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Humans and animals recognize objects irrespective of the beholder's point
of view, which may drastically change their appearance. Artificial pattern
recognizers strive to also achieve this, e.g., through translational invariance in
convolutional neural networks (CNNs). However, CNNs and vision transformers
(ViTs) both perform poorly on rotated inputs. Here we present AMR (artificial
mental rotation), a method for dealing with in-plane rotations focusing on large
datasets and architectural flexibility, our simple AMR implementation works with
all common CNN and ViT architectures. We test it on randomly rotated versions
of ImageNet, Stanford Cars, and Oxford Pet. With a top-1 error (averaged
across datasets and architectures) of 0.743, AMR outperforms rotational data
augmentation (average top-1 error of 0.626) by 19%. We also easily transfer a
trained AMR module to a downstream task to improve the performance of a
pre-trained semantic segmentation model on rotated CoCo from 32.7 to 55.2
loU.

KEYWORDS

computer vision, mental rotation, CNN, transformer, in-plane rotations, bio-inspired,
neural network architecture

1 Introduction

Natural vision systems in humans and animals are able to recognize objects irrespective
of transformations such as rotations and translations as well as the observer’s point of
view, all of which can have a tremendous impact on the appearance of said object. This
is a highly desirable property for all vision systems, especially if they are to be deployed
in real-world settings that are characterized by significant scale and visual complexity
(Stadelmann et al., 2018, 2019). CNNs (Fukushima et al., 1980, 1983; Waibel et al., 1989;
Zhang et al., 1988) inherently integrate translational invariance into their design. Vision
transformers (Vaswani et al., 2017; Dosovitskiy et al., 2021) [a.k.a. neural fast weight
programmers (Schmidhuber, 1992; Schlag et al., 2021)] exhibit a level of translational
robustness however, they are not fully translational invariant (Rojas-Gomez et al., 2024).
For rotations, this is not the case, and both methods perform very poorly when facing
inputs at an unusual angle (see Figure I and Engstrom et al., 2019; Xu et al., 2023). This
can be exploited for adversarial attacks (Engstrom et al., 2019) and thus can cause serious
issues in applications where rotated inputs are common.

A widely used approach is based on input data augmentation. The data is rotated at
training time such that the model can learn all appearances of an object. This yields good
results and can scale to any problem size. It is, however, an inefficient method, reducing the
sample efficiency and consequently resulting in lower final performance with equal training
time (see differences at angle zero in Figure 1).
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FIGURE 1
An example image from ImageNet (far left) and a version of the same image with its corners masked, to allow for non-obvious and reversible rotations
(center left). Polar plots of ImageNet top-1 accuracies by angle averaged across CNN eight architectures (center right) and for VIT-16 (far right). The
performances in solid orange are for models with standard training, the dash-dotted green lines represent training with rotational data augmentation.
For training details see Chapter 3. Image taken from the ILSVRC2012 version of ImgeNet. https://www.image-net.org/challenges/LSVRC/2012/.

ImageNet - all CNNs ImageNg.oto- ViT-16
90°

270°

A straightforward approach to achieving rotation invariance
focuses on building architectures that incorporate rotational
invariance or sometimes equivariance directly into the neural
network design (Cohen and Welling, 2016; Marcos et al., 2017;
Dieleman et al,, 2015; Cohen and Welling, 2022; Weiler and
Cesa, 2019; Laptev et al., 2016; Worrall et al., 2017; Kaba et al,,
2023; Mondal et al., 2023). However, the largest gains in model
performance in the last years have been realized through systematic
scaling up of model and training data size as well as training time
(Tan and Le, 2019; Zhai et al., 2022). This trend led to growing
model architectures and culminated in the inception of foundation
models (Bommasani et al., 2021; Kirillov et al., 2023). These large
and ever-evolving architectures are generally not rotation invariant
(Mondal et al., 2023). We focus here on practical applicability and
performance so we aim to leverage the power of these models
directly, without change. To achieve this, a decoupled method
facilitating the addition of rotation invariance is needed to solve
the problem of degraded performance in the presence of in-plane
rotations in an architecture-independent fashion. This demands
methodological simplicity with low development overhead and fast
execution w.r.t. runtime on top of excellent performance on various
downstream vision tasks (e.g., classification or segmentation).

