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Abstract
We present the methodology and results of the Deep Retrieval team for subtask 4b of the CLEF CheckThat! 2025
competition, which focuses on retrieving relevant scientific literature for given social media posts. To address this
task, we propose a hybrid retrieval pipeline that combines lexical precision, semantic generalization, and deep
contextual re-ranking, enabling robust retrieval that bridges the informal-to-formal language gap. Specifically,
we combine BM25-based keyword matching with a FAISS vector store using a fine-tuned INF-Retriever-v1 model
for dense semantic retrieval. BM25 returns the top 30 candidates, and semantic search yields 100 candidates,
which are then merged and re-ranked via a large language model (LLM)-based cross-encoder.

Our approach achieves a mean reciprocal rank at 5 (MRR@5) of 76.46% on the development set and 66.43%
on the hidden test set, securing the 1st position on the development leaderboard and ranking 3rd on the test
leaderboard (out of 31 teams), with a relative performance gap of only 2 percentage points compared to the
top-ranked system. We achieve this strong performance by running open-source models locally and without
external training data, highlighting the effectiveness of a carefully designed and fine-tuned retrieval pipeline.
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1. Introduction

In the age of online misinformation, tracing social media claims back to their original scientific sources
is crucial for automated fact-checking and evidence-based verification [1, 2]. However, this task is
inherently challenging due to the linguistic and structural gap between informal, user-generated content
and formal scientific literature. Social media posts often paraphrase, summarize, or loosely reference
scientific findings, rarely using standardized terminology or explicit citations. These ambiguities make
it difficult to reliably identify the corresponding scientific publications.

Bridging this gap requires retrieval systems that can handle domain-specific vocabulary, implicit
references, and abstract semantics [2]. Subtask 4b of the CLEF CheckThat! 2025 competition [3, 4, 5]
exemplifies this challenge, focusing on retrieving scientific sources for social media claims. Figure 1
illustrates the task and our proposed solution: A hybrid retrieval pipeline designed specifically for
cross-domain scientific source retrieval. Our method integrates:

1. Lexical retrieval with BM25 [6, 7] to capture explicit term overlap (e.g., named entities, key-
words);

2. Semantic retrieval using a FAISS-based [8, 9] vector store to compare dense embeddings obtained
with a fine-tuned INF-Retriever-v1 [10] model, enabling the detection of semantic overlaps;
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Figure 1: The top of the figure displays the task of finding relevant publications from a large pool of scientific
documents, given a social media post. The bottom part of the figure provides an overview of our pipeline,
consisting of three modules to predict the top five scientific documents ordered by their importance.

3. Re-ranking with a large language model (LLM)-based cross-encoder [11, 12], which jointly
encodes and scores pairs of social media posts and documents to refine relevance using deep
contextual understanding.

This architecture is designed to harness the complementary strengths of these different retrieval
methods.

We evaluate our pipeline on the CheckThat! 2025 Subtask 4b dataset, achieving a Mean Reciprocal
Rank at 5 (MRR@5) of 76.46% on the development set (ranked 1st on the leaderboard) and 66.43% on
the test set (ranked 3rd on the leaderboard out of 31 teams), with only a 2 percentage points lower
score than the top-performing team. Importantly, we achieved this strong score without using
any external training data, metadata, external knowledge sources, or closed-source models,
making our approach broadly applicable and easily transferable to other domains and tasks. Overall,
our main contributions are:

1. A robust hybrid information retrieval (IR) architecture tailored for scientific source retrieval from
informal social media content;

2. Empirical evidence demonstrating the effectiveness of embedding fine-tuning and LLM-based
re-ranking in bridging informal-to-formal domain gaps;

3. A comprehensive experimental analysis, including ablations and a comparison to a commercial
baseline.

By publishing this well-engineered pipeline, we aim to support efforts to counter misinformation and
offer a practical, open-source blueprint for cross-domain document retrieval.

