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ABSTRACT
Graph Neural Networks (GNNs) have revolutionized graph learning
through efficiently learned node embeddings and achieved promis-
ing results in various graph-related tasks such as node and graph
classification. Within GNNs, a pooling operation reduces the size of
the input graph by grouping nodes that share commonalities intend-
ing to generate more robust and expressive latent representations.
For this reason, pooling is a critical operation that significantly
affects downstream tasks. Existing global pooling methods mostly
use readout functions like max or sum to perform the pooling op-
erations, but these methods neglect the hierarchical information of
graphs. Clique-based hierarchical pooling methods have recently
been developed to overcome global pooling issues. Such clique
pooling methods perform a hard partition between nodes, which
destroys the topological structural relationship of nodes, assuming
that a node should belong to a single cluster. However, overlap-
ping clusters widely exist in many real-world networks since a
node can belong to more than one cluster. Here we introduce a
new hierarchical graph pooling method to address this issue. Our
pooling method, named Quasi-CliquePool, builds on the concept of
a quasi-clique, which generalizes the notion of cliques to extract
dense incomplete subgraphs of a graph. We also introduce a soft
peel-off strategy to find the overlapping cluster nodes to keep the
topological structural relationship of nodes. For a fair comparison,
we follow the same procedure and training settings used by state-
of-the-art pooling techniques. Our experiments demonstrate that
combining the Quasi-Clique Pool with existing GNN architectures
yields an average improvement of 2% accuracy on four out of six
graph classification benchmarks compared to other existing pooling
methods.
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1 INTRODUCTION
In recent years, Convolutional Neural Networks (CNNs) have demon-
strated outstanding performance in various challenging tasks in
the fields of image processing, video processing, natural language
interpretation, and beyond [12, 24]. These tasks typically repre-
sent data in euclidean space, whereas a large amount of data exists
in non-euclidean domains, such as chemical molecules, biological
and social networks, which can usually be represented as graphs
[6]. Therefore, attempts have been made to successfully generalize
CNN models to operate on graph data, leading to Graph Neural
Networks (GNNs). GNNs have been implemented for various kinds
of graphs and have achieved state-of-the-art performance for many
graph-related tasks, such as classifying nodes, classifying graphs,
and predicting links [42]. These findings demonstrate that GNNs
are effective at node-level and graph-level representations. On the
other hand, pooling approaches are demonstrated to be efficient
and effective in many natural language processing [17] and image-
related tasks such as text and image classification [19]. It is thus
natural to investigate these techniques also for graph data [18].
The researchers generalize the CNN pooling methods on graphs
to reduce the size of nodes for graph-level prediction. For example,
studies have extended the global average or sum pooling operations
to graph models by averaging or summing all node features [31].
But, such pooling methods are not able to capture the hierarchi-
cal graph structure and may lose important features [38]. Several
advanced graph pooling techniques, like DiffPool [38], Topk-Pool
[10], and SortPool [40], have been developed to overcome the short-
comings of global pooling and have achieved promising results
on graph classification tasks. Furthermore, in [1, 22], the authors
proposed topology-based clique and k-plex hierarchical pooling
methods for graph classification. However, the pooling techniques
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Figure 1: An example of the Quasi-CliquePool method for a graph. We run a GNN model at each hierarchical layer to obtain
embeddings of nodes. After that, apply a Quasi-CliquePool on learned embeddings to get the maximal and quasi cliques and
transfer each clique into new nodes in the coarsened graph 𝐺′. This process is repeated for n layers, and the final output
representation is used to classify the graph. The red nodes are isolated nodes and are removed during the pooling operations.
Numbers in bold font represent the number of agglomerated nodes (the highly participating ones) from the previous layer. The
nodes are connected in coarsened graph based on node and edge-sharing among cliques.

mentioned above have room for improvement. For instance, the
DiffPool method produces a dense adjacency matrix due to its dif-
ferentiable nature. It requires hyper parameterization in the form
of a prior on the number of clusters or nodes allowed to be pruned.
Top-k pooling introduced a new gPool method to overcome this
issue [10]. Based on the scalar projection values of the nodes, the
gPool method selects the top-k nodes to reduce the size of the
graph. But, this method ignores the topological structure of the
graph. In [22], the authors proposed a clique pooling method for
graph classification using topological information. Still, clique pool-
ing is much more restricted and less flexible than k-plex pooling
because it is limited to hard graph partitions [1]; hence, k-plex pool-
ing has achieved good results compared to clique pooling. However,
the k-plexPool depends on the 𝑘 number of adjacent nodes. The
method proposed in this paper is close to clique and k-plex pooling
methods.

Our work links pooling operators and two graph theoretical
concepts: clique and quasi-clique. The former performs a hard par-
titioning between nodes, where each node is connected up to one
cluster. The latter ones provide flexible partitioning for a clique,
which relaxes the definition of a clique to a quasi-clique to extract
dense, incomplete subgraphs within a large graph. In this paper,
we propose Quasi-CliquePool (cf. Figure. 1), a novel pooling tech-
nique to learn a hierarchical representation of a graph to address
the limitations mentioned above. The proposed method uses the
Replicator Dynamics (RD) algorithm to extract a subset of nodes
(maximal clique) iteratively. The RD is a dynamical system that, at
convergence, provides the likelihood of participation of each node
into a cluster; the higher the value, the central the node.

