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Abstract

Instruction-based computer control agents (CCAs) execute complex action
sequences on personal computers or mobile devices to fulfill tasks using the same
graphical user interfaces as a human user would, provided instructions in natu-
ral language. This review offers a comprehensive overview of the emerging field
of instruction-based computer control, examining available agents – their tax-
onomy, development, and respective resources – and emphasizing the shift from
manually designed, specialized agents to leveraging foundation models such as
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large language models (LLMs) and vision-language models (VLMs). We formal-
ize the problem and establish a taxonomy of the field to analyze agents from
three perspectives: (a) the environment perspective, analyzing computer envi-
ronments; (b) the interaction perspective, describing observations spaces (e.g.,
screenshots, HTML) and action spaces (e.g., mouse and keyboard actions, exe-
cutable code); and (c) the agent perspective, focusing on the core principle of
how an agent acts and learns to act. Our framework encompasses both special-
ized and foundation agents, facilitating their comparative analysis and revealing
how prior solutions in specialized agents, such as an environment learning step,
can guide the development of more capable foundation agents. Additionally, we
review current CCA datasets and CCA evaluation methods and outline the chal-
lenges to deploying such agents in a productive setting. In total, we review and
classify 86 CCAs and 33 related datasets. By highlighting trends, limitations,
and future research directions, this work presents a comprehensive foundation to
obtain a broad understanding of the field and push its future development.

Keywords: AI agents, computer use, mobile control, GUI automation, LLM, VLM
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1 Introduction

In recent years, deep learning (Schmidhuber, 2015) has surpassed the point of enabling
useful AI agents (Wei et al, 2022b; Zhuge et al, 2023) in several domains. Unlike other
deep learning systems (LeCun et al, 2015; Stadelmann et al, 2019; Simmler et al, 2021),
AI agents move beyond mere predictive functions to act within a certain environment
(van Otterlo and Wiering, 2012; Humphreys et al, 2022). One important such envi-
ronment is represented by computer systems (desktop or mobile) and the applications
running on them. Consider the wealth of tasks humans today accomplish using their
computing devices, and imagine the benefit if the same tasks could be approached by
AI agents working through the same interfaces on the same kind of devices, just by
being instructed to do so by a user in natural language. The opportunities are immense,
and we witness now what will become known as the early days of AI agents for com-
puter use with first commercial prototypes becoming available (e.g., Anthropic, 2024;
Google Deepmind, 2024; David, 2025). This review gives a comprehensive overview of
the research landscape and approaches behind such agents.

Specifically, instruction-based computer control agents (CCAs) receive instructions
from a user, which they fulfill by using computers through their graphical user inter-
faces (GUIs). CCAs access screen information analogously to a human user, e.g.,
visually, and act through the same interfaces, i.e., a keyboard, mouse, or touchscreen.
For instance, a user could instruct a smartphone agent to propose meeting dates via
email. The agent would then operate the phone through simulated touch actions to
fulfill the request, as illustrated in Fig. 1a. Unlike many other autonomous agents,
CCAs are not limited to purely simulated environments, getting exposure to the com-
plex dynamics of real-world applications and access to growing collections of sample
trajectories by observing users operate the devices they are installed on. This makes
them a particularly interesting form of AI agent both for research and commercial
exploitation.

Early CCA research primarily explored reinforcement learning (RL) techniques
(e.g., Branavan et al, 2009; Jia et al, 2019; Humphreys et al, 2022) that were successful
in simplified scenarios (e.g., MiniWoB, Shi et al, 2017). The progress in more realistic
scenarios (for instance Mind2Web, Deng et al, 2023) accelerated in 2023. This was
mainly driven by the integration of foundation models in the decision-making process
through leveraging their emerging properties (Wei et al, 2022a) for computer control
(Kim et al, 2023). This fueled and facilitated research on foundation model-based
CCAs, leading to a rapid increase in publications in the field (see Fig. 2).

This review organizes and analyzes the growing body of CCA research, providing an
overview of the field. Therefore, it introduces a taxonomy (see Fig. 1b for an overview
and Section 2.2 for a thorough introduction) to structure the landscape of the CCA
field in an efficient way, effective to gain a deeper understanding of the following aspects
of agent design: (i) What fundamental building blocks constitute computer domains
like smartphones, personal computers, or the Web, and what are the conceptual simi-
larities? For example, various computer domains provide an alternative textual screen
representation, such as HTML (Web) or the Android View Hierarchy (Android). (ii)
How do these building blocks shape the interaction between a CCA and the computer?
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(a) Example Computer Control Task (b) Proposed Taxonomy

Fig. 1: Overview: (a) An example task for an instruction-based computer control
agent: A user specifies a task (propose meeting dates), and the agent executes it. (b)
We structure the literature on CCAs according to three perspectives corresponding
to the main differentiating aspects: (1) The shared environment properties across
computer domains (e.g., the Web, Android). (2) The means of interaction between
the agent and the environment as manifested in the observation and action spaces. (3)
The agent components: how an agent acts through a policy π while tracking the past
in memory and how an agent learns to act.