It is a long-standing conjecture in neuro-psychology that when
humans try to identify an object, they mentally simulate rotations
of that object to match it to an internal representation (i.e., they
perform mental rotation). Shepard and Metzler (1971) were the
first to formally study this phenomenon. They were able to show
that the time human subjects need to determine whether pairs
of 3D figures have the same shape grows linearly with the angle
of rotation between the two objects. This strongly suggests that
humans perform mental rotation; otherwise, the re-identification
task would be completed in constant time across angles. This
concept of mental rotation has been of inspiration to several
computer vision methods (Ding and Taylor, 2014; Boominathan
et al., 2016; Feng et al., 2019; Fang et al., 2020; Kaba et al., 2023;
Mondal et al., 2023).

In this paper, we introduce the Artificial Mental Rotation
(AMR) method that separates the finding of the angle of rotation
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of a given input from subsequently rotating it back to its canonical
appearance before further processing, thus performing an artificial
version of mental rotation. The problem of rotation estimation
has been considered hard in the literature before Boominathan
et al. (2016). However, it has the advantages that the angles can be
found in a one-shot fashion and the underlying method of visual
recognition itself does not have to be hardened against rotations,
therefore all models (even trained ones) can be used in conjunction
with an AMR module.

In short, our core contributions are: (a) We introduce a simple
approach and corresponding self-supervised training method,
AMR, for invariant processing of rotated images, (b) we present a
simple neural network architecture that implements AMR and can
be paired with all common CNNs and ViTs without alteration of the
trained base model, (c) we extensively test the real-world merits of
AMR on rotated versions of ImageNet, Stanford Cars, and Oxford
Pet, and conclude that it significantly outperforms rotational
data augmentation and generally shows excellent performance in
practically relevant tasks, (d) we present AMR results on MNIST
showing it performs competitively to existing methods, (e) we
confirm the viability of AMR in a scenario where only portions
of the test data are rotated, (f) we present comprehensive ablation
studies proofing that our trained AMR modules work in practice
on synthesized as well as physically rotated data, and (g) we
show the easy transferability of a trained AMR module to another
downstream vision task (in this case semantic segmentation),
significantly increasing the performance of an existing model on
rotated data.

2 Related work

An important early work is Spatiatial Transformer Networks
(Jaderberg et al., 2015) which extends CNNs with the ability to learn
spatial transformations (including rotations) for its feature maps.
This architecture has since been tailored to specific equivariances
(Esteves et al., 2018; Tai et al., 2019).
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There are ongoing efforts to incorporate rotation invariance
(or in some cases equivariance) directly into the architectures
of deep neural networks, especially for CNNs. Dieleman et al.
(2015) introduced a rotation invariant CNN system for galaxy
morphology prediction that uses multiple rotated and cropped
snippets of the same image as input. Cohen and Welling (2016)
presented G-CNNs which are equivariant to a larger number of
symmetries such as reflections or rotations. This is achieved by
lifting the networK’s features to a desired symmetry group. The later
work on steerable CNNs (Cohen and Welling, 2022; Weiler and
Cesa, 2019) extended this work. Romero and Cordonnier (2021)
presented group equivariant vision transformers by extending the
symmetry group lifting concept to self-attention. Worrall et al.
(2017) introduced H-Nets which replace regular CNN filters using
circular harmonics. Marcos et al. (2017) have proposed to rotate
the filters of a CNN and then apply spatial and orientation pooling
to reduce and merge the resulting features. Laptev et al. (2016)
introduced a TI-pooling, which allows to pool the CNN outputs for
an arbitrary number of different angled versions of the same input
to create an equivariant feature. These methods all entangle model
architecture and equivariance properties.

Data augmentation (Baird, 1992) is very widely used to improve
the robustness and generalizability of vision models (Simard et al.,
2003). It can even be used to harden the model against adversarial
attacks (Shafahi et al, 2019). Data augmentation has also been
shown to be very effective for rotated inputs (Quiroga et al,
2020). Later work aims to improve the sample efficiency of data
augmentation by directly learning object-specific invariances or
transformation inference functions to inform the augmentation
process (Miao et al.,, 2023; Immer et al., 2022; Allingham et al,,
2024). While improving rotational stability do data augmentation
approaches not tackle the issue on a fundamental level.