We introduce a new soft peel-off strategy to find the low-partici
pating nodes in a converged RD. Such nodes, being not central,
lie on the border of the cluster. Hence they are good candidates
for being the link with other clusters in the graph. Those nodes
are allowed to get extracted again with other clusters, while the
central ones belong only to one cluster. Having nodes that belong

to multiple clusters inevitably extends the maximal clique concept
to a quasi-clique due to missing edges. Nodes that remain isolated
during the pooling operations are removed from the graph. Details
are discussed in Section 3. We make a coarsened graph based on
extracted cliques in the last step. Overall, this research makes the
following contributions:

• Wepropose a novel graph poolingmethod, Quasi-CliquePool,
based on the concept of quasi-clique. The proposed graph
pooling method can be integrated into various GNN archi-
tectures.
• This study introduces a new soft peel-off strategy to find
the overlapping cluster nodes of a given graph during the
pooling procedure.
• We conduct comprehensive experiments and show that Quasi-
CliquePool improves an average accuracy by 2% in four out
of six graph classification benchmarks compared to state-of-
the-art pooling methods.

2 RELATEDWORK
This section briefly explains the multiple GNN architectures and
graph pooling methods for graph classifications.

2.1 Graph Neural Networks
GNN models have drawn considerable attention due to their ex-
cellent performance on various tasks in the graph learning repre-
sentation domain. Recently, several GNN architectures have been
developed, including architectures inspired by CNNs [32], recursive
graph networks [30], recurrent graph networks [21], and line graph
neural networks [5]. Gilmer et al. [11] proposed “a neural message
passing” framework for graph data, and most of the above ap-
proaches fit within this framework. In this message-passing frame-
work, the GNN model computed the node representations directly
from their neighbour nodes’ features using a differentiable aggre-
gation and propagation function. In [14], the authors present a
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comprehensive review of recent advancements in this domain, and
[4] makes connections to spectral graph convolutions.

2.2 Graph Pooling Methods
The pooling methods reduce the graph size using node dropping
or node pruning for graph classification. There are three categories
of graph pooling: topology, global and hierarchical pooling [18].

2.2.1 Topology based pooling. Earlier works used only graph coars-
ening methods without neural networks. For example, spectral
clustering methods achieve coarsened graphs using eigendecom-
position [34]. However, the eigendecomposition procedure was
not good in terms of time complexity. Dhillon et al. [7] first time
proposed a Graclus method to extract the clusters of given graphs
without eigenvectors. Graclus method used the concept of mathe-
matical equivalence between a general weighted kernel k-means
objective and a general spectral clustering objective. This method
improves the various weighted graph clustering objectives like nor-
malized cut, ratio cut, and ratio association criteria. Even in recent
GNN models [2, 28], Graclus is implemented as a pooling module.

2.2.2 Global pooling. Global pooling methods use neural networks
or summation functions to pool all the node representations in each
layer. Gilmer et al. [11] introduced a message-passing scheme based
on a general framework for graph classification and obtained the
entire graph classification using the Set2Set model. In [40], the
authors proposed the SortPooling method to keep much more node
information and learn from the global graph topology. This method
sorts the nodes embeddings according to the graph structural roles
and then feed these sorted embedding to the next layers.

2.2.3 Hierarchical pooling. Global pooling is the most effective
way to reduce the size of the graph. However, these methods ig-
nore the hierarchical graph information, which is important for
capturing the structural information of graphs. The principal goal
of hierarchical pooling approaches is to build a technique that uses
graph topology or node feature information to learn the node rep-
resentation hierarchically. In this regard, Ying et al. [38] proposed
the first hierarchical differentiable pooling (DiffPool) method for
classifying graphs. This method can be used with various GNN
architectures in an end-to-end fashion. It used the learning assign-
ment matrix that contains the probability values of nodes in layer
𝐿 and then assigned these values to clusters in the next layer 𝐿 + 1.
Due to its differentiable essence, its application produces dense ad-
jacency matrices. In [10], the authors developed the Top-k pooling
to overcome this issue by learning a project vector. But, this method
ignores the topological structure of the graph. Enxhell et al. [22]
introduced a clique-based hierarchical pooling method for graph
classification. Clique pooling is much more restrictive because it is
limited to hard graph partitions. In [1], the authors improved the
simple clique pooling method and proposed a k-plex pool method
for graph classification.

To further improve pooling methods, this study proposes a novel
Quasi-CliquePool method that can use topological information to
yield hierarchical representations. Table 1 summarizes the current
graph pooling methods based on their four desirable clustering
properties: 1) Hierarchical pooling—Global pooling methods ignore
the hierarchical structure information in the graphs during pooling

Table 1: Related work in terms of four desirable graph pool-
ing properties outlined in Section 2. Methods are divided
into hierarchical (H), adaptive (F), topology pooling (TP), and
overlapping nodes (ON).