For example, an agent may observe the environment through screenshots while act-
ing through simulated mouse clicks. (iii) What essential components enable a CCA to
effectively perceive, reason, and act within its environment? For example, employing
a policy for decision-making with access to tracked information about the past. (iv)
What learning frameworks are commonly employed by CCAs to acquire and refine
their skills? For example, an agent may start with environment-agnostic pre-training
and is subsequently refined to adapt to a specific environment.

The taxonomic structure developed for to this end is built around the foundational
concepts of intelligent agents, namely the nature of environments (Russell et al, 2022,
Chapter 2.3), policies (Sutton and Barto, 2018, Chapter 1.3), state, observation and
action spaces (Sutton and Barto, 2018, Chapter 17.3), and the structure of agents
(Russell et al, 2022, Chapter 2.4). This theoretical background provides the basis
for understanding CCAs, highlighting essential components for effective agent design.
Applying it to existing CCAs reveals critical gaps in the current literature that are
rarely discussed. For example, despite the importance of tracking past information
(Sutton and Barto, 2018, Chapter 17.3), some agents neglect it entirely (e.g., Niu
et al, 2024) while many others only track past actions but not past observations
(e.g., Li et al, 2024e). Furthermore, despite their general out-of-the-box competence,
many foundation model-based agents lack a mechanism to autonomously adapt to a
specific computer environment (e.g., Zheng et al, 2024a), condemning them to repeat
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Fig. 2: CCA publications over time. Boxes highlight seminal milestones. The advent of
ChatGPT marks a shift from RL-based agents to those primarily relying on foundation
model reasoning.

identical errors. We aim our review at helping to identify such gaps, facilitating to
more efficiently advance the current state-of-the-art.

Complementing our survey on agent design according to our taxonomy, we review
existing CCA datasets and evaluation methods and discuss practical challenges for
deploying CCAs in a productive setting to give a full picture of the field as a solid
basis for future research and development.

1.1 Relation to Other Surveys

In contrast to existing surveys, our review examines the field of instruction-based
computer control from a technology-agnostic perspective and introduces a unifying
framework that bridges diverse domains, methodologies, and technologies. This allows
us to summarize insights from a broader range of approaches, including different types
of computer domains, such as personal computers and Android, different types of
technologies, such as reinforcement learning and foundation models, and different kinds
of modalities, such as text and vision-based input. This broad scope allows us to
introduce a novel, unifying taxonomy for instruction-based computer control that is
compatible across a wide range of agent types – something previous work could not
realize due to their limited scope. Specifically, existing surveys have the following
limitations:

Limited scope within computer control: Zhang et al (2024a) and Wang
et al (2024c) review computer control only for foundation-model-based agents, not
discussing other learning frameworks such as reinforcement learning as the core
principle of design. Wu et al (2024a) discuss only mobile agents, neglecting other
computer domains. While these surveys provide a comprehensive review of some
aspects of computer control, they focus on a specific sub-part of the field. To have
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a unified taxonomy and to discuss future research directions comprehensively, it is
important to analyze the field as a whole.

Lack of computer control specificity Some surveys (e.g., Arulkumaran et al,
2017; Moerland et al, 2023) focus on general, reinforcement learning-based agents.
Other surveys (e.g., Wang et al, 2024b; Li et al, 2024a) review general, foundation-
model-based agents. While these reviews provide a comprehensive overview of agents
based on a specific technology, they do not focus on the domain of computer control
and all its intricacies.

Adjacent research areas with limited relevance: Another set of surveys
(e.g., Yu et al, 2023; Li, 2023) concentrate on related topics, such as GUI testing,
but do not cover agent-based interactions. Other reviews (e.g., Syed et al, 2020;
Chakraborti et al, 2020) focus on robotic process automation using software robots
(agents) to automate predefined workflows.

In contrast, our review provides a technology-agnostic review that connects these
disparate computer control subfields and technologies. This allows us to highlight
synergies and introduce a unified taxonomy for instruction-based computer con-
trol, incorporating insights from reinforcement learning (RL), large language models
(LLMs), vision language models (VLMs), and beyond. While Gao et al (2024b) pro-
vides a valuable overview with similar scope, our review goes deeper into key aspects,
offering a more comprehensive analysis and novel insights, culminating in a taxonomy
built upon existing intelligent agent theory.

