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Abstract 7 

Including uncertainty is essential for accurate decision-making in underground applications. 8 

We propose a novel approach to consider structural uncertainty in two enhanced geothermal 9 

systems (EGSs) using machine learning (ML) models. The results of numerical simulations 10 

show that a small change in the structural model can cause a significant variation in the tracer 11 

breakthrough curves (BTCs). To develop a more robust method for including structural 12 

uncertainty, we train three different ML models: decision tree regression (DTR), random forest 13 

regression (RFR), and gradient boosting regression (GBR). DTR and RFR predict the entire 14 

BTC at once, but they are susceptible to overfitting and underfitting. In contrast, GBR predicts 15 

each time step of the BTC as a separate target variable, considering the possible correlation 16 

between consecutive time steps. This approach is implemented using a chain of regression 17 

models. The chain model achieves an acceptable increase in RMSE from train to test data, 18 

confirming its ability to capture both the general trend and small-scale heterogeneities of the 19 

BTCs. Additionally, using the ML model instead of the numerical solver reduces the 20 

computational time by six orders of magnitude. This time efficiency allows us to calculate BTCs 21 

for 2'000 different reservoir models, enabling a more comprehensive structural uncertainty 22 

quantification for EGS cases. The chain model is particularly promising, as it is robust to 23 

overfitting and underfitting and can generate BTCs for a large number of structural models 24 

efficiently. 25 

Keywords: machine learning, uncertainty quantification, structural uncertainty, EGS 26 

1 Introduction 27 

Numerical simulations of physical systems described by differential equations are essential in 28 

engineering. Advancements in hardware have enabled computing units to solve coupled 29 

nonlinear differential equations, encompassing a wide range of phenomena, from weather 30 

forecasting (Bauer et al., 2015) to blood circulation in living bodies (Doost et al., 2016). 31 

However, these methods are computationally intensive and highly sensitive to specific cases. 32 

Besides the huge energy consumption of these computational infrastructures (Benoit et al., 33 

2018), their availability is also limited. Furthermore, parameter tuning, sensitivity analysis 34 

(Borgonovo and Plischke, 2016), and uncertainty quantification (Abbaszadeh Shahri et al., 35 

2022; Soize, 2017) demand up to millions of simulations. 36 

mailto:Ali.dashti@kit.edu


 

2 
 

Machine learning (ML) methods have gained significant traction across various fields (Brunton 37 

and Kutz, 2022; Stadelmann et al., 2019), including geothermal applications (Okoroafor et al., 38 

2022). In this context, data-driven and physics-informed ML (physics-informed neural network, 39 

PINN) techniques are of great interest (Carleo et al., 2019; Raissi et al., 2019). PINNs and 40 

their diverse descendants are ceaselessly flourishing to replace numerical solvers 41 

(Karniadakis et al., 2021; Kharazmi et al., 2019; Knapp et al., 2021; Yu et al., 2022); however, 42 

their accuracy and time-efficiency for solving complex problems is still a subject of 43 

development (Degen et al., 2023).  44 

One of the challenges in geothermal applications is characterizing fluid flow through complex 45 

underground networks. While the geometry of a fracture can define the general direction of 46 

flow, the local variation of petrophysical properties impacts the specific pathways (Meakin and 47 

Tartakovsky, 2009). The enhanced geothermal system (EGS), as an engineered underground 48 

reservoir, strongly relies on high flow rate circulation through the impermeable matrix. To 49 

enhance the reservoir’s permeability, the cold fracturing fluid is injected to create new fractures 50 

or reopen the pre-existing ones (e.g. Kohl and Mégel, 2007). Hence, a complex underground 51 

fracture/flow pattern can be observed in any EGS example like the model presented by Egert 52 

et al. (2020). 53 

Integrating local data coming from wells with field measurements like tracer tests (Cao et al., 54 

2020) can provide insights into the EGS situation. Tracer test campaigns usually yield 55 

breakthrough curves (BTCs), which are widely used to extract properties of the porous media 56 

and fracture network. However, each measuring method is error-prone resulting in inherent 57 

uncertainty (Bond, 2015; Wellmann et al., 2010). Therefore, incorporating structural 58 

uncertainties in numerical simulations in EGS settings makes the flow forecast more realistic 59 