Methods H A TP ON
Graclus [7] ✘ ✔ ✔ ✘

TopK-Pool [38] ✔ ✔ ✘ ✘

SAGPool [18] ✔ ✔ ✔ ✘

DiffPool [10] ✔ ✘ ✘ ✔

SortPool [40] ✘ ✔ ✔ ✘

CliquePool [22] ✔ ✔ ✔ ✘

K-plexPool [1] ✔ ✘ ✔ ✔

Quasi-CliquePool ✔ ✔ ✔ ✔

operation however, hierarchical pooling methods extract the hier-
archical information. Our quasi-pooling can extract hierarchical
information from graphs and can be combined with various GNN
architectures, 2) Adaptive—we can distinguish pooling methods
based on the 𝑘 number of nodes of the pooled graph. The k-plex
[1] is a fixed pooling method because it depends on the apriori 𝑘
number of adjacent nodes. Our pooling method is adaptive because
it is not dependent on any 𝑘 number of adjacent nodes, 3) Topology
pooling—in terms of graph clustering, topology structure-based
aggregation is crucial for pooling operations. DiffPool [38] and
Top-k [10] only used the node features to perform pooling and
ignored the topological structure. The proposed method uses topo-
logical structure information to perform pooling operations, and
aggregates node features using element-wise sum or max functions,
and 4) Overlapping nodes—one node may belong to multiple clus-
ters. It can be observed from Table 1 that the proposed pooling
method is different from other partitioning-based graph coarsening
approaches [1, 22] because Quasi-CliquePool extracts overlapping
nodes during pooling operations to preserve the topological struc-
ture. Clique pooling, on the other hand, forces a split between two
nodes, which destroys the topological relationship between the
two nodes. The k-plex pooling finds the overlapping nodes, but it
depends on the k-fixed number of adjacent nodes.

3 QUASI-CLIQUE GRAPH POOLING
In this section, we explain the mechanism of Quasi-CliquePool
and show how it is implemented in a GNN architecture for graph
classification. Section 3.1 defines some useful notations. Sections
3.2 and 3.3 briefly describe the background for GNNs and RD with
the quasi and maximal cliques. In section 3.4, we explain how the
quasi-clique method can be used to coarsen the graph. Finally,
section 3.5 explains the Quasi-CliquePool algorithm to extract the
quasi-cliques and maximal cliques.

3.1 Notations
Given an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝐸 = 𝐸 (𝐺) is an edge
set, 𝑉 = 𝑉 (𝐺) is a node-set, 𝑒 (𝐺) = |𝐸 | = 𝑚 and 𝑣 (𝐺) = |𝑉 | = 𝑛
are the number of edges and nodes in G, respectively. Given an
edge 𝑒 = {𝑢, 𝑣}, nodes 𝑢 and 𝑣 are said to be adjacent. We represent
an attributed graph as a tuple (𝐺, 𝛼, 𝛽), where 𝛼 : 𝑉 → IRℎ𝑉 is
a function that assigns a vector of features to each node and 𝛽 :
𝑉 × 𝑉 → IRℎ𝐸 is an edge feature function that assigns a feature
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Figure 2: Hierarchical Quasi-clique pooling framework for graph classification. GraphConv is applied to obtain embeddings of
graphs at each hierarchical layer. After that, a Quasi-CliquePool layer is applied to the learned embeddings to get a new graph
𝐺′. The proposed hierarchical framework is composed of three blocks: three GraphConv layers and three quasi-clique pooling
layers. The sum readout function is applied after every block. Lastly, add the embeddings of each graph layer to get the final
graph representation, and a multi-layer perceptron model uses this representation to classify the original graph.

vector to each edge, and ℎ𝑉 and ℎ𝐸 represent the size of edges and
nodes. An attributed graph can also be represented in matrix form
(𝐴,𝑋 ), where 𝐴 ∈ {0, 1}𝑛×𝑛 denotes the adjacency matrix with
𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 = 𝛽 ({𝑣𝑖 , 𝑣 𝑗 }). The term 𝑋 ∈ IR𝑛×ℎ𝑉 denotes the node
feature matrix, and the rows of X are defined as 𝑥𝑖 = 𝛼 (𝑣𝑖 ).

3.2 Graph Convolutional Neural Network
GNNs are a special class of neural network architectures designed to
analyze graph data. These models learn a fixed-size representation
of a set of graphs in a given distribution. The main component of
the GNN model is the "message passing module" that is described
below:

𝐻 (𝑘 ) = 𝑃 (𝐴,𝐻 (𝑘−1) ;Θ(𝑘 ) ), (1)
Where 𝑃 represents the propagation function, which depends on
three components: adjacency matrix 𝐴, node embedding 𝐻𝑘−1

based on the previous message passing step, and the last term
Θ are trainable parameters. There are many ways to implement the
propagation function P. For example, Kipf’s et al. [36] proposed
a Graph Convolutional Neural Network (GCN) implement the P
function using the combination of ReLU non-linearities and linear
transformations:

𝐻 (𝑘 ) = 𝑃 (𝐴,𝐻 (𝑘−1) ;𝑊 (𝑘 ) ) = 𝑅𝑒𝐿𝑈 (�̃�−1/2�̃��̃�−1/2𝐻 (𝑘−1)𝑊 (𝑘−1) ),
(2)

where �̃� = 𝐴 + 𝐼 , �̃� =
∑

𝑗 �̃�𝑖 𝑗 and𝑊 (𝑘 ) ∈ IR𝑛×𝑛 is trainable weight
matrix. This architecture has achieved promising performance in
many challenging tasks, such as graph and node classification. Our
proposed Quasi-CliquePool can be integrated into different GNN
models like GCN, GraphSAGE, and GraphConv. A detailed expla-
nation is mentioned in the experimental section.