There have been previous attempts to leverage the concept
of mental rotation for computer vision. Ding and Taylor (2014)
trained a factored gated restricted Boltzmann machine to actively
transform pairs of examples to be maximally similar in a feature
space. Boominathan et al. (2016) train a shallow neural network to
classify if an image is upright. They combine this with a Bayesian
optimizer to find upright images and use this setup to improve
image retrieval robustness. In the space of 3D vision, a mental
rotation-based approach achieved state-of-the-art performance
for rotated point cloud classification (Fang et al, 2020). In
the representation learning community rotation prediction using
CNNs has been leveraged as an additional, self-supervised, learning
signal to train better representations (Feng et al., 2019). Kaba et al.
(2023) achieve invariance via learned canonicalization functions.
In a follow-up work (Mondal et al., 2023) adapt canonicalization
functions to large pretrained models. While being unique, both
of these works highly relate to this contribution, this relation is
discussed in more detail in Section 7. The very recent TICNNs
(Zhang et al., 2025) introduce a log-polar transformation inspired
by the human retina and train a canonicalization function in LP
space.

3 Artificial mental rotation

Our AMR approach requires three components. First, a base
model (BM) is required, for which any common CNN or ViT
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(Dosovitskiy et al., 2021) architecture can be used. There is no need
to modify the BM in any way, hence, the BM can generally be
sourced in a fully (pre-)trained form. However, we do copy features
out of the BM at various stages, in cases where this is not possible
e.g., when using a BM hidden behind an API the AMR module has
to be designed as a stand-alone network (this would be equivalent
to Stem in Chapter 1). Additionally, it requires a rotation algorithm
designed for images; here we use the method available in OpenCV
(Bradski, 2000). The last necessary component is the AMR module
itself, presented in this section. Due to their differing designs, CNNs
and ViTs use slightly varying AMR modules.

3.1 AMR training

While training the AMR module, the BM is frozen such that
its classification performance is not disturbed. For the training, we
use datasets, like ImageNet, where the objects are typically shown
in an upright position. Under this constraint, we can employ self-
supervised training by randomly rotating the input images and
asking the AMR module to recover the angle we previously applied.

3.2 AMR inference

AMR inference is performed in a three-step process: (1) The
input’s angle is classified by running it through the BM and the
AMR module. (2) The input is rotated by the negative amount
of the angle determined in step one. (3) The rotation-corrected
input is processed by the BM. Step (3) is identical to AMR-free
inference since the BM is frozen during AMR training and there
is no information flow through the AMR module during this step.
Therefore AMR could also be framed as a preprocessing method by
reducing it to steps (1) and (2).

3.3 AMR module for CNNs

Our AMR module is designed as an add-on to a given BM (see
Figure 2), so it can repurpose the features computed by the BM
and only requires a small number of additional weights. Features
are copied into the AMR module at five different BM stages. In the
case of ResNe(X)ts (He et al., 2016; Xie et al., 2017) [a.k.a. Highway
Nets with open gates Srivastava et al. (2015)] this happens directly
after the stem and after each of the four ResNe(X)t stages. For
EfficientNets (Tan and Le, 2019) we use the end of stages 2, 4, 6,
and 8 as extraction points. When the copied features enter the AMR
module they are first processed by a single 1 x 1 2D convolution to
compress the feature depth. For all but the first AMR module stages,
these features are then stacked with the output of the previous AMR
module stage followed by another 1 x 1 2D convolution to half
the feature depth of the stack. Only then is the data processed by a
single ResNet block. After the last stage, we employ average pooling
and a single fully connected layer with 360 outputs to create the
angle prediction.
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FIGURE 2
Architecture of our artificial mental rotation module for CNNs. The base CNN, in this case a ResNet, is shown in gray. The components of the AMR
module are shown in blue. The information flow in stage 1 (angle classification) is purple while the information flow in stage 3 (image classification) is
shown in orange.

3.4 AMR module for ViTs

The AMR module for ViTs functions very similarly to the one
for CNNs. We again extract features at five different locations.
For ViT-16-b these are after encoder blocks 1, 4, 7, and 12. Since
there is no spatial downsampling in ViTs there is no advantage
in processing the extracted features in stages. We, therefore, stack
them all at once followed by a single 1 x 1 2D convolution. This
stack is then processed by four ViT encoder modules. Lastly, we
extract the same classification token that was used in the BM and
apply a fully connected layer for the angle classification.