1.2 Survey Methodology

The CCA field is fragmented and a unified terminology is not yet established. This
prevents a classic systematic survey, and we proceeded as follows instead:

Initial collection: Using prior knowledge and combinations of keyword searches,
we selected a preliminary list of publication candidates.

Publication selection: We selected publication candidates to be included in the
survey after carefully reviewing their titles, abstracts, or additional parts of their
content for fit using the criteria catalog described below.

Extension: We extended our selection by manually analyzing each selected publi-
cation’s related work section and bibliography for additional candidates, following
the same selection process. We repeated this phase for every selected publication.
We ended the initial and extended collection phase in October 2024.

The selection criteria for the collection process of papers on both agents and
datasets are defined as follows:

Deep learning focus: We only selected agents applying deep learning techniques
to computer control, excluding traditional control algorithms.

Computer control focus: We exclude instruction-based agents (chatbots) that
access external tools but do not control the computer through user interfaces (e.g.,
Yang et al, 2023b; Tang et al, 2023; Li et al, 2024f; Guo et al, 2024b; Qin et al,
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2024). We also exclude pure tool-based datasets that do not require computer control
interactions.

Focus on being instruction-based: We exclude task-specific, non-instruction-
based agents, such as agents playing video games (e.g., Baker et al, 2022; Zhu et al,
2023), controlling server facilities (e.g., Ran et al, 2019; Fulpagare et al, 2022),
agents for coding (e.g., Ross et al, 2023; Qian et al, 2024) or software testing (e.g.,
Koroglu et al, 2018; Degott et al, 2019; Pan et al, 2020). We only consider datasets
that provide instructions and require agents to fulfill these instructions through
computer interactions.

We ultimately selected 86 publications on instruction-based computer control
agents and 33 computer control datasets (cp. lists in Appendix A.1–A.3).

1.3 Survey Structure

This review is structured in a way to provide a unified introduction to the field of
instruction-based computer control. Due to the developing nature of this field, indi-
vidual CCAs that stand for important strands do not yet stand out; rather, many
agents only employ certain aspects of what contributes to the full picture of a CCA.
Hence, most subsequent chapters of this review put individual elements of the tax-
onomy at the center rather than individual CCAs, giving representative exemplary
(indicated by citations prefixed by “e.g.”) or specific CCAs (no “e.g.” before citations)
as references for each aspect. A notable exception will be Section 5.2, where indi-
vidual agents are most prominently portrayed, as it discusses their core development
paradigm. Otherwise, a structuring of the field by agents can be found in the tables
in the Appendix A.

Specifically, in Section 2, we formalize the problem of instruction-based computer
control agents and introduce respective terminology as a precursor to introducing the
perspectives of the proposed taxonomy. Then, we look into each perspective in detail
in the three subsequent chapters: in Section 3, we discuss the composition of commonly
used domains (environment perspective); in Section 4, we analyze the interaction
between the agent and the environment through the observation and action space
(interaction perspective); in Section 5, we dissect the components of an agent, how an
agent acts, and how an agent learns to act (agent perspective). Then, in Section 6, we
summarize existing datasets used to train or evaluate agents, and we examine metrics
and methodologies used to evaluate an agent’s performance in Section 7. Finally, we
outline challenges for deploying these agents in a production environment in Section 8
before we conclude by summarizing our findings and providing directions for future
research in Section 9.

2 The Field of Instruction-based Computer Control

2.1 Definitions

Human users instruct CCAs through a text-based instruction i, which must be
achieved by the CCA through interacting with a computer environment. The nature of
these environments is discussed in the environment perspective chapter (see Section 3).
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The interaction process between an agent and environment is visualized in Fig. 1b.
At each time t, the environment is in a particular state st ∈ S, where S is the
state space. An agent interacting with the environment does not perceive the entire
environment state st, as computer environments are only partially observable. An
agent instead sees a portion of the state called an observation ot ∈ O, where O is the
observation space, which is a subspace of the state space S. For example, ot could be a
screenshot of the current screen, only showing the foreground application, whereas st
would encompass all running computer processes. Given an observation ot, an agent
must decide on an executable action at ∈ A, where A is called the action space. A
may contain general-purpose actions like mouse clicks, touch gestures, or keyboard
inputs (e.g., Shi et al, 2017), or very task-specific actions like directly sending an email
(Wang et al, 2024d). This interaction process is discussed in the interaction perspective
chapter (see Section 4).