3.3 Replicator Dynamics, Maximal and Quasi
Clique

Replicator Equations (REs) are a class of dynamical systems de-
veloped to model the evolution of animal behaviour using tools
and principles of game theory. The REs have recently been applied
with significant success to solve the maximal clique and related
problems [27]. Based on a well-known result from graph theory,
this approach formulates the maximal clique problem as a standard
quadratic assignment program. We introduce some notations and
definitions to represent this concept formally. Initially, the data to
be clustered are represented as a graph𝐺 = (𝑉 , 𝐸) with no self-loop,

Figure 3: Illustrations of the RD method to obtain the quasi-
cliques and maximal clique. Given a graph with 15 nodes
and an initial density (𝑑 = 0.19). We apply the RD method to
this graph and map the obtained quasi-cliques and maximal
clique onto the density curve at each iteration of the RD. The
quasi-cliques and maximal clique are shown in the dotted
line and solid line boxes, respectively. It can be seen that the
RD method returns the quasi-cliques at each step; however,
it returns the maximal clique at convergence when it reaches
density 𝑑 = 1.0.

where 𝑉 and 𝐸 are sets of vertices and edges, respectively. In our
case, the vertices correspond to the graph nodes, and the edges
represent the neighbouring relationship between two nodes. We
compute the adjacency matrix of𝐺 , which is the 𝑛×𝑛 non-negative
symmetric matrix 𝐴 = (𝐴𝑢𝑣) defined as follows:

𝑎𝑢𝑣 =

{
1, 𝑖 𝑓 (𝑢, 𝑣) ∈ 𝐸,
0, otherwise.

(3)
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The degree of a vertex 𝑢 ∈ 𝑉 relative to a subset of vertices 𝐶 ,
denoted by 𝑑𝑒𝑔𝐶 (𝑢), is the number of vertices in 𝐶 adjacent to it,
that is,

𝑑𝑒𝑔𝐶 (𝑢) =
∑︁
𝑣∈𝐶

𝑎𝑢𝑣 . (4)

When 𝐶 = 𝑉 we obtain the standard degree notion, in which case
we shall write 𝑑𝑒𝑔(𝑢) instead of 𝑑𝑒𝑔𝑉 (𝑣). A subset 𝐶 of vertices in
𝐺 is called a clique if all its vertices are mutually adjacent. A clique
is said to be maximal if it is not contained in any larger clique, while
Quasi-clique is a dense incomplete subgraph of a graph that relaxes
the clique constraints. We define the quasi-clique in terms of density
𝑑 such that 0 < 𝑑 < 1, a subset of vertices 𝐻 is called a 𝑑-quasi-
clique if the edge density of the induced subgraph𝐺 [𝐻 ] is at least 𝑑 .
Note that if 𝑑 = 1, the definition requires H to be a clique. If 𝑑 < 1,
it is possible for the subgraph to be missing some edges among its
vertices. In [27], a one-to-one correspondence between stable points
of the RD, local maximizers of a standard quadratic assignment
problem and maximal clique is provided. It is thus sufficient to
reach an equilibrium point of the RD to get a maximal clique. We
used this algorithm in our implementation to extract the maximal
and quasi-cliques. Figure. 3 shows the graphical representation of
how the RD method obtains the maximal cliques and quasi-clique
using a density curve. The discrete replicator dynamic is defined
as:

𝑥
(𝑡+1)
𝑖

= 𝑥
(𝑡 )
𝑖

(𝑆𝑥 (𝑡 ) )𝑖
(𝑥 (𝑡 ) )′𝑆 (𝑥 (𝑡 ) )

(5)

the equation. 5 (for 𝑖 = 1, ..., 𝑛) corresponds to the discrete-time
version of first-order replicator equations. The RD is a continuous
optimization technique that, at convergence, provides the degree
of centrality for each node in a cluster; the higher the degree, the
more central the node. In [27], the authors introduced an effective
strategy (Peel-off) to perform a hard partition of the given data into
coherent clusters using RD, with the following steps: 1) find the
most participating nodes based on a predefined threshold to obtain a
cluster. (i.e., a maximal clique), 2) remove those selected nodes from
the similarity graph, and 3) reiterate steps 1 and 2 on the remaining
nodes until all nodes have been clustered. The peel-off strategy
considers only the highly participating nodes due to the predefined
threshold in the RD convergence; however, the low-participating
nodes that lie on the border of the cluster might be a good candidate
to linkwith other clusters in the graph. These nodes can be extracted
again with other clusters at RD convergence, while the central ones
belong only to one cluster. Hence we introduce a new soft peel-off
strategy, a threshold, to find these low participating nodes in a
converged RD. Figure. 4 shows that the central nodes belong only
to one cluster, while the border nodes can be linked to other clusters.
The run-time complexity of RD is𝑂 (𝐾 |𝑉 |2), where𝑉 is the number
of vertices in the graph and𝐾 is the number of iterations. A detailed
explanation of how we used the RD algorithm and soft peel-off
strategy in our implementation is mentioned in section 3.5.