3.5 Motivation for add-on design

We opted to design our AMR module as an add-on to existing
base networks because we conjecture that the features that have
been trained for classification will also be at least partly useful for
angle detection and the AMR module can profit from the training
resources that have already been invested into the base network. We
confirm this conjecture with an ablation study (see Section 1 in the
Supplementary material). This design choice therefore, allows for
an AMR module that consists of very few layers on its own. Thus,
it can be trained very quickly and only adds a constant overhead of
roughly 5 million parameter, resulting in 0.905 GFlops.

4 Experiments

We aim to showcase the merits of AMR on natural images.
Therefore, we test it on ImageNet (ILSVRC 2012) (Russakovsky
et al, 2015) and verify our results on Stanford Cars (Krause
et al,, 2013) and Oxford Pet (Parkhi et al., 2012), by employing
rotated versions of the mentioned datasets. To ensure that
artificial rotations are not obvious, we mask out the corners
of all images such that a centered circle remains (see Figure 1
and the next Section for an ablation study ensuring the artificial
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rotations are not carrying any unwanted information). For a fair
comparison between upright training (without data augmentation)
and training with random rotations as input data augmentation
(rotated training), we train all of our base models from scratch
with this masking applied. For all of our training runs, we
use image normalization based on dataset statistics. No further
data augmentation is applied to keep the experiments as simple
as possible (except, of course, input rotation for the rotated
training models). To obtain representative results we replicate our
experiments on a variety of base models. We use three different
ResNets, three EfficentNets, and two ResNeXts for a total of
eight CNN architectures. On ImageNet we also employ a vision
transformer in the form of ViT-16b, which is unsuited for the other
smaller datasets. For each upright trained base model, we train two
AMR modules: One is trained for one-third of the base model’s
training time (in epochs) and the other one for one-twentieth.

4.1 Training details

For all base models, we use the implementations from the
torchvision (TorchVision Maintainers and Contributors, 2016)
Python package without any modifications. To enable optimal
training speed our code is based on the ffcv library (Leclerc et al.,
2022). All training details and links to code and trained model
weights can be found in the Supplementary material.

4.2 Testing

We first evaluate the upright base models on upright data. We
use these performances as the ceiling of what can be achieved on
rotated data. Then we test the upright and rotated base models
as well as the AMR-enhanced models for rotated performance
by rotating the test set two degrees at a time and running a full
evaluation for each angle. We present the resulting data visually in
polar plots (see Figures 3, 4) as well as in table form (see Tables 1, 2)
by averaging across angles.
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ImageNet - ResNets
90°

ImageNet - ResNeXts
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FIGURE 3

Polar plots of ImageNet top-1 accuracies by image rotation angle, averaged across architectures (except ViT). The performances of the upright base
models are shown in solid orange, the rotated training base models are shown in dash-dotted green, and AMR performance (averaged across both

epoch regimes) is shown in dotted blue lines.

ImageNet - EfficientNets
90°

ImageNet - ViT-16
90°

270° 270°

Stanford Cars - ResNets
90°

270°
Oxford Pet - ResNets
90°

Stanford Cars - ResNeXts
90°

270°
Oxford Pet - ResNeXts
90°

Stanford Cars - EfficientNets
90°

270°

FIGURE 4
Polar plots of Stanford Cars (left column) and Oxford Pet (right column) top-1 accuracies analogous to the ones shown above for ImageNet (see
Figure 3).

4.3 ImageNet accuracy is also reported (upright data with upright trained model).

We train all of our base CNNs for 100 epochs on ImageNet,
and the vision transformer is trained for 300 epochs, in accordance
with the training recipes for the torchvision base models. We then
train two AMR modules in conjunction with each upright trained
base model, one for 33 epochs and the other for 5. Preliminary
experiments have show that at 33 epochs the performance is
saturated and that 5 epochs represents the best compromise
between performance and training cost. Table 1 contains the top-
1 accuracies on rotated data for all models. Additionally, the ceiling
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As suspected, there is a steep drop in accuracy between upright
and rotated testing for the upright-trained models, both for the
CNNs as well as the ViT. On average only 69 percent of the ceiling
performance (% ceil) is retained. The models which have been
trained with random rotations fare much better, they achieve 87%
ceil. It is noteworthy that the ViT only rises from 66 to 73 of
the ceiling performance. This makes sense since ViTs tend to be
less sample efficient compared to CNNs and therefore suffer more
from the increased problem complexity caused by the random
rotations. AMR-33 achieves 98% ceil, significantly outperforming
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TABLE 1 ImageNet top-1 accuracies.