2. Related Work

Fact-Checking and Scientific Source Retrieval. Automated fact-checking critically depends on
robust document retrieval methods to identify evidence that supports or refutes a given claim [13]. The
evolution of this field has progressed from early strategies utilizing structured knowledge bases and
curated news sources [14] to approaches that exploit unstructured, domain-specific corpora [15]. A
particularly challenging scenario involves retrieving scientific literature to verify claims originating



Figure 2: Overview of our retrieval pipeline. Scientific documents are indexed using two parallel retrieval
mechanisms: A lexical retriever and a semantic retriever. Given a query (e.g., a social media post), the lexical
retriever returns 30 candidate papers, and the semantic retriever outputs its top 100 candidates. These 130
candidates are then re-ranked using a cross-encoder.

from social media, due to the frequent lexical and conceptual mismatch between informal language and
the academic writing style [16, 17, 18].

Sparse vs. Dense Retrieval. Retrieval methods are commonly grouped into sparse and dense
approaches. Sparse approaches like BM25 [6, 7] rely on term overlap and excel with strong lexical
alignment, using probabilistic relevance frameworks with saturation parameters and document length
normalization for robust ranking. Conversely, dense retrieval uses neural networks to encode text into
vector representations, enabling semantic similarity matching through metrics such as cosine similarity
[19, 20]. Dense models are particularly advantageous in scenarios where claims are paraphrased or
loosely aligned with scientific language, as is often the case in user-generated content. Although
dense retrieval has historically required domain-specific fine-tuning [21, 22], recent foundation models
pre-trained on diverse corpora exhibit strong generalization [10], increasingly blurring the distinction
between general-purpose and domain-adapted retrieval.

Hybrid Retrieval and LLM Re-Ranking. Hybrid retrieval frameworks can combine sparse and
dense retrieval by adding a subsequent re-ranking stage to merge their results and improve retrieval
quality. Neural re-rankers [23] have demonstrated substantial improvements in ranking accuracy across
multiple domains. Recently, large language models (LLMs) have been employed as cross-encoders,
jointly encoding claim–document pairs to capture nuanced semantic relationships [11, 12]. In this work,
we adopt such a hybrid retrieval architecture by combining sparse retrieval via BM25, dense neural
retrieval, and LLM-based re-ranking.

3. Methodology

Figure 2 illustrates our hybrid retrieval pipeline. In the official dataset, each document consists of a
title, abstract, and limited metadata (e.g., authors, publication venue), but no full text. For indexing,
we represent each document using only the title and abstract, concatenated in the format [Title \n
Abstract], explicitly ignoring metadata fields.

The document corpus is processed along two parallel paths: One path applies lexical preprocessing
followed by a BM25-based sparse retriever; the other encodes raw text into dense vectors for semantic
retrieval. At query time, the social media post undergoes similar dual processing. Both retrieval
branches return ranked candidate sets, which are merged and re-ranked using a cross-encoder. We
describe each component in the following.

3.1. Lexical Retrieval

We use BM25 [6, 7] for sparse retrieval, and rank documents based on n-gram overlap and frequency
statistics. Lexical methods are particularly effective for matching query terms to titles and commonly
used scientific expressions.



Pre-Processing. In contrast to the baseline BM25 provided by the challenge organizers [5], we
apply additional normalization steps to improve match quality. Our pipeline includes lowercasing,
punctuation removal, and subword tokenization using byte pair encoding (BPE) [24]. We chose subword
tokenization over lemmatization to maximize n-gram overlaps between informal query terms and formal
document vocabulary. Hashtags are removed, while symbols such as percentages (%) are preserved to
maintain scientific meaning. We detail additional LLM-based pre-processing experiments, which were
excluded from the pipeline, in Appendix A.

Retrieval. At inference time, the BM25 retriever returns the top-30 documents ranked by relevance.
This candidate set provides strong lexical matches for downstream re-ranking and complements the
semantic retriever. Empirically, we found that increasing the number of retrieved candidates beyond 30
did not lead to improved retrieval performance, but substantially increased computational cost during
re-ranking.

3.2. Semantic Retrieval

To overcome vocabulary mismatches and paraphrasing issues, we implement dense retrieval based on
transformer-derived embeddings [25], capturing semantic similarity between queries and documents.

Embedding Model and Fine-tuning. We initialize our dense retriever with the INF-Retriever-v1
model [10], a fine-tuned variant of gte-Qwen2-7B-instruct [26], and further fine-tune it on the CLEF
CheckThat! training set using the multiple negatives ranking (MNR) loss [27]. The model is trained to
assign higher similarity scores to (social media post, document) pairs with known associations than to
randomly sampled negatives.