3.4 Graph Coarsening with Quasi-CliquePool
The proposed Quasi-CliquePool method computes the cliques C =

{𝐶1,𝐶2, ...,𝐶𝑘 } of the input graph (𝑉 , 𝐸, 𝛼, 𝛽), and returns a coars-
ened graph (𝑉 ′, 𝐸′, 𝛼 ′, 𝛽′), such as:

𝑉 ′ = 𝑉 (𝐺 ′) = {𝑣 ′1, 𝑣
′
2, 𝑣
′
3, ..., 𝑣

′
𝑘
}, (6)

Figure 4: An example illustrates the clustering process using
Quasi-CliquePool. In the first step, the RD method extracts a
yellow quasi-cluster with six nodes: four highly participated
and two overlapping nodes. The red one is an isolated node re-
moved during the pooling procedure. The overlapping nodes
are selected from the yellow cluster using the soft peel-off
strategy 𝜎 . We removed only the highly participated nodes
from the similarity matrix and iterated the RD method to
extract the second purple cluster with overlapping nodes.

𝐸′ = 𝐸 (𝐺 ′) = {{𝑣 ′𝑖 , 𝑣
′
𝑗 } | 𝐸 (𝐺 [𝐶𝑖 ,𝐶 𝑗 ]) ≠ ∅}, (7)

where node 𝑣 ′
𝑖
represents the coarsened version of𝐶𝑖 and 𝐸′{𝑣 ′𝑖 , 𝑣

′
𝑗
}

represents coarsened edge that exists iff there is at least one edge
in original graph𝐺 connecting a node of 𝐶𝑖 with a node of 𝐶 𝑗 . The
node features function 𝛼 ′ : 𝑉 ′ → IRℎ𝑉 aggregates the features that
belong to the same clique𝐶𝑖 . We considered the features of maximal
clique-based nodes for aggregation since these nodes are highly
connected. For relabeling the nodes and edges in the coarsened
graph, we defined node features in the following way:

𝛼 ′ (𝑣𝑖 )′ = Φ({𝛼 (𝑣) |𝑣 ∈ 𝐶𝑖 }), (8)

𝛽′ ({𝑣 ′𝑖 , 𝑣
′
𝑗 }) = 𝜓 ({𝛽 (𝑒) |𝑒 ∈ 𝐸 (𝐺 [𝐶𝑖 ,𝐶 𝑗 ])}), (9)

where 𝜙 and 𝜓 represent the aggregation functions defined over
multisets of feature vectors. The element-wise max or sum is a com-
mon aggregator function for node features [37]. We used element-
wise max or sum aggregators for node features. Our approach is
different from other partitioning-based graph coarsening meth-
ods [22] because a node may belong to multiple cliques in the
proposed method. On the other hand, CliquePool [22] performs
a hard partition between nodes, which destroys the topological
structural relationship in the cliques1. Figure 2 illustrates the frame-
work of Quasi-CliquePool. Concretely, we view a GraphConv layer
followed by a Quasi-cliquePool layer as a module and name it
Quasi-cliquePool GraphConv layer for convenience. The Quasi-
cliquePool GraphConv layer takes a graph as an input and outputs
a new pooled graph with a new feature matrix and adjacency ma-
trix. Then, the pooled graph is fed into the next Quasi-cliquePool
GraphConv layer and applies a readout function on it. In the last
step, we get the final graph representation by adding the embed-
dings of each graph layer, and a multi-layer perceptron model is
applied to this representation to classify the graph.

3.5 Quasi-CliquePool Algorithm
In this section, we propose a Quasi-CliquePool algorithm for graph
classification, whose pseudocode is shown in Algorithm 1, that
extracts the quasi-cliques and maximal cliques of a given graph.
1We do not consider edge attributes in this work.
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Algorithm 1 performs two main tasks: 1) partitions the graph and
assigns the nodes of the original graph𝐺 to k different cliques, and
2) each clique is transformed into a new node in the coarsened
graph 𝐺 ′. The core of our method is inspired by the original RD
algorithm for the maximal clique of Pelillo et al. [27]. Algorithm
1 receives a graph 𝐴 ∈ {0, 1}𝑛×𝑛 and 𝑋 ∈ IR𝑛×ℎ𝑉 as input and
returns the list of all possible quasi-cliques 𝐶 . In the first step, we
used the Euclidean pairwise distance method, and the gaussian
kernel [39] function to build the similarity matrix of the given
graph (equation.10). The kernel function basically tells the model
how similar two data points are (𝑥𝑖 , 𝑥 𝑗 ). The affinity between a pair
of points can be defined as

𝑆𝑖 𝑗 = exp

(
−𝑑2 (𝑥𝑖 , 𝑥 𝑗 )