(Zhou et al., 2022). 60 

This study proposes to replace computationally demanding simulations with speedy ML 61 

models to quantify structural uncertainty estimations derived from tracer data in two different 62 

EGS settings. By state-of-the-art ML methods like decision tree regression (DTR), random 63 

forest regression (RFR), and gradient boosting regression (GBR), multifold BTCs are 64 

generated on top of pure time-consuming numerical simulations. We train reliable ML models 65 

to map geometric data from the uncertain fractures of the EGS reservoir to the simulated BTC. 66 

The position of the variating structural elements is used as the input feature, and the entire 67 

BTC is chosen as the target variable. The proposed ML model correlates the entire BTC with 68 

input features, rather than using a time window to predict the future. 69 

2 Methodology 70 

2.1 Tracer models 71 

Tracer flow in two different cases are applied in this study. The conceptual model introduced 72 

by Dashti et al. (2023) is used here as the first case. The model for the first case is called the 73 
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‘simple case’ because it is a highly simplified version of an EGS with a doublet configuration. 74 

The conceptual model contains two main transmissive/open faults that are connected to an 75 

injection and production well. There is also an additional sub-horizontal fault/fracture structure 76 

making a connection between the major faults at greater depth. However, data related to this 77 

structure are subject to uncertainty since this fault is located far from the drilling trajectory, and 78 

its existence as a conduit is confirmed only by additional geophysical surveys or hydraulic 79 

testing. Figure 1 provides a schematic view of the model, where two sub-vertical faults intersect 80 

with the injection and production wells and are labeled as Fault_Inj and Fault_Pro, respectively. 81 

The sub-horizontal fault, referred to as Fault_Con in the figure, is represented by thin green 82 

lines, as it connects the two major faults. Dashti et al. (2023) introduced a range of structural 83 

scenarios and perturbed the location of the sub-horizontal fault 50 times to investigate the 84 

impact of structural uncertainty on flow. 85 

 86 

 87 

Figure 1. A schematic view of the simple case. The two certain sub-vertical faults (Fault_Inj and Fault_Pro) are 88 
shown as continuous black lines and the thinner green lines show traces of the uncertain sub-vertical fault 89 

(Fault_Con). Each green trace makes a unique structural scenario. 90 

To comprehensively evaluate the performance of ML methods, a second, more intricate 91 

fracture network model (named as complex case) was developed (Figure 2). The ‘complex 92 

case’ incorporates seven fractures, with two designated as uncertain. The impact of varying 93 

these two fractures' depth and dip angle on tracer flow was assessed through 100 scenarios. 94 

All scenarios shared identical material properties, while the uncertain fractures' dip and depth 95 

were varied. The modelling assumptions of the complex case are similar to the simple case 96 

which is already addressed in Dashti et al. (2023). 97 
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 98 

Figure 2. A complex EGS setting with seven fractures. Certain (five) fractures are shown as grey surfaces with 99 
varying shades and solid black borders while the two uncertain fractures are highlighted via the thick red border 100 

and hashed infill. Two arrows show the location of the injection and production wells.  101 

 102 

2.2 Machine learning model 103 

The ML model in this study predicts the tracer concentrations over time, i.e. the BTCs for two 104 

cases. Time series estimation for different applications is a well-documented topic 105 

(Gudmundsdottir and Horne, 2020; Weigend and Gershenfeld, 1994). For example, Alakeely 106 

and Horne (2020) introduced a recurrent neural network to predict the future by incorporating 107 

historical data. Such methods predict the system's long-term performance based on a 108 

moderate duration of the monitoring data. However, our study predicts the entire time series 109 

making the ML models applicable for cases without any historical data.  110 

Due to the nature of the problem, two different strategies are developed.  111 

 Strategy 1: Two ML models, DTR and RFR, are trained to independently predict the 112 

tracer concentration values. Both models predict the entire time steps of the BTC, using 113 

the input features. In this study DTR and RFR correlate structural information of the 114 

geological model with the tracer concentration. While in DTR a single tree is trained to 115 

capture the relation between the input features and target variable, RFR cultivates 116 

several trees in parallel (bagging). DTR is simple to implement and interpret, but it can 117 

be prone to overfitting. Therefore, the more complex RFR is also included in this study. 118 