Fine-tuning is performed with a maximum input length of 8, 192 tokens to accommodate long
documents without truncation. Inputs (queries and documents) are tokenized independently, and
embeddings are computed via last-token pooling. We apply LoRA adapters [28] to the final eight
transformer layers to reduce memory and training time [29] and optimize using AdamW [30] with
cosine learning rate decay and gradient accumulation. Full details of the fine-tuning setup, including
model initialization, LoRA configuration, optimization strategy, and evaluation protocol, are provided
in Appendix B.

Vector Store. We precompute document embeddings and store them in a FAISS index [8, 9]. The
embeddings are normalized using the L2 norm, allowing cosine similarity to be computed efficiently
via dot products. At inference time, the social media post is encoded into a dense vector using the same
model, and the top 100most similar documents are retrieved. We avoid chunking abstracts, as empirical
results have shown that full-document retrieval performs better.

3.3. Re-Ranking

While dense and sparse retrievers are computationally faster, the subsequent re-ranking process is com-
putationally intensive. Unlike embeddingmodels, which independently embed each document and query
into vectors and compute similarity using a distance metric, the re-ranker processes query-document
pairs to directly output a similarity score. The computational cost of these pairwise comparisons limits
re-ranking to small candidate subsets, making the initial retrieval stage essential for filtering documents.

Ranking. We conducted experiments with various re-ranking models (see Appendix C for discussion).
Based on these experiments, we select BAAI/bge-reranker-v2-gemma [11, 12], an LLM-based cross
encoder built on Gemma [31]. To balance cost and performance, we re-rank a candidate pool consisting
of the top 100 documents from dense retrieval and the top 30 from BM25 retrieval. We favor the former
due to its stronger individual performance (see Section 4). This set of candidates is scored by the
re-ranker, and the top five results are returned as the pipeline output.



Table 1
Performance comparison on the development and test sets across retrieval and re-ranking stages. Precision is
not reported for the re-ranking stage, and Elasticsearch was only evaluated on the development set. Best results
in each category are in bold. “FT” denotes fine-tuning.

DEVELOPMENT SET TEST SET

MRR@k (%) Precision@k (%) MRR@k (%) Precision@k (%)

Approach k=1 k=5 k=30 k=100 k=1 k=5 k=30 k=100

Lexical Retrieval (BM25)

BM25 baseline 50.50 55.18 72.43 78.36 38.11 43.11 61.48 69.43
BM25 + pre-processing 57.50 62.19 79.86 85.14 45.57 51.47 71.78 79.25

Semantic Retrieval (FAISS + cosine)

INF-Retriever-v1 58.66 65.21 86.50 92.04 47.23 54.48 79.88 87.28
INF-Retriever-v1 + FT 60.86 67.19 87.86 93.12 49.93 56.72 81.95 89.21

Entire Pipeline

Elasticsearch with RRF 63.72 69.35 - - - - - -
Pipeline w. re-ranking 71.92 76.46 - - 60.37 66.43 - -

4. Results

The CLEF CheckThat! 2025 Subtask 4b evaluates systems using mean reciprocal rank at 5 (MRR@5),
which reflects how highly the correct source is ranked among the top five retrieved documents. Since
MRR@5 is sensitive to ranking order, we prioritize optimizing the lexical and semantic retrievers for
precision. Unlike MRR, Precision@𝑘 measures the proportion of relevant documents in the top-𝑘 results
regardless of their order, ensuring that each retrieval stage yields high-quality candidate sets suitable
for downstream re-ranking.

All experiments were conducted on the official datasets provided by the task organizers [5]. The
corpus includes 7, 718 documents. The development set comprises 1, 400 queries, and the test set
contains 1, 446 queries. Our complete system achieves an MRR@5 score of 76.46% on the development
set and 66.43% on the test set. Table 1 summarizes development and test set results across individual
and combined retrieval stages. We evaluate MRR@1 and MRR@5, along with Precision@30 and
Precision@1001. Although the absolute performance on the development set is generally higher than
on the test set by approximately 10 percentage points, the relative gains achieved through our methods,
such as pre-processing and fine-tuning, are consistent across both sets.