𝜌𝑖𝜌 𝑗

)
, (10)

where 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) is the euclidean distance between the vectors 𝑥𝑖
and 𝑥 𝑗 and 𝜌𝑖 𝜌 𝑗 are the local scaling parameters computed with
[39]. In the next step, the RD method uses this similarity matrix as
an input and provides a characteristic vector 𝑋𝑛 that contains the
probability value of the participation of each node in a cluster; the
higher the value, the central the nodes as a maximal clique, and the
lower the value, the border the nodes. Then a 𝛾 threshold is applied
to the characteristic vector 𝑋𝑛 to extract the highly participating
nodes as a maximal clique. Here we are interested in extracting the
low participating nodes that lie on the clique’s border because these
nodes might be good candidates for overlapping nodes with other
cliques in the graph. We introduced a new soft peel-off strategy,
a filter operation that finds border (overlapping) nodes using a 𝜎
threshold and assigns them again in characteristic vector x for the
next convergence of the RD. So in this way, Algorithm 1 iteratively
selects all the possible quasi-cliques by extracting the nodes in set
U. Nodes that remain isolated during the pooling operations are
removed from the graph. Moreover, the aggregation procedure of
the node features (equation. 8) contributes similarly to the respec-
tive clusters, and element-wise sum or average readout functions
are used to aggregate the node features in the coarsened graph2. In
the next pooling layer, we transformed each clique into a new node
and connected two cliques (equation. 9) if they have a common
edge or node in the original graph 𝐺 . We illustrate our proposed
Quasi-CliquePool in Figure. 1, where we performed quasi-clique
pooling on a graph with 19 nodes and obtained a new graph 𝐺 ′ at
the first layer of Quasi-CliquePool with 5 nodes.

4 RESULTS AND DISCUSSION
In this section, we evaluate the superiority and effectiveness of
Quasi-CliquePool against several state-of-the-art graph classifica-
tion approaches. Section 4.1 briefly describes the datasets used for
experiments. Section 4.2 explains the baseline methods used to com-
pare the results and configuration of Quasi-CliquePool and baseline
methods. In section 4.3, we compare Quasi-CliquePool results with
state-of-the-art graph classification approaches. Finally, section 4.4
presents the ablation study.

2We only considered the features of highly connected nodes in a quasi-clique for feature
aggregation. For this purpose, we used the Bron Kerbosch approach to aggregate the
features of maximal clique-based nodes.

Algorithm 1 Quasi-CliquePool
Input: 𝐺𝑖𝑣𝑒𝑛 𝑎 𝑔𝑟𝑎𝑝ℎ 𝐺 𝑎𝑠 𝐴 ∈ {0, 1}𝑛×𝑛 𝑎𝑛𝑑 𝑋 ∈ IR𝑛×ℎ𝑉
Output: 𝐿𝑖𝑠𝑡 𝑜 𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑄𝑢𝑎𝑠𝑖 −𝐶𝑙𝑖𝑞𝑢𝑒𝑠 C 𝑜 𝑓 𝐺
1: C ← ∅
2: 𝑆 ← build a similarity matrix (equation.10)
3: 𝑈 ← V(G)
4: while𝑈 ≠ 0 do
5: 𝑋𝑛 ← RD (𝑆) ⊲ characteristics vector 𝑋𝑛 (equation. 5)
6: 𝐶𝑖 ← 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑋𝑛, 𝛾) ⊲ extracts the quasi-clique
7: 𝐿 ← 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐶𝑖 , 𝜎) ⊲ selects the low participated nodes

quasi-clique (overlapping nodes) from (𝐶𝑖 )
8: C ← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝐶𝑖 )
9: 𝐶𝑖 ← 𝐶𝑖 \ 𝐿 ⊲ remove the selected lowest value nodes

from 𝐶𝑖
10: Remove 𝐶𝑖 from the similarity matrix S
11: end while
12: C = {𝐶1, ...,𝐶𝑘 }

4.1 Dataset Setup
To verify the performance of Quasi-CliquePool in learning com-
plex hierarchical graph structures in different domains, it tested on
a variety of large benchmarks that are commonly used in graph
classification tasks [15]. This study used bio-informatics datasets
including DD [9], Protein and Enzymes [3, 8], and the molecule
datasets Mutag [29], NCI-1, and NCI-109 [33]. All datasets are re-
trieved from the TU-Dortmund collection [25]. Table 3 shows the
statistics of the datasets, most of the datasets are relatively large-
scale with different sizes of graphs and hence suitable for evaluating
deep graph models.

4.2 Baselines and Experimental Settings
To compare the performance of graph classification, we consider
GNNs-based baselines combinedwith different state-of-the-art pool-
ing methods. The next section briefly describes these baseline meth-
ods with experimental settings.

4.2.1 Graph Neural Network Methods: This research work consid-
ers three GNN architectures to test the proposed Quasi-CliquePool
method. (1) GCN [16] is a convolutional neural network that learns
node representations by aggregating and propagating information
from neighbours. (2) GraphSage [13] introduces the inductive frame-
work, which calculates node embedding by aggregating and sam-
pling features from local neighbours. (3) GraphConve [26] proposed
k-dimensional GNNs that can take high-order graph structures and
are useful in analysing social networks and molecule graphs.

4.2.2 Competitors: This study compares Quasi-CliquePool with
five state-of-the-art hierarchical pooling techniques: Top-k pool
[38], SAGEpool[18], DiffPool [10], clique pooling [22], and k-plex
pool[1] and two global pooling methods: Sort pooling[35] and
Graclus[7]. For all baselines and quasi-clique poling, we employed
the same hyperparameter search strategy. The hyperparameters
are summarized in Table 4.

For all the pooling and GNN baselines, we consider the accuracy
scores reported by the original authors. In cases where baseline
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Table 2: Test accuracy on the classification of molecules and bio-informatics benchmarks. The bold and underlined text
highlight the highest and second-highest accuracy scores, respectively.