The agent’s behavior defining which action at is selected is governed by a stochastic
policy π. In its simplest case, π does not retain information about previous observations
and instead samples the next action at based solely on the current observation ot and
the instruction i:

at ∼ π( · | ot, i ) (1)

However, for computer control, a policy π should remember (aspects of) past obser-
vations (o0, ..., ot−1) necessitating a memory component.The cyclic interaction within
an episode (i.e., fulfilling one user instruction) leads to a sequence of observation-action
pairs called trajectory τ =

(
(o0, a0), (o1, a1), ...

)
. A trajectory ends after reaching a

terminal state, such as completing i or reaching a maximal number of steps. The inner
workings of agents are discussed in the agent perspective chapter (see Section 5).

Due to practical concerns, CCAs often simplify an observation, denoted ot → o∗t , to
reduce the size of O and ease the learning of the policy π. For example, UI screenshots
are often downscaled or cropped (e.g., Chen et al, 2024b). Meanwhile, for actions, the
grounding process a∗t → at converts an abstract action a∗t into an executable action
at ∈ A. Grounding is typically required when a text foundation model is used for
planning, requiring the agent to convert abstract descriptions such as click submit

button into executable commands such as click(x,y), where x and y are screen
coordinates inside the submit button (e.g., Gao et al, 2024a).

2.2 A Comprehensive Taxonomy

We introduce a taxonomy for CCAs that distinguishes three perspectives: the envi-
ronment perspective, the interaction perspective, and the agent perspective. Each
perspective discusses CCAs with a different focus and classifies them according to the
features visualized in Fig. 3, where the full taxonomy is given. We provide a brief
overview of each perspective here, with detailed discussions in the subsequent sections.

Environment perspective: Here we discuss properties of computer environments
and identify observation and action types shared across computer domains. This
addresses question (i) from Section 1.
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Environment Persp.
(Section 3, p. 10)

Computer Env.
(Section 3.1, p. 10)

Domain
(Section 3.2, p. 11)

Interaction Perspective
(Section 4, p. 12)

Observation Space
(Section 4.1, p. 13)

Image
(Section 4.1, p. 13)

Text
(Section 4.1, p. 13)

Bi-Modal
(Section 4.1, p. 14)

Indirect
(Section 4.1, p. 14)

Action Space
(Section 4.2, p. 17)

Mouse & Keyboard
(Section 4.2, p. 17)

Direct UI Access
(Section 4.2, p. 18)

Task-Tailored Actions
(Section 4.2, p. 19)

Executable Code
(Section 4.2, p. 19)

Action Grounding
(Section 4.2, p. 20)

Agent Perspective
(Section 5, p. 22)

Foundation Agents
(Section 5, p. 22)

Specialized Agents
(Section 5, p. 23)

Agent Policy
(Section 5.1, p. 23)

Memoryless
(Section 5.1, p. 23)

History-Based
(Section 5.1, p. 23)

State-Based
(Section 5.1, p. 24)

Mixed
(Section 5.1, p. 24)

Learning Strategy
(Section 5.2, p. 25)

General Pre-Training
(Section 5.2.1, p. 26)

Environment Learning
(Section 5.2.2, p. 27)

Reinforc. Learning
(Section 5.2.2, p. 27)

Behavioral Cloning
(Section 5.2.2, p. 28)

Long-Term Memory
(Section 5.2.2, p. 29)

Episodic Improvement
(Section 5.2.3, p. 31)

Instruction Tuning
(Section 5.2.3, p. 31)

Demonstrations
(Section 5.2.3, p. 31)

Planning
(Section 5.2.3, p. 33)

Fig. 3: The taxonomy introduced to structure the field of instruction-based CCAs by
three main perspectives and their respective components. The respective colors will
be used throughout this paper to help easily associate content with each component.
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Interaction perspective (agent ↔ environment): Observation spaces O and
action spaces A are examined through which agents interact with their environ-
ments, and it is discussed how observation simplification and action grounding can
simplify the computer control task. This addresses question (ii) from Section 1.

Agent perspective: We distinguish between foundation agents that are built on
top of foundation models and more manually designed specialized agents. We also
discuss the importance of tracking the past, how agents learn, and how agents
leverage demonstrations and planning strategies. This addresses questions (iii) and
(iv) from Section 1.

3 Environment Perspective

This perspective discusses the common properties of computer environments and
shared concepts across computer domains.