10.3389/fcomp.2025.1644044

Upright training Rotated training AMR 33 AMR 5
Testing rot % ceil rot % ceil rot % ceil % ceil
ResNet-18 0.695 0.433 62 0.598 86 0.676 97 0.666 9
ResNet-50 0.768 0537 70 0.673 88 0.755 98 0.746 97
ResNet-152 0.779 0552 71 0.730 94 0.767 98 0.760 98
EfficientNet-bo 0.680 0.454 67 0.611 90 0.666 98 0.656 96
EfficientNet-b2 0.692 0.467 67 0.612 88 0.678 98 0.669 97
EfficientNet-b4 0.710 0.485 68 0.618 87 0.696 98 0.689 97
ResNext-50-32x4d 0.773 0551 71 0.686 89 0.761 98 0.754 98
ResNext-101-32x8d 0.785 0571 73 0.728 93 0.772 98 0.766 98
ViT-16b 0.691 0.459 66 0.503 73 0.669 97 0.664 9%
Average 0.730 0.501 69 0.640 87 0.716 98 0.708 97

Upright testing (up) of the upright trained base model is assumed to be the performance ceiling (% ceil). Average (by angle) rotated accuracies (rot) are given for the upright and rotated trained

base models as for AMR 33 epochs and AMR 5 epochs. The best performances are bold.

TABLE 2 Stanford cars and oxford pet top-1 accuracies averaged across all architectures, columns are analogous to the Table 1 shown above for

ImageNet.
Upright training Rotated training AMR 300 AMR 50
Testing rot % ceil rot % ceil rot % ceil rot % ceil
Stanford cars 0.867 0.165 19 0.618 71 0.796 92 0.746 86
Oxford pet 0.741 0.483 65 0.603 81 0.712 96 0.670 90

The best performances are bold.

rotated training. AMR-5 is slightly worse with 97% ceil, but it shows
that it is possible to obtain an AMR module that is very useful with
minimal training resources. Figure 3 contains polar plots that show
the ImageNet top-1 accuracies of the different architecture families
by angle. The solid orange lines show the accuracies of the upright-
trained base models. We observe that the accuracies have their
highest points at zero degrees rotation and then symmetrically drop
off with increasing angle, reaching their lowest points at 135 and
225 degrees. We further observe that rotated training (green dash-
dotted line) and AMR (blue dotted line) both achieve rotational
invariance and exhibit performances that are independent of test
time angles. Corresponding to the reported results in Table 1, AMR
performance is consistently better than rotated training.

4.4 Stanford Cars and Oxford Pet

Due to Stanford Cars and Oxford Pet being smaller datasets
we forgo ViTs and train the CNN models for more epochs on
Stanford Cars and Oxford Pet. On Stanford Cars we train the base
models for 10,00 epochs, and the corresponding AMR modules
are trained for 300 and 50 epochs, respectively. On Oxford Pet,
we train the base models for 3,000 epochs and the AMRs for
1,000 and 150 epochs. Table 2 shows the top-1 accuracies averaged
across architectures and averaged across angles where appropriate
(for full table see Table 7 in the Appendix) and Figure 4 polar
plots, analogous to the ones for ImageNet in the above paragraph.
Our core findings are replicated on both datasets: Rotating the
images reduces all the models’ performances and AMR remains
the more powerful way of addressing rotations on these datasets.

Frontiersin Computer Science

On Stanford Cars, the performance loss caused by rotations on the
upright trained model is much more severe (19% ceil) compared
to ImageNet (69% ceil), with the models failing almost completely
when facing rotations larger than 20 degrees (see left column
of Figure 4). This makes sense intuitively since cars are almost
always upright in pictures with minimal variation, thus the models
experience almost no variation during training. This is further
supported by the observation that Oxford Pet, which is also a
small dataset but contains animals that are naturally less static
compared to cars, exhibits a milder drop off (65% ceil). We further
observe that on Stanford Cars and to a lower extent on Oxford
Pet, EfficientNets perform much better than ResNe(X)ts on rotated
data, both with rotated training and AMR, while all architectures
perform roughly equally well on upright data. We conjecture this
is because EfficientNets have been designed to be sample efficient.
This could allow them to train filters useful for a wide variety of
tasks (such as AMR) even on a small dataset and a relatively short
training time. However, an unexpected result is that AMR paired
with ResNe(x)t models showed a decline in performance when
approaching 0 degrees, while EfficientNets do not suffer from this
effect. In the Appendix, we investigate this phenomenon further.