The mathematical foundations of DTR and RFR are well-documented in the literature 119 

e.g. Kotsiantis (2013), Liu et al. (2012) and XU et al. (2005).  120 

 Strategy 2: A GBR model is used to predict the concentration value at each time step 121 

by correlating it with the previous prediction. The GBR is an ensemble method that 122 

combines multiple simple and weak learners sequentially (bagging) to improve the 123 

overall performance of the model. This approach, denoted as the chain model, requires 124 

GBR to be executed for each time step of the BTC. Details of this approach are 125 

elaborated in the following. 126 
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2.2.1 Chain GBR model 127 

Figure 3 provides an overview of the chain regression model for the simple case. A BTC, 128 

serving as the target variable, is presented in Figure 3-a. The input features are composed of 129 

the structural geometric information from the reservoir model with the coordinates of four 130 

corners of the uncertain sub-horizontal fracture (P1, P2, P3, and P4 in Figure 3-b). The model 131 

correlates the x/z coordinates with the BTC concentration values, i.e. the y-coordinate data 132 

remain fixed across all scenarios for the sake of simplicity. All the governing equations and 133 

modelling assumptions behind the calculation of the BTCs are fully addressed in Dashti et al. 134 

(2023). For the complex case, coordinates of the two uncertain fracture surfaces are used as 135 

the input feature while the BTC data are target variables.  136 

The chain model predicts the BTC concentration values in a sequential manner. It starts by 137 

predicting the concentration for the first time step (C1) based on the input features (Figure 3-b 138 

and c). For the second and following time steps (C2), the model uses the previous values, i.e. 139 

C1, along with the input features. Some errors can exist in the predicted C1 by GBR. However, 140 

to predict C2, the input feature list still contains 8 coordinate values than have a higher impact 141 

compared to the recently predicted C1. This gradual addition of the predicted values can help 142 

the chain model to adjust the weight of added features, i.e. previously predicted concentrations. 143 

Figure 3-c illustrates how concentration values from previous steps concatenate in the input 144 

features’ list. To predict the first concentration value (C1) in the GBR chain model, the input 145 

feature list initially contains eight values. To predict the concentration for the last time step of 146 

the simple case (C169), the input feature list contains eight coordinates and 168 previously 147 

predicted concentration values. In the complex case, the BTC includes 140 concentration 148 

values. The input feature list of the DTR and RFR models remains fixed, because these two 149 

methods predict all the  time steps of the BTC merely based on the coordinates of the fractures. 150 

  151 
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a) 

 

b) c) 

  

 152 

Figure 3. Workflow developed for chain GBR model a) A BTC representing concentration values, C, versus 153 
logarithmic time scale. b) Four corners of the sub-horizontal uncertain fault, P1, P2, P3, and P4, are used in the 154 

ML model to predict the first concentration value (C1) for the simple case. c) To predict the second concentration 155 
value (C2), the first predicted value (C1) is also included besides the coordinates of four corners. In each time 156 

step, the previous values are added up to the list of input features. 157 

The GBR algorithm (Friedman, 2002) is selected due to its simplicity, bagging nature, and 158 

efficiency as a predictor for the chain model. Like other supervised ML algorithms (Gupta, 159 

2022), GBR learns a function that maps the input feature/s (𝑥) to target variable/s 𝑓(𝑥) with 160 

the minimum loss: 161 

𝐹(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿 (𝑓(𝑥), 𝑓(𝑥)) Eq.  1  162 

where 𝐿 is the loss function and 𝑓(𝑥) represents the prediction. The loss function is chosen 163 

based on the type of learning (e.g., regression, classification) and the type of the target variable 164 

(e.g., discrete, continuous). Squared error (L2) loss (Bühlmann and Yu, 2003) is a simple and 165 

efficient loss function when outliers are not expected and is hence chosen here: 166 

𝐿 = ∑
1

2
𝑛
𝑖=1 (𝑓(𝑥) − 𝑓(𝑥))

2
 Eq.  2 167 

ML methods generating an ensemble of predicting models in parallel (bagging methods like 168 