Lexical Retrieval. Our BM25 retriever with additional normalization and subword tokenization
yields an 8.4-point gain in MRR@5 and a 10.3-point gain in Precision@30 over the official baseline on
the test set, similar to the improvements observed on the development set (7.0 points in MRR@5, 7.4
points in Precision@30). Our preprocessing reduces noise and increases n-gram overlap, leading to
better alignment between informal social media posts and formal scientific documents.

Semantic Retrieval. On the development set, employing INF-Retriever-v1 yields an absolute
improvement of 10.03 percentage points in MRR@5 over the BM25 baseline. Fine-tuning the retriever
further increases MRR@5 by 1.98 points, reaching a final score of 67.19%. In terms of Precision@100,
the base model achieves a 13.7-point gain compared to the BM25 baseline, with fine-tuning contributing
an additional 1.1-point improvement. These gains are similar on the test set: INF-Retriever-v1
improves MRR@5 by 11.4 points over the BM25 baseline, and fine-tuning adds a further 2.2-point gain,

1These metrics correspond to the best-performing configuration: BM25 returns the top 30 documents, and the semantic
retriever contributes the top 100.



culminating in an MRR@5 of 56.72%. Precision@100 follows a similar trend, with respective gains of
17.85 and 1.93 percentage points. These consistent improvements across both development and test
splits highlight the effectiveness and robustness of semantic retrieval, particularly when fine-tuning is
applied.

We also experimented with data augmentation techniques, including HyDE-generated queries and
alternative document variants. However, these did not yield further gains. A discussion on data
augmentation is provided in Appendix D.

Re-Ranking. Our complete pipeline with bge-reranker-v2-gemma as re-ranker achieves an MRR@5
of 76.46% on the development set, providing a +9.3 percentage points gain over our best individual
retrieval method. To isolate the effectiveness of our re-ranking approach, we compare it against a
hybrid baseline using Elasticsearch (see Appendix E for implementation details). Similar to our pipeline,
this baseline uses BM25 for keyword search and the fine-tuned embedding model for semantic search,
followed by reciprocal rank fusion (RRF) for re-ranking [32]. Although RRF provides a small boost over
standalone retrieval (+2.2 percentage points), it underperforms the cross-encoder by 7.1 percentage
points, highlighting the added value of learning-to-rank methods.

On the test set, our pipeline achieves 66.43% MRR@5, with the re-ranker achieving similar improve-
ments of +9.7 percentage points over the best individual retrieval method, confirming that these gains
generalize across datasets.

5. Discussion and Conclusion

In this paper, we presented a hybrid retrieval pipeline for attributing scientific sources to social media
claims. Our system combines BM25 retrieval, dense semantic search with a fine-tuned encoder, and LLM-
based cross-encoder re-ranking. Our results on subtask 4b of the CLEF CheckThat! 2025 competition
demonstrate the effectiveness of this architecture: We ranked 1st on the development set and 3rd on
the test set. Key findings include:

1. Hybrid retrieval is essential: Neither lexical nor semantic retrieval alone was sufficient. BM25
reached MRR@5 of 51.47%; the fine-tuned semantic retriever achieved 56.72%. Applying a
cross-encoder to re-rank top candidates increased MRR@5 to 66.43% (a 23.3 percentage point
improvement over the baseline), confirming the benefit of hybrid retrieval followed by learned
ranking.

2. In-domain fine-tuning yields measurable gains: Fine-tuning the dense retriever improved
MRR@5 by approx. +2 percentage points and led to a Precision@100 of 89.21%. While pre-trained
models perform well out of the box, domain adaptation further improves alignment between
informal queries and scientific abstracts.

3. Engineering matters: Achieving these results required substantial engineering and experimen-
tation efforts. We optimized hyperparameters, evaluated multiple data augmentation strategies
(Appendices A and D), and evaluated alternative re-ranking models (Appendix C).

Despite the focus on CLEF’s benchmark task, the proposed architecture is designed with broader
applicability in mind. All components are modular and utilize open-source models, eliminating re-
liance on commercial APIs, thereby enabling deployment on local infrastructure [29]. This ensures
compatibility with privacy-sensitive or offline environments and facilitates customization.