4.5 Comparison with existing rotation
equivariant methods on MNIST

The focus of AMR is modern, large architecture and
correspondingly large datasets. The current literature for rotation

equivariant methods is focused on rotated MNIST as the
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benchmark dataset of choice for most of these methods. To put
our work into perspective with these related works we present
the performances of ResNet-18 (He et al, 2016), ResNet-18 +
rotated training and ResNet18+AMR on MNIST (see Table 3). The
ceiling performance of ResNet18 on upright MNIST is almost one,
which is to be expected. Similar to the larger datasets above is the
performance of AMR superior to rotated training, however, only by
a small margin. This makes sense intuitively since for such a simple
dataset the reduced sample efficiency of rotated training plays a
small role. Most importantly, the performance of ResNet18+AMR
is competitive to the performances of the related works, which bake
rotation invariance directly into their neural network designs.

4.6 Increase of computational cost
incurred by AMR at inference time

The simple addon design of our AMR module enables the reuse
of pre-trained base models, thereby saving a significant amount of
training time. The AMR module itself is also very lightweight with
4 million parameter and 0.6 GFLOPS. One of the main drawbacks
of our AMR method is that it requires two forward passes at
inference time (one for the angle classification and one for the
image classification). This leads to a total inference cost of two
times the base network plus a fixed overhead for the AMR module.
Table 4 shows the required parameter, flops and inference speed
of the ResNet models with and without AMR. Unsurprisingly,
the performance with AMR is drastically lower than without it.
However, ResNet18+AMR is still much faster than ResNet50 while
drastically outperforming it on rotated data.

TABLE 3 Top-1 accuracies on rotated MNIST for ResNet-18 based
methods as well as related works, accompanied by ResNet-18 upright
top-1 accuracy as a baseline.

Method Top-1 Acc.

10.3389/fcomp.2025.1644044

4.7 AMR usefulness given the prevalence
of rotated data

In an applied scenario, it is not always realistic that all inputs
are presented at a random angle. We therefore investigate the
usefulness of AMR when the test data consists of a combination
of upright (up) and rotated (rot) images. To this end, we compute
top-1 test errors on ImageNet of the ResNet family models on
rotated and upright inputs separately. We repeat this process for
upright training, rotated training and AMR-33 (see Table 5). We
then linearly combine up and rot performances to obtain the final
performances for mixed datasets consisting of both upright and
rotated data. We increase the percentage of rotated data in the
test mix until alternative methods (rotated training, AMR-33) start
outperforming the default of upright training. We call percentages
of parity between methods breakpoints (BP). Unsurprisingly, the
BPs for rotated training (30% on average) are much higher than
the ones of AMR-33 (7.5%). The key finding here is that BPs
for AMR-33 are all below 10% which shows that only a small
portion of the test set needs to be non-upright for AMR to be a
worthwhile choice.

5 Validity of self-supervised training
built on artificial rotation

Self-supervised learning based on artificial data modifications
always warrants great caution. It is often unclear if the model learns
to solve the desired task or if it simply learns to find unintended
shortcuts in the self-supervision procedure. In our case, we use a
digital rotation algorithm on our input images. While none are
visible to the human eye, algorithm-specific artifacts are introduced
to the rotated images. This raises the question if the AMR module

TABLE 5 Top-1 accuracies of ResNets on upright (up) and rotated (rot)

ImageNet, accompanied with breakpoints (BP) that signify the share of
ResNet-18 (upright - ceil performance) 0.996 rotated data in the test set necessary for alternative methods (rotated
ResNet18 0.48 training, AMR) to outperform upright training.
ResNet-18 + rotated training 0.978 Upright Tr. Rotated Tr.
ResNet18 + AMR 0.981 rot BP
Harmonic networks (Worrall et al., 2017) 0.983 RN-18 69.5 433 59.3 58.9 35.5% 67.1 67.6 9.0%
Ti-pooling (Laptev et al., 2016) 0.988 RN-50 76.5 53.7 69.2 67.3 35.0% 75.1 75.5 6.1%
G-CNNs (P4CNN) (Cohen and Welling, 2016) 0.972 RN-152 77.9 55.2 73.6 73.0 19.5% 76.2 76.7 7.4%
RotEqNet (base) (Marcos et al., 2017) 0.989 Avg. 74.6 50.7 67.4 66.4 30% 72.8 73.3 7.5%

TABLE 4 The number of parameters (in millions), gigaflops at inference time as as well as inference speed for the ResNet family.