RFR) or sequential (boosting methods like GBR) are more reliable than models consisting of 169 

a single strong predictive model (like DTR) (Fanelli et al., 2013; Shu and Burn, 2004). Boosting 170 

methods like GBR can have a better performance for working on small data sets compared to 171 

bagging methods that distribute the data set between different predictors. GBR starts with a 172 

very simple model (𝐹0(𝑥)), trying to fit a straight horizontal line (average of target variable). In 173 

fact, the derivation of the loss function with respect to the predictions establishes the average 174 
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value as the best guess for the first tree. In the next round, the GBR algorithm maps the input 175 

features to the residuals (remaining errors) of the previous tree, a process that can be 176 

interpreted as performing gradient descent on the negative derivative of the difference between 177 

prediction and target variable w.r.t. the prediction (Breiman, 1998). The use of residuals rather 178 

than absolute values is another reason for choosing GBR. This allows for the inclusion of 179 

residuals contributed by recently error-prone predicted concentration values into the model. In 180 

subsequent rounds, new decision trees are trained based on the accumulated residuals of the 181 

whole ensemble (Schapire, 2003): 182 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼𝑚𝑓�̂�(𝑥) Eq.  3 183 

where 𝐹𝑚(𝑥) represents the final general function that connects input features to the target 184 

variable, 𝐹𝑚−1(𝑥) contains the information from all previous tress, 𝛼 is the learning rate that 185 

avoids overfitting and 𝑓�̂�(𝑥) represents the last tree that is correlating remaining residuals and 186 

the input features. Low learning rates decrease the impact of each tree, i.e., more trees will be 187 

needed but the model also will be more generalized. GBR minimizes the error of each tree and 188 

uses the remaining errors as the target variable of the next tree. In this way, the model is 189 

trained based on its minimized errors and aggregates several trees with decreasing errors. He 190 

et al. (2022) delved into the details of the GBR.  191 

2.2.2 ML model optimization and quality control 192 
Each ML model has two types of arguments: 1) inputs that include hyperparameters 193 

(parameters related to the model’s architecture) and features selected by the user for 194 

predicting the target variable/s, and 2) output arguments that consist of internal weights and 195 

the target variable/s. The ML model is trained to minimize the error by tuning its input 196 

arguments, allowing the learning algorithm to optimize the output arguments and achieve 197 

better scores on the withheld test set (Alpaydin, 2020; Hutter et al., 2019). This iterative 198 

process, known as hyperparameter tuning (Raschka and Mirjalili, 2019) involves optimization 199 

of parameters such as the learning rate, number of trees, maximum depth of trees, etc. to 200 

decrease the error. Determining the optimal number of trees poses a challenge due to the bias-201 

variance trade-off (Oshiro et al., 2012; Probst et al., 2019). Another hyperparameter, the 202 

maximum depth of a tree, is defined as the longest path between the root node (first node) and 203 

the leaf node (last node). 204 

Grid search is a hyperparameter tuning method that allows input arguments to be defined as 205 

a range rather than a single value. It performs an exhaustive search over all possible 206 

combinations of values to identify the model with the lowest error i.e. highest score. For the 207 

RFR model, the number of trees and maximum depth is considered as arrays with 20 and 10 208 

elements, respectively that result in 200 combinations. For the DTR model also maximum 209 

depth of each tree, the minimum number of samples in a leaf node and the minimum number 210 

of samples for splitting an internal node are tuned. In total, an ensemble of 540 models has 211 
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been calculated using hyperparameter tuning for the DTR method. In the GBR algorithm of the 212 

chain model default values are used. Conventionally, higher score values are preferred over 213 

lower ones, and therefore we also tried to find out the combination with the maximum negated 214 

mean squared error (MSE) using the grid search. 215 

To evaluate the model’s performance, k-fold cross-validation (Zhang et al., 1999) has been 216 

employed. Rather than splitting the input data into train and test, it randomly splits them 217 

arbitrarily into k number of ”splits”. Then, the ML model will keep one split as the test and all 218 

others as the train sets. In the case of splitting data into five splits, the same number of models 219 

will be run and in each run, splits will be shuffled. This five-run procedure will be performed for 220 

all the assumed 200 combinations of hyperparameters in the grid search for the RFR method. 221 