Limitations and Future Work. The current pipeline does not incorporate document-level metadata,
such as author names, publication venues, or timestamps, which could improve retrieval precision
and disambiguation. In addition, we do not integrate external resources such as web search engines
or large-scale knowledge bases. Future work could explore metadata-aware retrieval and web-based
search strategies to further enhance retrieval performance.
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A. Additional Experiments on Lexical Retrieval

Table 2
Comparison of lexical retrieval approaches with optional query augmentation on 1, 000 samples from the training
set. Preprocessing includes lowercasing, punctuation removal, and subword tokenization.

Precision@k (%)

Approach k=1 k=5 k=10 k=15 k=20

BM25 Baseline 49.90 60.50 64.70 67.10 69.70
BM25 + Preprocessing 56.00 70.10 74.30 76.80 78.10
Query Expansion + Preprocessing 56.80 71.50 76.80 79.00 80.60
Query Rewriting + Preprocessing 57.80 70.90 75.10 77.50 79.60

To explore potential improvements in lexical retrieval, we experimented with two query reformulation
strategies using the Gemma3 12B language model [33]. These methods aim to reduce the linguistic
mismatch between informal social media posts and formal scientific abstracts.

1. Query Rewriting: Reformulating social media posts to correct grammar and match the formal
language style of scientific abstracts while preserving the original query semantics (see Listing 1).

2. Query Expansion: Augmenting the original social media post with 2-3 contextually relevant
sentences to increase n-gram overlap with scientific abstracts (see Listing 2).

Among the evaluated methods, query expansion yielded the highest performance, achieving a Preci-
sion@20 of 80.6%, an improvement of 2.5 percentage points over BM25 with preprocessing. Query
rewriting also led to performance gains, with a Precision@20 of 79.6% (a 1.5 percentage point improve-
ment).

However, both methods incur significant computational overhead due to the reliance on a large
language model. Specifically, inference time increased by approximately a factor of 60. Furthermore,
given that our pipeline includes a subsequent re-ranking stage, the marginal precision gains from these
query reformulations diminish in the final results of the entire pipeline. This unfavorable cost-benefit
trade-off renders these methods impractical for integration into the final pipeline, so we excluded them.
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Translate informal text into precise academic language, preserving
original meaning.

Transformation Guidelines:
- Correct the original tweet's spelling and grammar errors while

maintaining its style
- Convert colloquial language to precise academic terminology
- Convert hastags into proper words
- Do not add anything new. Only correct the mistakes in the original

tweet.

Output format:
Return a single string

Example:
Original Tweet: "Just saw amazin new study - mice w/ #Alzheimers showed
45% improvemnt in memory after new drug treatment!! Game changer for
#neurodegeneration research imo"

Output:
Just saw amazing new study - mice with Alzheimers showed 45% improvement
in memory after new drug treatment!! Game changer for
neurodegeneration research in my opinion

Transform the following tweet:
{tweet}

Listing 1: Prompt template to rewrite a social media post.



Translate informal text into precise academic language, according to the
transformation guidelines.

Transformation Guidelines:

First, correct the original tweet's spelling and grammar errors while
maintaining its style. Then transform the tweet into academic language
using these rules:

-Convert colloquial language to precise academic terminology
-Maintain semantic accuracy of the original message
-Use passive voice and objective scientific tone
-Eliminate informal expressions and subjective qualifiers
-Transform hashtags into their full, proper form (e.g., "#COVID19" -> "

COVID-19 pandemic")
-Expand abbreviations and acronyms to their full forms
-Include key research terms that would appear in academic database

searches
-Preserve all factual claims, statistics, and findings mentioned
-Structure as a concise academic abstract (2-3 sentences)

Output format:
Return a single continuous string with both versions separated by " || "

as follows:
[Corrected Tweet] || [Academic Version]

Example:
Original Tweet: "Just saw amazin new study - mice w/ #Alzheimers showed
45% improvemnt in memory after new drug treatment!! Game changer for
#neurodegeneration research imo"

Output:
"Just saw amazing new study - mice with #Alzheimers showed 45%
improvement in memory after new drug treatment!! Game changer for
#neurodegeneration research in my opinion || A recent pharmacological
intervention demonstrated significant efficacy in an Alzheimer's
disease mouse model, with subjects exhibiting a 45% improvement in
memory function following administration of the novel compound.
These findings represent a potentially significant advancement in
neurodegenerative disease research, particularly regarding
therapeutic approaches for memory deficit amelioration in Alzheimer's
pathology."