Classification Baselines ENZYMES PROTEINS D&D NCI-1 NCI-109 MUTAG

GNNs
GCN [16] 28.68% 70.01% 71.42% 70.24% 68.33% 72.30%

GraphSAGE [13] 31.73% 71.37% 71.70% 73.36% 72.30% 74.08%
GraphConv [26] 33.71% 72.43% 72.31% 74.70% 73.22% 77.97%

Pooling

Graclus 28.51% 71.35% 72.45% 74.25% 72.32% 76.64%
TopK-Pool [38] 31.64% 77.25% 82.43% 73.30% 72.30% 74.75%
SAGPool [18] 32.68% 70.04% 76.19% 74.18% 74.04% 77.72%
DiffPool [10] 62.53% 76.25% 80.64% 76.40% 74.29% 81.09%
SortPool [40] - 75.54% 79.37% 74.48% 72.31% 84.12%
CliquePool [22] 42.17% 73.86% 74.88% 78.83% - -
K-plexPool [1] 43.33% 75.92% 77.76% 79.01% - -

Proposed Quasi-CliquePool 45.01% 78.68% 75.30% 80.11% 76.30% 84.88%

Table 3: Statistics of datasets.𝐺𝑎𝑣𝑔 , 𝑉𝑎𝑣𝑔, 𝐸𝑎𝑣𝑔 and 𝐶𝑎𝑣𝑔 denote
the average number of graphs, nodes, edges, and classes, re-
spectively

Datasets 𝐺𝑎𝑣𝑔 𝑉𝑎𝑣𝑔 𝐸𝑎𝑣𝑔 𝐶𝑎𝑣𝑔

ENZYMES [8] 600 32.63 62.14 6
PROTEINS [3] 1,113 39.06 72.82 2

D&D [9] 1,178 284.32 715.66 2
NCI-1 [33] 4,110 29.87 32.30 2
NCI-109 [33] 4,127 29.68 32.13 2
MUTAG [29] 188 17.93 19.79 2

techniques did not publish require classification scores, we used the
original authors’ code (if available) with the same hyperparameters
setting mentioned in the original papers. In our experiments, we
used the GraphConv architecture for Quasi-CliquePool, since we
achieved effective and superior performance with this architecture
compared to the standard graph convolutional model. We used the
Graphconv "add" variant, and after each Graphconv layer, we added
a Quasi-CliquePool layer. A global readout function is applied after
every layer of Quasi-CliquePool with dropout (ratio 0.5). A total
of three Quasi-CliquePool layers are used for the datasets. Next,
the ReLu activation function is applied after every convolutional
layer. In the last, a softmax function is applied to classify the graph.
We randomly split each dataset into three parts: 80 percent for
training, 10 percent for the validation set, and 10 percent for the
testing set. We repeated this random splitting process 10 times to
get more stable performance and reported the average performance.
We used PyTorch to implement the Quasi-CliquePool and the Adam
optimizer to optimize the model. Table 4 shows the hyperparameter
list. For all GNNs and pooling baselines, we used the official PyTorch
published code. 3

4.3 Performance on Graph Classification
Table 2 demonstrates the test accuracy of Quasi-CliquePool on bio-
informatics and molecules benchmarks. To summarize the results,
we have the following observations:

3ℎ𝑡𝑡𝑝𝑠 : //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑝𝑦𝑔−𝑡𝑒𝑎𝑚/𝑝𝑦𝑡𝑜𝑟𝑐ℎ_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐/𝑡𝑟𝑒𝑒/𝑚𝑎𝑠𝑡𝑒𝑟/𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘/
𝑘𝑒𝑟𝑛𝑒𝑙

Table 4: The hyper-parameters setting. We applied three
graph convolutional layers and three quasi-clique pooling
layers. The pooling ratio is used only for Topk-Pool, SAG-
Pool, and DiffPool.

Model Hyper-Parameters Values

All

GNNs GCN, GraphSAGE,
GraphConv

layers 2, 3
learning rate 1e-2, 1e-3, 1e-4
weight decay 1e-2, 1e-3, 1e-4, 1e-5
TopK-Pool, SAG-Pool 0.8

DiffPool pooling ratio 0.25
RD 𝜖 , 𝛾 2.0e-4, 1.0e-7
Quasi-
CliquePool

𝜎 1.876e-03

• First, we can observe from the results that Quasi-CliquePool
consistently outperforms other baselines in most datasets.
For example, in the molecule datasets, quasi-clique pool-
ing achieves 1.10% improvement compared to the K-plex
best baseline in NCI-1, which is 10.13% improvement over a
Graph Convolutional Network (GCN) with no hierarchical
pooling mechanism. Quasi-CliquePool also achieves 2.76%
improvement over the k-plexPool in the Proteins dataset,
and the overall improvement is 8.67% over the GCN model.
• In most of the datasets, our quasi-clique pooling method
obtains better performance than both hierarchical and global
pooling methods. Quasi-CliquePool almost achieves 2.5%
overall improvement over hierarchical baselines, including
DiffPool, clique, k-plex, and Topk-Pool in bio-informatics
datasets. At the same time, the quasi-clique method almost
achieves 8% improvement over global pooling approaches
(Graclus and Sortpooling).
• Being consistent with existing studies’ findings [23, 41], we
can see from Table 2 that GNN architectures without pooling
modules are not able to achieve promising results because
they ignore hierarchical graph information while summariz-
ing the node representations globally. So this also proves that