RN50 RN152 RN18-AMR RN50-AMR RN152-AMR
No. parameter M 12 26 60 16 30 64
Inference flops GF 1.8 4 12 4.2 8.6 24.6
Inference speed image/sec 1970 474 319 700 233 168
Top-1 Acc. rot-ImageNet 0.433 0.537 0.552 0.676 0.755 0.767

Shown with and without AMR. For context we also repeat the top-1 accuracies of these models on rotated ImageNet.
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FIGURE 5
Photographs of two printed ImageNet validation samples taken at 12 different angles. Both samples are shown in their original state (raw) and after
the mental rotation step (corrected). The color of the masked-out region indicates if the corresponding image has been correctly classified. The
mental rotation and classification steps have been performed by ResNet50 + AMR33. Image taken from the ILSVRC2012 version of ImgeNet. https://
www.image- net.org/challenges/LSVRC/2012/.
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learns to classify the correct rotation angle based on unwanted
traces of the rotation algorithm rather than by understanding the
contents of the image. To ensure this is not the case, we perform
the following ablation study: We print out seven images sourced
from different classes from the ImageNet validation set. We then
take photos of each of those printouts at twelve different in-plane
rotations by physically rotating the print in 30-degree intervals.
This way we guarantee the absence of any rotation algorithm
artifacts that the model could have learned to use. The images
were printed using a Konica Minolta bizhub 450i on maximum
resolution with guidelines to enable accurate angular distances (see
Figure 8 in the Appendix). The photos were then taken by hand
using a Nikon Coolpix P7000 digital camera. Figure 5 shows all
twelve re-digitized photos for two cases (raw). The color-coded
background indicates if that photo was correctly classified by a
standard trained ResNet50 base model (green denotes correct, red
an error). We observe a similar effect as with Stanford Cars: Like
a car, bells have a very clearly defined upright position. The bell,
therefore, is only classified correctly when it is upright. Dogs on the
other hand are very variable in appearance (e.g., head turned, laying
down etc), thus the dog is only misclassified when it is completely
upside down at rotations between 150 and 240 degrees. The second
rows (corrected) show the outcome of applying Resnet50 + AMR33
to the above photos. The AMR module is able to correct the
orientation of all but one photo. We conclude that it learned to
classify the angles by understanding the image contents. While we
cannot exclude any learning of artifacts introduced by the self-
supervision process, if such are present, they do not hinder the
training process from learning transferrable features. We further
observe that the rotation correction is much more precise in the
bell case than for the dog. This ties in with our assumption that the
networK’s filters are much more precisely tuned to a sharp upright
position for the bell compared to the dog. Across all 84 photos, the
standard ResNet50 achieves a top-1 classification accuracy of 0.57.
ResNet50 + AMR33, on the other hand, achieves a top-1 accuracy of
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0.96, showing that the AMR module works properly on all printed
images.

6 Application to a novel downstream
task: semantic segmentation

Since they share the same neural network building blocks,
the assumption that models for other vision tasks like object
detection or semantic segmentation also struggle with rotated
inputs suggests itself. In this section, we test this hypothesis
and demonstrate how a trained AMR module can be used
to easily improve the rotational stability of models for tasks
other than classification. We choose semantic segmentation as
an example. As the base model, we use a fully convolutional
ResNet50 and source the matching pre-trained weights named
“FCN_ResNet50_Weights. COCO_WITH_VOC_LABELS_V1”
from torchvision. They have been trained on MSCoCo-Stuff (Lin
et al., 2014), with a reduced class set only containing classes that
are also available in PascalVOC (Everingham et al., 2015). We
again mask the corners of all images. On this masked but upright
data, the pre-trained model achieves a mean intersection over
union (IoU) of 57.6. Rotating the images causes the mean IoU
to drop to 32.7 (Table 6). This confirms our initial conjecture.
We now take our ResNet50 + AMR33 which has been trained
on ImageNet and use it to perform AMR steps (1) and (2) on
CoCo without any additional retraining or modification. The
angle-corrected inputs are then fed back into the base semantic
segmentation model. This approach yields an IoU of 55.2, showing
that AMR also works for semantic segmentation and that a trained
AMR module can be easily transferred between similar datasets.
Figure 6 shows two examples from the CoCo validation set with
their corresponding ground truth, segmentation output, and
AMR-corrected segmentation output, visually confirming our
findings.
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Ground truth