3.1 The Nature of Computer Environments

In Table 1, we classify computer environments according to the framework established
by Russell et al (2022, Chapter 2.3). Computer environments are typically partially
observable and single-agent. In the literature, they are mostly assumed to be deter-
ministic, meaning that for a state st and action at only one possible outcome st+1

exists. While this assumption holds in many cases, real-world environments can have
stochastic elements such as a shuffle button in a music app. Additionally, the liter-
ature assumes that computer environments are episodic, meaning that each episode
is independent of the previous ones. In reality, however, computer environments are
sequential: The environment is not reset after each trajectory, and prior actions can
influence future states across episodes. Another simplifying assumption is that the
environment is static, meaning that the environment’s state st only changes in response

Property Research computer
environment

Actual computer
environment

Observability Partially observable Partially observable

Number of agents Single-agent Single-agenta

Determinism Deterministic Primarily deterministicb

Episodicity Episodic Sequential

Dynamism Staticc Dynamic

Stationarity Stationary Non-stationary

Environment knowledge Initially unknown Initially unknown
a Assuming the user hands control to the agent and does not intervene.
b Computer control is primarily deterministic due to user-friendly design principles but can be stochastic.
c Toyama et al (2021) is an exception providing a dynamic Android environment.

Table 1: Properties of common computer environments, assembled from Russell et al
(2022, Chapter 2) and Sutton and Barto (2018, Chapter 2.3). The middle and right
columns compare common assumptions in research to actual computer environments.
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to the agent’s actions at. However, background processes can affect st at any time,
independent of the agent’s actions. A further simplification is the more unrealistic
assumption that the environment is stationary, implying that the environment does
not change over time. In practical settings, however, applications and systems are con-
tinuously updated (Humble and Farley, 2011), altering the environment’s behavior.
Finally, computer environments are typically assumed to have unknown dynamics,
meaning an agent does not initially know the effect of an action. While technically
true, some agents leverage pre-training to learn conventions and begin with antici-
patory knowledge (see Section 5.2.1). For example, they might learn that clicking a
’submit’ button typically submits a form.

3.2 Domains

In the existing literature, we identify the Web, Android, and personal computers as
the most commonly utilized domains. Each domain provides a unique set of possible
observations and actions, yet we establish shared types of observation and action types
across these domains.

Observation types shared across domains:

Image screen representation: A screenshot capturing the current screen, parts
of the screen, or an extended view of the screen as a pixel image (e.g., Niu et al,
2024; Song et al, 2024a; Zhang et al, 2024b).

Textual screen representation: A textual representation of the screen, such
as HTML in the Web domain (e.g., Kim et al, 2023; Wen et al, 2024a; Zhang
et al, 2024b).

Indirect: Indirect observations that do not describe the current screen but infor-
mation of the computer state st ∈ S, for example, by accessing stored files (e.g.,
Song et al, 2023b; Wu et al, 2024c; Guo et al, 2024a).

Action types shared across domains:

Mouse/touch and keyboard: Screen coordinate-based actions like mouse
clicks or touch taps and keyboard actions for typing text into a previously selected
element (e.g., Humphreys et al, 2022; Wang et al, 2024a; Rahman et al, 2024).

Direct UI access: UI element-based actions like clicking a specific HTML ele-
ment based on its id (e.g., Gur et al, 2023; Zhang et al, 2023; Branavan et al,
2009).

Task-tailored actions: Task- or domain-specific actions to solve a sequence of
steps in a single action (e.g., Nakano et al, 2022; Bonatti et al, 2024; Wang et al,
2024d).

Executable code: Allowing the agent to generate executable code to interact
with the environment through a programmatic interface (e.g., Sun et al, 2023;
Gur et al, 2024; Deng et al, 2024a).
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Web Android Personal computer

Image screen
representation

Only website, entire
web browser

Phone screen Only foreground
application, entire
computer screen

Textual screen
representation

HTML, accessibility
tree

Android View Hierar-
chy, accessibility tree

UI Automation Tree

Indirect Network traffic - Read files

(a) Observation types

Web Android Personal computer

Mouse/touch
and keyboard

Mouse/touch and
keyboard

Touch and keyboard Mouse and keyboard

Direct UI
access

HTML elements Android elements UI Automation Tree
elements

Task-tailored Find on page, go to
URL

Go back, go to home
screen

Switch application,
send email

Executable
code

Selenium WebDriver Android Debug Bridge UI Automation API,
Bash

(b) Action types

Table 2: Our classification of observation types and action types across the different
computer domains. The table provides examples for each domain from the literature
(see citations in the main text).

Fig. 4: Publication counts by domain.

Linking observations and actions
through shared types across different
computer domains allows the transfer
of methods across domains. Table 2a
presents an overview of the spe-
cific instantiations of observation types
across the Web, Android, and per-
sonal computer domains, while Table 2b
describes the action types across these
domains.

Fig. 4 shows that the most often
used domains are so far the Web and
Android, likely because these are open
platforms and the first benchmarks in
the field focused on these types of domains (see Section 6).