SAC’23, March 27 – March 31, 2023„ Tallinn, Estonia Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo

GNNs need a graph pooling layer for graph classification
tasks.
• We also note that the hierarchical-based pooling methods
achieved relatively better results than global methods, which
further demonstrates the effectiveness of the hierarchical
pooling operations. Both the SAGPool and Top-k poolingmeth-
ods perform poorly on the ENZYMES dataset. The possible
reason may be limited training examples per class, resulting
in overfitting in GNN. However, DiffPool achieves superior
performance in the ENZYMES dataset, and the proposed
Quasi-CliquePool achieves the second-best accuracy in this
dataset. In addition, the Top-Kpool obtains the best perfor-
mance on the D&D dataset, and DiffPool obtains the second-
best performance. The quasi-clique poolingmethod performs
badly on the D&D dataset because it has very large, noisy,
and sparse graphs.
• In comparison to the K-Plex and clique pooling methods, our
method achieves the best performance on all six datasets, as
shown in Table2. Such observations demonstrate the overlap-
ping nodes information in graphs is useful for graph pooling.
And overall, our Quasi-CliquePool performs best on four out
of six datasets.

4.4 Ablation Study
This section presents the ablation study to verify the performance
of the proposed model by varying the sensitivity of several key
hyper-parameters. Next, we integrate our pooling method into
various GNN architectures to investigate its effect. We also investi-
gate the performance of quasi-clique pooing with different readout
functions.

4.4.1 Quasi-CliquePool and Graph Neural Network Architectures.
As previously mentioned, the proposed Quasi-CliquePool can inte-
grate into various GNNs architectures. We integrate Quasi-Clique
Pool into the three most widely used graph convolutional models,
including GCN, GraphSAGE, and GraphConv. These models test
on three datasets (Protein, Enzymes, NCI-109), which cover large
and small graph datasets with multiple classes. Figure. 5 shows the
performance of the three Quasi-CliquePool variants. It can see the
Quasi-CliquePool_GraphConv achieves the highest accuracy on
all three datasets, specifically on the Protein dataset. One can also
see that the performance of Quasi-CliquePool_GraphConv on the
Enzymes dataset is also better than other variants, so it shows our
proposed model can get good results on multi-classes datasets.

4.4.2 Hyper-Parameter Analysis. This section further investigates
the sensitivity of some important hyper-parameters onQuasi-Clique
Pool. In detail, we investigate how the GNN layers 𝐿 and graph
representation dimension 𝑑 affect graph classification results. As
shown in Figure. 6, Quasi-CliquePool obtains the highest accuracy
when setting k = 3 and d = 64, respectively. It can be observed that
the accuracy presents a slight increase trend with the dimension 𝑑
increasing in both datasets. This is because the higher dimensional
representation space makes classification tasks easy. One can also
see that when we increase the neural network layers, the accu-
racy is also increasing, but too large layers L will hurt the model’s
performance due to over-smoothing [20].
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Figure 5: Quasi-CliquePool performance with different GNN
architectures.
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Figure 6: Test accuracy curves on Protein and Enzymes with
different values of 𝐿 and 𝑑

4.4.3 Readout Functions. To investigate how the different read-
out functions affect the performance, we used three readout func-
tions, sum, avg, and max to aggregate node features, which are de-
noted as Quasi-CliquePool-sum, Quasi-CliquePool-avg, and Quasi-
CliquePool-max, respectively. These readout-based quasi-clique
models evaluate on three datasets (Protein, Enzymes, NCI-109). As
shown in Table 5, Quasi-CliquePool-Max and Quasi-CliquePool-
Avg achieve better performance than Quasi-CliquePool-Sum. Quasi-
CliquePool-max obtains the highest accuracy thanQuasi-CliquePool-
Avg, which is consistent with existing research work [1, 22]. This
observation highlights the significance of readout functions in ag-
gregating nodes in pooling operations.

Table 5: Quasi-CliquePool performance with various readout
functions.

Readout Functions ENZYMES PROTEINS NCI-109
Quasi-CliquePool-
Sum

43.20% 75.89% 78.15%

Quasi-CliquePool-
Max

45.01% 79.05% 80.11%

Quasi-CliquePool-
Avg

44.01% 77.30% 77.30%



Quasi-CliquePool: Hierarchical Graph Pooling for Graph Classification SAC’23, March 27 – March 31, 2023„ Tallinn, Estonia

5 CONCLUSION
In this research work, we designed a novel graph pooling technique,
Quasi-CliquePool, for graph classification using the RD algorithm.
The proposed Quasi-CliquePool method has the following specifi-
cations: exploits the topological structure of the graph, extracts the
complex hierarchical structure of graphs, does not require a-priori
knowledge of the hierarchy, and can be integrated into several GNN
architectures. This study also introduced a soft peel-off strategy to
find the overlapping nodes of the graph in the clustering procedure.
To demonstrate the superiority of Quasi-CliquePool for graph clas-
sification, it tested on six datasets from two domains (molecules and
bio-informatics). The proposed Quasi-CliquePool method obtained
the best results on four of them, which demonstrates our model’s
effectiveness.
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