Therefore, it finally creates 1'000 ML models – each of them being an ensemble of individual 222 

trees – and the ensemble with the highest score will be used for the final prediction. In this 223 

study, we follow the recommendations in the literature (An et al., 2007; Erdogan Erten et al., 224 

2022) and use five splits for cross-validation for all three methods. Training (online) time for 225 

the 1,000 ML models of the RFR model on a Core i7 laptop is approximately 10 seconds. For 226 

DTR, with an ensemble of 2,700 ML models, the online time remains to be around 10 seconds. 227 

The simplicity of DTR compared to RFR results in faster computation. The chain model proves 228 

to be the most time-consuming approach, taking around 70 seconds for training without any 229 

hyperparameter optimization. Several hyperparameters were tested for the chain model, but 230 

the online time only increased without improving the model's accuracy. Therefore, default 231 

values were chosen for the chain model. For both the simple and complex cases several values 232 

have been tried for the learning rate in hyperparameter tuning but in the end, the default one 233 

(0.1) has been used. The required time for predicting a new solution with the trained models 234 

(offline time) remains in the range of milliseconds. To access the input data and trained ML 235 

models of two cases, please refer to the code and data availability section.  236 

Figure 4-a and b show the distribution of the negative MSE scoring metric in train and test 237 

splits, focusing on two tuned hyperparameters of the RFR model in the simple case. The 238 

average of the MSE in the four train splits is presented in Figure 4-a. The distribution of the 239 

average scoring metric in the train splits is influenced by both the number and maximum depth 240 

of trees. Based on Figure 4-a, the accuracy of the model increases as both the maximum depth 241 

of trees and the number of trees increase. However, the score distribution in the test split 242 

(Figure 4-b) is more complicated. The scores in the test split are generally lower than those in 243 

the train splits (-0.04 to -0.004 versus -0.018 to -0.003). While the score distribution for the 244 

train split promises high accuracy of the model by increasing the two hyperparameters, the 245 

heterogeneous distribution in Figure 4-b raises doubts on this conclusion. The presented 246 

example in Figure 4 concludes that determining the optimal combination even for only two 247 

hyperparameters is not a straightforward task. Going to higher dimensions can make the 248 
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situation more complicated and unsolvable. Therefore, methods like grid search identify the 249 

best combination of tuned hyperparameters. 250 

a) b) 

  

Figure 4. Change in the accuracy of the ML model with respect to different combinations of two hyperparameters 251 
of the RFR model on the train (a) and test (b) splits. The accuracy distribution in the train split (a) is smooth and 252 

higher accuracies can be achieved by increasing the number of threes and maximum depth of each tree. Subplot 253 
b depicts the more patchy and anisotropic behavior of the accuracy with respect to the hyperparameters. 254 

3 Results 255 

3.1 Simple case 256 

Dashti et al. (2023) employed numerical simulations to assess the effects of uncertainty in 257 

structural models using 50 different structural scenarios in a simplified EGS setting. In these 258 

synthetic models, a 24-hour tracer injection on day eight of the simulation was assumed and 259 

monitored along a one-year time span in the production well (see Figure 5-a with e.g. peak 260 

concentration time varying between days 54 and 68). To better present the variations, a box 261 

plot (Figure 5-b) is generated by extracting the highest concentration value from each BTC and 262 

normalizing them based on their median. The variation of the tracer peak concentration time, 263 

as well as a 25% fluctuation in peak magnitude, emphasize the significance of structural 264 

uncertainty, which can introduce unexpected deviations in the results of important field tests. 265 

The appearance of a second peak between days 100 and 150 in Figure 5-a is due to the 266 

reinjection of the tracer, not multiple flow paths or stagnation zones. The first 30 days of the 267 

simulation are disregarded due to negligible concentration (almost zero) of the tracer in the 268 

production well during that period.  269 

  270 
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a) 

 

b) 

 

Figure 5. a) Unique BTCs simulated using the finite element solver and used as target variables for the ML 271 
models. BTCs are different from each other due to changing structural models. b) A box plot visualizing the 272 

normalized peak concentration values versus the time of the calculated peak (analysis based on Dashti et al. 273 
(2023)). 274 