4 Interaction Perspective (Agent ↔ Environment)

This section discusses the interaction between the agent and the environment through
the observation and action types established in Section 3.
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4.1 Observation Spaces

In the previous section, we introduced three observation types: image screen repre-
sentation, textual screen representation, and indirect. Most computer environments
contain only observations of one type in their observation space O. However, some
utilize both image and textual observations, termed bi-modal screen representation.

Fig. 5: Frequencies of observation spaces.

Fig. 5 illustrates the distribution
of these observation spaces across the
86 agents analyzed in this survey (see
Table A1 in the appendix for a detailed
list of each agent’s utilized observation
types). The distribution shown reflects
the increased attention CCAs received
after the rise of large language models
(LLM) (cp. Fig. 2), which are text-
based. However, as we will discuss, each
observation type has its own merits, and
while textual screen representations are
the most commonly used, they are not
inherently superior to other types.

Image Screen Representation

Agents processing image screen representations (screenshots) have been successfully
employed in the Web (e.g., Zheng et al, 2024a), Android (e.g., Zhang et al, 2023) and
personal computer (e.g., Gao et al, 2024a) domains. An agent using screenshots closely
aligns with human visual perception, differing primarily in capturing one static image
ot at a single moment t instead of having a continuous input stream. Also, an agent’s
image representation may only show parts of the screen like the foreground application
(Gao et al, 2024a) or extend beyond the typical field of view observed by humans. For
example, Chen et al (2024b) render the entire website as an image, while humans need
scrolling to perceive the whole page. The alignment with human perception makes
screenshots widely applicable, as most applications provide a visual user interface.

Due to practical concerns, screenshot observations ot are typically simplified ot →
o∗t by downsampling their resolution (e.g., Toyama et al, 2021; Chen et al, 2024b).
Rahman et al (2024) even combine a high resolution 1120 × 1120 and low resolution
224× 224 screenshot to have a compact view but still access image details if needed.
To feed the text-based instruction i into vision-only agents, the instruction is either
encoded separately and added in the embedding space (e.g., Baechler et al, 2024) or
visually rendered atop of each screenshot (e.g., Shaw et al, 2023).

Textual Screen Representation

Agents processing textual screen representations have been successfully employed in
the Web domain using HTML (e.g., Kim et al, 2023), the Android domain using the
Android Hierarchy View (e.g., Shvo et al, 2021), and the personal computer domain
using the Windows UI Automation Tree (e.g., Zhang et al, 2024b).
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Textual screen representations can be extensive, especially HTML as it carries
additional design information. Therefore, processing raw HTML (e.g., Kim et al, 2023;
Assouel et al, 2023) is only feasible in artificial environments where the HTML is min-
imal, such as the MiniWoB++ benchmark (see Section 6). In real-world applications,
HTML is typically simplified through a combination of the following strategies:

Heuristic pruning: Select only the most essential attributes such as id, class or
name for each element while removing others (e.g., Li et al, 2023; Tao et al, 2023).

Filter elements: Only keep specific elements, for example, leaf elements (e.g., Gur
et al, 2019) or the ones judged most relevant to fulfill a given instruction i (e.g.,
Deng et al, 2023; Zheng et al, 2024c).

Embed : Use an embedding model to compress HTML into a vector representation
(e.g., Jia et al, 2019; Gur et al, 2019; Liu et al, 2018).

Summarize : Use an auxiliary model to compress the HTML into an abstract text
summary (e.g., Zheng et al, 2024c).

One advantage of using HTML as a textual screen representation is that LLMs
are typically pre-trained on HTML, enabling them to exhibit a general understanding
of it. To enable agents in the Android domain to benefit from this advantage as well,
Wang et al (2023) propose to map the Android View Hierarchy to simplified HTML, an
approach later adopted by subsequent works (e.g., Deng et al, 2024a). This mapping
approach has also been explored for agents that process image-based observations. In
these cases, a screenshot is translated into a textual representation to allow the agent
to benefit from the pre-training of text-only foundation models. The translation is
commonly done in two steps: first, object detection is used to detect UI elements, and
then an additional model is used to extract an element’s properties, such as its text
and type. Screenshot translation has been applied in the Web (e.g., Cho et al, 2024),
Android (e.g., Li et al, 2024d) and personal computer (e.g., Gao et al, 2024a) domains.

Bi-Modal Screen Representation

Bi-modal means an agent observes both a screenshot and the corresponding textual
screen representation. Bi-modal screen representations have been applied in the Web
domain (e.g., He et al, 2024), the Android domain (e.g., Sun et al, 2022) and the
personal computer domain (e.g., Zhang et al, 2024b). Typically, the two modalities
have modality-specific encoders embed the two types of observations before they are
combined in the embedding space (e.g., Furuta et al, 2024). Whether bi-modal agents
can leverage the advantages of both modalities is an open research question, as more
information can also lead to distracting information overload.