Transform the following tweet:
{tweet}

Listing 2: Prompt template to expand the social media post.

B. Embedding Model Fine-Tuning Details

To fine-tune the semantic embedding model, we initialize from INF-Retriever-v1 [10], a transformer
encoder pre-trained for dense retrieval tasks. Fine-tuning is performed by applying low-rank adaptation
(LoRA) [28] to the query and value projection layers of the self-attentionmodules in the top 8 transformer
layers (layers 20–27) using a rank 𝑟 = 8, scaling 𝛼 = 32, and dropout of 0.1. The inputs are tokenized
independently for queries (social media posts) and documents (title + abstract). The maximum sequence
length is 8, 192 tokens, allowing for the processing of social media posts and documents without



truncation.
We use the multiple negatives ranking (MNR) loss [27]. Given a batch of 𝑁 query–document pairs,

each query is trained to score highest on its corresponding document, while all other 𝑁 − 1 documents
in the batch act as negatives. We extract embeddings using last-token pooling, which selects the hidden
state of the final token in each sequence. Embeddings are 𝐿2-normalized, and cosine similarity is
computed via dot product.

We use AdamW [30] as optimizer with a learning rate of 1 × 10−5. We use 20 linear warmup steps
and then decay the learning rate to 0 using a cosine scheduler. We train on 2 A-100 GPUs using DDP
with a per-device batch size of 4 and 16 gradient accumulation steps (resulting in an effective batch size
of 64). We use gradient clipping with norm = 1.0 and use FP16 mixed precision. We evaluate retrieval
quality (i.e., run the vector store) on the development set after each epoch by measuring Precision@100.
The final model checkpoint is selected based on the best performance, which is obtained after epoch 2.

C. Comparison of Re-Ranking Models

Table 3
Performance comparison of different re-ranking models using top 50 semantic retrieval candidates on the
development set. The chosen model and best scores are displayed in bold.

Re-ranking Model MRR@1 (%) MRR@5 (%)

Baseline

Semantic Retrieval 61.50 67.56

Traditional Cross-Encoders

mxbai-rerank-large-v2 61.43 66.80
bge-reranker-large 62.50 67.54

LLM-based Cross-Encoders

bge-reranker-v2-gemma 71.36 76.03
bge-reranker-v2-minicpm [Layer 28] 71.57 75.87
bge-reranker-v2-minicpm [Layer 32] 71.79 76.02

We conducted a comparative evaluation of various re-ranking models on the development set to
identify the most effective approach for our retrieval pipeline. The evaluated re-ranking models
include traditional cross-encoders (mxbai-rerank-large-v2 [34], bge-reranker-large [35]) and LLM-
based re-rankers (bge-reranker-v2-gemma [11, 12], bge-reranker-v2-minicpm [11, 12]), which use
pre-trained language models as base for relevance scoring. The bge-reranker-v2-minicpm model
supports layer-wise inference optimization, allowing computation to terminate at intermediate layers
rather than processing through the full network. We experimented with two different intermediate layer
configurations, terminating after layer 28 and layer 32. We selected layer 32 based on our preliminary
experiment with 100 samples across all available layers, which showed that layer 32 achieved the best
performance. Additionally, we included layer 28, as this is recommended by the official BGE re-ranker
repository. All re-rankers are evaluated on the development set using semantic retrieval candidates
as input. As shown in Table 3, LLM-based re-rankers outperformed traditional cross-encoders by a
considerable margin. This performance gap likely stems from LLMs’ extensive pre-training on diverse
text corpora, enabling them to comprehend both formal and informal language patterns. Between the
three LLM-based re-rankers, bge-reranker-v2-gemma achieved the best MRR@5 performance (76.03%
vs. 76.02% and 75.87 %). Although the margin is small, we selected BAAI/bge-reranker-v2-gemma as
our final model.



D. Data Augmentation for Semantic Retrieval

To enrich semantic retrieval, we experimented with two text augmentation strategies: hypothetical
document embeddings (HyDE) [36] and additional documents (AD). Both methods leverage the Llama
3.2 7B model [37] to generate auxiliary text representations.

For HyDE, we prompted the model to generate a hypothetical scientific article (title and abstract)
based on a given social media post, aiming to bridge the domain gap between informal social media
language and formal scientific discourse (see Listing 3). For AD, we augmented the document corpus
by generating (1) a summary and (2) a synthetic social media post for each document. These variants
were stored alongside the original document in the vector index (Listings 4 and 5).

