
and the interquartile range. Models were trained on the Jigsaw dataset [cjadams et al., 2017]. b) Same as in
panel a for the median directionality score. c) Same as in panel a for models trained on the Red Pajama dataset
[Computer, 2023]. d) Same as panel c for the median directionality score.
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Figure S5: a) Loss a 4-layer encoder-only model with (dark blue) and without (light blue) symmetric initial-
ization, respectively. Models are trained on the Red Pajama dataset [Computer, 2023]. b) Median symmetry
score during training Color code is as in panel a. c) Same as in panel a for each layer in the model with and
without symmetric initialization. Each layer is color-coded as in the illustration on the left. All plots show the
median and the interquartile range across the heads of a given layer.
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