Indirect Observation

There exist agents that do not observe any screen representation but have dedicated
actions or routines to collect information (observations) about the current computer
state st (e.g., Qin et al, 2024; Kong et al, 2023; Guo et al, 2024b). For example, Guo
et al (2024a) use a content reader routine that at each time step t reads information
from a PowerPoint file as observation ot. Song et al (2023b) execute a REST-API call
as an action at, and use the API response as the next observation ot+1. Similarly,
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Wang et al (2024d) use task-tailored actions to directly read information from files,
e.g., read excel file, or use application-specific actions, e.g., an action list emails

in an email application.

Image vs. Textual Screen Representation

As illustrated in Fig. 6, textual screen representations provide certain advantages but
also come with drawbacks when compared to image screen representations. Although
other theoretical advantages and disadvantages may exist, we limit our discussion to
those observed in practice, as described in the works of He et al (2021); Wang et al
(2023); Li et al (2023); Zheng et al (2024a); Cheng et al (2024).

Advantages of textual screen representations are:

Revealing visually hidden information: Textual representations can explic-
itly show information that may be visually hidden in images, such as items within
a collapsed drop-down menu.

Inherent hierarchical structure: Textual representations, like the Document
Object Model (DOM) tree, are structured in a hierarchical tree, facilitating a
clearer understanding of relationships between elements (e.g., Jia et al, 2019).

Explicit semantic information: Textual representations often include seman-
tic information in element attributes that are not visible in images, such as id

tags. For example, the id attribute in <input id="flight-from"> indicates
that the input field corresponds to the flight departure location (example taken
from the MiniWoB++ benchmark (Shi et al, 2017)).

Disadvantages of textual screen representations are:

Reduced information density: Some text formats, particularly raw HTML,
can introduce verbosity that reduces the overall information density.

Structural inconsistency: Visually similar content can be rendered using dif-
ferent underlying structures. For example, a button might be implemented with
either a <button> or a <span> tag. Similarly, visually similar components can

(a) Advantages (b) Disadvantages

Fig. 6: Illustrations of the advantages and disadvantages of textual screen represen-
tations. The textual representation is HTML code using concise PUG syntax.
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have vastly different underlying code due to different implementation choices,
such as the selected styling framework (e.g., Bootstrap1 vs. Tailwind CSS2) and
HTML-generating framework (e.g., Angular3 vs. React4).

Omission of visual information: Textual representations often lack infor-
mation about spatial relationships and positioning that can be critical in
understanding the screen’s layout.

Lack of textual representation: Some screen components, such as embed-
ded plugins, may not have an alternative textual screen representation. Certain
applications may entirely lack any alternative textual screen representation.

Some of these disadvantages can be mitigated through engineering solutions. For
instance, the absence of visual positioning can be addressed by incorporating absolute
or relative screen coordinates into the textual screen representation (e.g., Shi et al,
2017; Liu et al, 2018), or by embedding elements with information from nearby neigh-
boring elements (Liu et al, 2018). Additionally, the verbosity inherent in raw text can
be reduced by simplifying the observations ot → o∗t .

Discussion

Historically, the advantages of textual screen representations were crucial for perfor-
mance on the popular web benchmark MiniWoB++ (Shi et al, 2017; Liu et al, 2018)
and most leading agents used a textual (Tao et al, 2023; Gur et al, 2024; Li et al,
2023; Kim et al, 2023; Jia et al, 2019; Liu et al, 2018) or bi-modal screen represen-
tation (Furuta et al, 2024; Humphreys et al, 2022). Humphreys et al (2022) even
found their bi-modal agent to drop 75% in performance when disregarding the textual
screen representation and only 25% when disregarding the image screen representa-
tion. This is because clean and unified HTML makes the advantages of textual screen
representation more pronounced by minimizing disadvantages like reduced informa-
tion density and structural inconsistency. However, the performance of such text-based
agents dropped dramatically with a task success rate below 10% (Deng et al, 2023;
Gur et al, 2024; Furuta et al, 2024) when applied to more realistic website benchmarks
like Mind2Web (Deng et al, 2023). Recent work (Hong et al, 2024; Zheng et al, 2024a)
using new visual foundation models has demonstrated superior results on Mind2Web
using only image screen representations. Zheng et al (2024a) found that agents utiliz-
ing GPT-4 with solely an image screen representation achieved a task success rate of
38%, whereas utilizing GPT-4 with a textual screen representation reached 12%. The
reason for this is that HTML is often more verbose and inconsistent on actual websites,
whereas the human-aligned visual representation has a lot of structure through com-
mon design principles. A similar trend is evident in the Android domain. While textual
screen representations have historically performed best (Wen et al, 2024a; Wang et al,
2023; Shvo et al, 2021), recent work with only image screen representations shows
superior results (Zhang et al, 2023; Hong et al, 2024). However, the lack of a unified
benchmark across those studies hinders direct comparison in the Android domain.