You are an expert in scientific research. Based on the following tweet,
generate a hypothetical scientific paper that includes only a title and
an abstract. The abstract should succinctly summarize the research
objective, methodology, key findings, and conclusions.

Tweet: {tweet}

{format_instructions}

Listing 3: Prompt template to generate hypothetical document embeddings.

Summarize the following document:

Title: {title}
Abstract: {page_content}

Make sure to include keywords that are likely to be found later by a
search.

{format_instructions}

Listing 4: Summary Prompt Template for AD

Generate a hypothetical Twitter tweet about the following document:

Title: {title}
Abstract: {page_content}

Make sure it looks like a typical tweet from an average person and is
not too long.

{format_instructions}

Listing 5: Tweet Prompt template to generate additional documents.

The results on the development set are displayed Table 4. As discussed in Section 4, our primary
objective for semantic retrieval is to ensure high precision, providing strong candidates for downstream
re-ranking. We find that augmentation strategies offer modest improvements for off-the-shelf models
but yield limited or no benefit when applied to the fine-tuned retriever. We hypothesize that the limited
benefit observed from these augmentation methods stems from the fine-tuned model’s already high
semantic fidelity, which reduces the marginal gains achievable through additional data augmentation.
Therefore, these methods were excluded from the final pipeline.



Table 4
Detailed performance comparison on the development set of semantic retrieval with additional text pre-processing.
“AD” denotes additional documents, “HyDE” stands for hypothetical document embeddings. The best results
per category are in bold.

MRR@k (%) Precision@k (%)

Approach k=1 k=5 k=30 k=100

INF-Retriever-v1 58.66 65.21 86.50 92.04
+ HyDE 48.89 56.06 80.37 87.44
+ AD 60.73 66.69 87.09 90.87
+ HyDE + AD 51.63 58.46 81.56 85.36

INF-Retriever-v1 + Fine-tuning 60.86 67.19 87.86 93.12
+ HyDE 51.53 58.79 83.01 89.60
+ AD 61.88 67.89 88.49 91.50
+ HyDE + AD 53.44 60.56 83.60 87.32

E. Hybrid Search using Elasticsearch

In addition to our main retrieval pipeline, we explored a fully integrated alternative using Elasticsearch4.
This system unifies indexing, retrieval, and ranking into a single framework, while still capturing both
lexical and semantic signals.

We build an Elasticsearch pipeline closely mirroring our original architecture: it incorporates (1)
a BM25 retriever with fuzzy matching, (2) a 𝑘-nearest neighbor (kNN) semantic retriever using our
fine-tuned embedding model (configured with 𝑘 = 50 and 200 candidates), and (3) a fusion stage based
on reciprocal rank fusion (RRF) to combine results [32]. The RRF configuration uses a window size of
100 and a rank constant of 20, allowing it to integrate signals from both retrieval branches efficiently.
Unlike our main system, which uses a cross-encoder for deep re-ranking, the Elasticsearch pipeline
relies on this lightweight re-scoring mechanism.

Table 5
Elasticsearch (ES) hybrid pipeline results on the development set. “AD” denotes additional documents, “HyDE”
stands for hypothetical document embeddings. The best results are displayed in bold.

Configuration MRR@1 (%) MRR@5 (%)

ES 60.53 66.69
ES + HyDE 45.99 53.56
ES + AD 63.72 69.35
ES + AD + HyDE 51.65 58.55

Performance. Similar to the evaluation of our custom pipeline described in Appendix D, we evaluate
different variants of this Elasticsearch—based method, leveraging raw and extended documents, as well
as with and without query expansion. Table 5 presents the results obtained on the development set.

The best Elasticsearch configuration (ES + AD) achieves MRR@5 of 69.35%, slightly superior to
our custom pipeline’s semantic retriever. However, it lags behind the full system with cross-encoder
re-ranking (MRR@5 = 76.46%). This highlights the benefit of contextual re-scoring for fine-grained
relevance. Nonetheless, the Elasticsearch-based approach remains a viable, scalable option for latency-
sensitive applications.

4https://www.elastic.co

https://www.elastic.co
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