Results of the k-fold cross-validation in Figure 6 show how RMSE varies in five splits of the 275 

three ML methods. The average RMSE of the chain model is lower than the DTR and RFR. 276 

Apart from the higher absolute accuracy, the homogeneity of the model's performance is 277 

another important factor to consider. Based on Figure 6, RMSE values in the DTR model show 278 

higher standard deviations. The higher standard deviation of RMSE for the DTR model 279 

suggests that it is overfitting the training data. Overfitting occurs when a model learns the 280 

training data too well and is unable to generalize to new data. In the case of the DTR model, 281 

this may be due to the fact that it is a single-tree model. Hence it is more likely to memorize 282 

the training data than an ensemble model like the RFR or chain model. In this study, the 283 

simplicity of the DTR model is the main factor leading to overfitting issues. The RFR model 284 

mitigates overfitting by initiating multiple parallel trees that distribute the input data. The chain 285 

model also incorporates several sequential models that consistently outperform a single 286 

model. Overall, the chain model is the most accurate and robust ML model for predicting BTCs 287 
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in cases without any historical data. It has a lower average RMSE and a lower standard 288 

deviation of RMSE than the RFR and DTR models. 289 

 290 

Figure 6. Accuracy distribution of the three designed ML models within their splits. RMSE values are represented 291 
as accuracy parameters. 292 

To better assess the trained models and prevent information leakage, two additional scenarios 293 

are imported into the three ML models. The trained ML models are then utilized to predict the 294 

BTCs of these two new test scenarios . Table 1 presents the accumulated RMSEs of these 295 

two test scenarios (test set) and models' input data (train set). The ML models exhibit an 296 

increase in error when transitioning from train to test scenarios. However, even for the two new 297 

test scenarios, the RMSE remains at an acceptable level. The DTR model had the largest 298 

difference in RMSE between the train and test sets, which clearly indicates overfitting. The 299 

RFR and the chain models yield a better balance in terms of RMSE between the train and test 300 

data, suggesting their improved performance and ability to generalize. 301 

Table 1. RMSE values of the three designed ML models within the train and test sets. 302 

 DTR RFR chain model 

train set 1.1 × 10-4 1.0 × 10-4 1.2 × 10-4 

test set 1.5 × 10-1 4.0 × 10-2 5.2 × 10-2 

 303 

Figure 7 shows the numerically simulated BTCs of two test scenarios and the outputs of three 304 

ML methods. For one of the test scenarios, all three ML methods achieved similar and reliable 305 

results compared to the simulation results. For the other test scenario, the DTR method was 306 

less accurate than the other methods, likely due to overfitting. The RFR and chain models had 307 

similar levels of accuracy.  308 
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 309 

Figure 7. Two different test cases were investigated to understand the accuracy of ML models. The chain model 310 
and RFR have a high accuracy in both cases. 311 

To further evaluate the trained models, an additional set of 2'000 different structural scenarios 312 

is generated and imported into ML models. In this step, only the connecting fault is perturbed, 313 

and the coordinates of its four corners are inputted into the three ML models. Figure 8 provides 314 

a visualization of the BTCs generated by the three ML models. These 6'000 BTCs presented 315 

in Figure 8 are calculated in the scale of milliseconds using DTR, RFR, and chain models. Two 316 

extreme cases from the training data are highlighted with blue color and dots to illustrate the 317 

boundaries of expectations. The RFR method perfectly follows the trend, generating 2'000 318 

almost unique and parallel BTCs (Figure 8-a), which suggests that it may be underfitting the 319 

training data. The underfit models have a high bias due to oversimplifications and ignoring the 320 

underlying patterns in the train data. This problem can directly originate from the insufficient 321 

input data used to train the RFR model. The bagging procedure of RFR splits 50 input data 322 

sets into parallel bags making it difficult for each tree to be a balanced predictor. On the other 323 

hand, DTR has generated far fewer unique BTCs as shown in Figure 8-b. The covered area 324 

with BTC curves in Figure 8-a and b differs dramatically. DTR mainly repeats what it has 325 

observed in the training step. As Figure 9 shows, only a few new BTCs are generated and the 326 

majority of 2'000 BTCs overlap the 50 BTCs used in the training step. 327 

The chain model consistently generated more reliable BTCs compared to RFR and DTR 328 