FIGURE 6

Two rotated examples (rows) from the CoCo validation set with their corresponding ground truth, segmentation output, and AMR-corrected
segmentation output (columns). The segmentation on the rotated image exhibits bad performance in both samples. The column AMR-segmentation
shows the output for the images that have been (correctly) un-rotated using AMR.

Segmentation AMR-Segmentation

TABLE 6 Performances (in loU) of FCN-ResNet50 on MSCoCo-Stuff on
upright and rotated data as well as the performance of
FCN-ResNet50+AMR on rotated data.

FCN- FCN- FCN-
ResNet50 ResNet50 ResNet50+
Upright Rotated AMR33
Rotated
Performance 57.6 32.7 55.2
(IoU)

7 AMR as a canonicalization function

AMR can be seen as an implementation of a canonicalization
function as described by Kaba et al. (2023). A core difference
to existing implementations (Mondal et al, 2023) is that our
canonicalization function is not learned but hard coded (in the
form of the rotation algorithm present in open-CV). It is then
individually parameterized per input in a one shot fashion by
a learned function—the AMR module. Our architecture encodes
a strong inductive bias for in-plane rotations only. This causes
the AMR module to be easily trainable within a few epochs,
representing a large advantage over training a model to predict
canonicalization functions directly, which is empirically difficult
to optimize in practice as described by Mondal et al. (2023).
However, employing such a strict inductive bias is a trade-oft since
it will most likely lead to sub-optimal learning in the presence
of transformations that can not be encoded within that bias (e.g.,
rotations off-plane from the image itself). Most datasets such as
ImageNet likely contain a wide variety of such perturbations. They
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can make the self-supervised learning signal more noisy but our
results show that they do not critically impair the AMR training.

8 Limitations and future work

A key drawback of AMR is that two forward passes are
necessary for inference. This is part of the core design and cannot
be changed. It is mitigated partially by the fact that a smaller
model can be chosen in conjunction with AMR and still outperform
a large model trained with rotational data augmentation due to
the inefficiency of that approach resulting in a less costly package
even at test time. For example, a forward pass through the AMR
module and 2xResNet-50 is 8.6 GFlops, whereas a single forward
pass through a ResNet-152 is 12 GFLOPS (see Table 4); still, the
AMR-combination outperforms the larger ResNet in this example
(see Table 1). With applicability in mind, we opted to focus on
2D in-plane rotations of whole images featuring one dominant
object. Our work is, therefore, not suited for cases where multiple
objects are individually rotated. This scenario could be addressed
by combining a region-proposal-based method such as Faster-
RCNN (Girshick, 2015) with AMR at the proposal level. In the
real world, 3D objects are rotated in 3D space, which can lead
to much more drastic changes in appearance. Extending AMR
to this realistic setting (i.e., at the hands of a game engine or
interactive learning using robots in the real world) would be a
very promising, most natural extension of this work that could
lead to vision systems that learn more complete and abstract
representations of objects. An exciting future application for AMR
models would be reducing the rotational variability of an existing
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dataset (e.g., ImageNet, by making all appearing objects upright).
This would further disentangle the training of upright appearances
from rotations which would likely lead to improved training
efficiency of base models.

9 Conclusions

We have presented AMR,
approach for handling rotated data in vision systems. We have

a neuropsychology-inspired

shown that AMR consistently outperforms the most common
technique of rotational data augmentation across different deep
architectures and datasets. We have shown the viability of AMR in
realistic cases where the data is a mixture of upright and rotated
inputs. We further presented a sanity check which confirms that
our self-supervised learning setup learns to identify rotations by
the content of the images. Lastly, we have shown how a trained
AMR module can easily be transferred to another model built for
a different task to improve its rotational stability, underpinning its
flexibility to be used with any architecture.
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