(Figure 8-c). However, in some cases, the chain model generated BTCs with irregular patterns, 329 

such as concentration values fluctuating around the peak. Despite these local discrepancies, 330 

the chain model is still the most reliable ML model for predicting BTCs. 331 

Another notable point is that all the three data-driven ML methods are unable to be used for 332 

extrapolation. Even the frequency of generated BTCs decreases close to the extreme point for 333 

three subplots shown in Figure 8. This issue is the worst with the DTR method while the chain 334 

model has generated more BTCs in the adjacency of the extreme cases. 335 

 336 

 337 
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a) 

 
b) 

 
c) 

 
Figure 8. Two thousand generated BTCs using RFR (a), DTR (b), and chain model (c). Two extreme cases 338 

coming from the simulation are highlighted as blue curves with dots. 339 
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 340 

Figure 9. Most of the 2'000 BTCs generated by DTR (named Test and shown as solid black line) exactly match 341 
the input data used for training the model. 342 

3.2 Complex case 343 

For the complex case, 100 BTCs are simulated in the numerical solver and used to train and 344 

test the three ML models. The number of scenarios has increased compared to the simple 345 

case (with 50 simulations) due to the complexity of the model. In the complex case, a 24-hour 346 

tracer injection on day five of the simulation is assumed and monitored for two months in the 347 

production well. The simulation time is decreased due to the shorter/faster connection between 348 

the injection and production wells. Figure 10 shows a 2D section of the 100 unique pathways 349 

that connect injection and production wells. Two pathways are plotted with red and blue colors 350 

and are used to test the validity of the ML methods because they have not been used in the 351 

training process. Test 1 scenario visually demonstrates how the two connecting fractures can 352 

have different depths and dipping angles. 353 

Figure 11 shows the numerically simulated BTCs for 100 scenarios of the complex case. 354 

Similar to the simple case, the peak concentration time and magnitude of the BTCs vary due 355 

to the change in the geometrical properties of the fracture network. The color coding of the 356 

train and test scenarios (1 and 2) remains consistent with Figure 10. 357 

 358 
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 359 

Figure 10. A 2D cross-section from the middle of the complex model. Thin black lines represent the trace of the 360 
two uncertain fractures that connect certain fractures shown via two thick black lines. The red and blue traces 361 
represent the geometry of the uncertain fractures in two tests. Arrows show the location of the injection and 362 

production wells. 363 

 364 

Figure 11. Thin black curves represent 98 BTCs simulated using the finite element solver. Two test scenarios are 365 
also named as Test 1 and Test 2. To see the geological model of the test cases refer to Figure 10. 366 

Two test scenarios of the ML methods are shown in Figure 12. The RMSE values confirm the 367 

higher accuracy of the chain method. The cumulative RMSE for both scenarios is 0.05 ppm 368 

for the chain model, 0.18 ppm for DTR, and 0.16 ppm for RFR. Notably, all three machine 369 

learning models were employed with the same hyperparameters for both the simple and 370 

complex cases. 371 

 372 
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 373 

Figure 12. Simulation and ML-generated results for Test 1 are plotted as red circles and lines. Results related to 374 
Test 2 are plotted as blue circles and lines. 375 

4 Discussion 376 

Detailing the observed errors is crucial for future work aimed at improving the interpretability 377 

of the ML methods' performance. The (negligible) discrepancy likely stems from the distribution 378 

of test scenarios and size of input data (50 and 100 scenarios). This finding underscores the 379 

sensitivity of data-driven models to input data distribution. As extrapolation is a known 380 

challenge for such models, selecting a test sample near the boundary in this study exemplifies 381 

this limitation. A uniform high-density sampling strategy may prove more effective than the 382 

Gaussian distribution.  383 

Even with large datasets, data-driven ML methods can still deviate from the underlying physics. 384 

Degen et al. (2023) proposed promising physics-based ML methods using order reduction 385 

techniques e.g., non-intrusive reduced basis, to build the solution based on basis functions 386 

that preserve the structure of the physics. In this study, we employed a sequence of 387 

concentration values as the target variable, allowing the ML models to learn the temporal 388 

relationships. Three tested ML methods have been able to capture the trend for two different 389 

cases. The current limitation is that the concentration prediction is restricted to a single point 390 

within the model. However, our strategy can be extended to develop ML models that predict 391 

the target variable at various points over time.  392 

Meanwhile, the ML methods were significantly faster than the numerical solver, with up to six 393 

orders of magnitude reduction in computational time. To numerically solve the problem of the 394 

simple case, 12 cores on a high-performance computing cluster should run for 4 hours. The 395 

whole time for constructing (offline) and applying (online) the ML models remains in the scale 396 

of seconds. This substantial reduction makes uncertainty analysis feasible using fast and 397 

reliable ML models, without relying on time-consuming simulations that typically span multiple 398 

days. This concept can also be suited for including structural uncertainties in more complicated 399 
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EGS settings with several intersecting fractures. 400 

5 Conclusion and outlook 401 

This study presents a novel approach for using ML methods that enables quantifying the 402 

impact of structural uncertainty on BTCs in two EGS reservoirs. The approach was the first 403 

test to expand the range of structural reservoir models using ML techniques, based on an 404 

original set of a limited number of the numerical scenarios. This meets the specific requirement 405 

of uncertainty quantification, which is to provide a broad range of scenarios.  406 

Different ML approaches are trained using the available numerical simulations to predict the 407 

BTCs based on the geometries of the perturbed elements. One ML approach used DTR and 408 

RFR algorithms to predict the entire BTC at once. Another ML approach employed a chain of 409 

GBR models to predict each time step of the BTCs while considering the correlation between 410 

consecutive time steps. The DTR model suffered from overfitting, while the RFR and chain 411 

models were more reliable, achieving an acceptable accuracy with a balanced accumulated 412 

RMSE in train and test scenarios. In the simple case, the RMSE for the DTR model jumped 413 

from 0.00011 to 0.15 between train and test scenarios, while for the RFR and chain models, it 414 

reached from 0.0001 to 0.04 and from 0.00012 to 0.052, respectively. 415 

The trained ML models are further applied to generate BTCs for 2'000 unique structural 416 

scenarios in the model with a simple geometry. The chain model was more accurate than the 417 

RFR and DTR models. The RFR method produced 2'000 BTCs that closely follow the trend 418 

observed in the training set indicating the underfitting issue, whereas DTR can only replicate 419 

the BTCs from the training set. The chain model captures both the general trend and small-420 

scale patterns of the data. However, the accuracy and reliability in all three methods decreases 421 

for test cases that are close to the boundaries of the input test data. A uniform sampling for 422 

selecting the input data can help the ML methods to have a wide and homogeneous distribution 423 

in the test data. 424 

The presented approach can be adopted for a broader number of forward calculation schemes. 425 

This opens up new possibilities for more complex fractured rock settings. Rather than 426 

coordinates of one/two fractures, a more complex structural network from a real-world EGS 427 

case can be used as the input features for the ML methods. 428 

While only structural models were varied herein to assess their impact on the BTCs, future 429 

applications could encompass modifications to specific petrophysical properties of the 430 

reservoir, further expanding the possibilities of stochasticity. Conversely, integrating more data 431 

into the model, such as BTC's or hydraulic testing data obtained from specific EGS well 432 

configurations (e.g. Schill et al., 2017), can reduce structural uncertainties. This allows for the 433 

rapid elimination of non-viable models using ML-driven routines. 434 

Harnessing the computational efficiency of ML, this innovative approach can be transformed 435 

into a surrogate model, effectively representing the core of an inverse, backward calculation 436 
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scheme for parameter identification. This transformation has the potential to replace 437 

conventional analytical solutions, which are currently the primary method for estimating 438 

parameters from tracer campaigns. The ML-based surrogate model offers several advantages, 439 

including significantly faster calculation speeds and the ability to capture the non-uniqueness 440 

inherent in mathematical solutions. In this framework, BTC data serve as the primary input, 441 

while the parameters of the complex EGS reservoir represent the target variables. 442 
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