1https://getbootstrap.com/
2https://tailwindcss.com/
3https://angular.dev/
4https://react.dev/
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Fig. 7: Number of publications by obser-
vation space over the last three years.

Given this development, we suspect
the advantage of textual representa-
tions (like semantic identifiers) to have
provided a general shortcut for bet-
ter performance in less verbose envi-
ronments, but due to their disadvan-
tages (like inconsistency in their struc-
ture), hitting a barrier in more realis-
tic settings. Therefore, we suggest that
state-of-the-art agents on actual tasks
require image screen representations (or
bi-modal representations) due to the
contained structure through common
design principles. This is supported by
Fig. 7, highlighting that there has been a trend in research toward vision-based agents,
especially in 2024.

4.2 Action Space

Fig. 8: Frequencies of action spaces.

In Section 3, we introduced four
action types: mouse/touch and key-
board actions, direct UI access actions,
task-tailored actions, and executable
code. Computer environments typically
provide only actions of one type in
their action space A. Fig. 8 illus-
trates the distribution of these action
spaces across the surveyed agents5,
while Table A1 provides a detailed
list of utilized action types for each
CCA. Most agents rely on mouse/touch
and keyboard actions (click(x,y)) or
direct UI access actions (click(e)). To solve a task, those general-purpose actions
are combined into more complex action sequences.

Mouse / Touch and Keyboard

Mouse, touch, and keyboard actions are general-purpose actions, aligning with human
(inter-)actions, making them straightforward to collect and use as training data for
CCAs (Humphreys et al, 2022). Both mouse actions, such as click(x,y), and touch
actions, such as tap(x,y), require absolute screen coordinates (x,y), making them
conceptually identical for CCAs6. Fig. 9a illustrates various approaches for predict-
ing screen coordinates. Some methods make discrete predictions, such as predicting
a position on a low-resolution coordinate grid (e.g., Shi et al, 2017; Toyama et al,
2021), predicting two interdependent discrete values for the x and y coordinates (e.g.,

5Publications featuring agents that support multiple action types are counted once for each action space.
6For humans, mouse actions are relative (to the current cursor position) and touch actions are absolute.

17



Humphreys et al, 2022), or generating discrete tokens through a text generation model
(e.g., Hong et al, 2024). Other approaches use continuous values by predicting two
interdependent continuous coordinate values (e.g., Toyama et al, 2021).

Keyboard actions such as type(text) are typically used to input text into a previ-
ously selected UI element. In most cases, the agent generates the text using a language
model (e.g., Hong et al, 2024). Earlier methods also used predefined text fragments
(e.g., Humphreys et al, 2022) or extracted text from the instruction i (e.g., Gur et al,
2019), which only works if the instruction contains the necessary text. In addition to
typing text, keyboard actions are frequently used for special commands, such as press-
ing arrow keys (e.g., Li et al, 2023) or using shortcuts such as select all, copy or
paste (e.g., Cho et al, 2024).

Direct UI Access

Direct UI access actions such as click(e) or type(e, text) involve interacting
directly with a UI element e observed by the agent. To apply such actions, the appli-
cation domain must provide an accessible interface, and the agent must be able to
identify referenceable UI elements. There are two primary approaches for referencing
an element e. The first approach allows the agent to directly reference the element by
predicting a unique identifier, such as the element’s id attribute (e.g., Li et al, 2023).
For instance, clicking a perceived element <button id="search"> is done by pre-
dicting the action click(id=search) (see Fig. 9b). Similarly, Kim et al (2023) utilizes
the element’s XPath7 as a unique identifier instead of the id attribute. The second
approach involves the agent scoring each element and selecting the one with the high-
est score (e.g., Jia et al, 2019). This can include predicting a probability score for each
element (e.g., Li et al, 2024d), enabling the agent to select the most relevant UI ele-
ment. To simplify the action space, the set of referenceable elements can be reduced.
A common strategy is to focus only on leaf nodes in the user interface tree (e.g., Liu
et al, 2018). Alternatively, an auxiliary model can preselect potential candidate ele-
ments (e.g., Deng et al, 2023). For specific tasks such as web navigation, Zaheer et al
(2022) and Chen et al (2024b) limit the referenceable set to only hyperlink elements.

7https://www.w3.org/TR/xpath-31/

(a) Common mouse and keyboard actions,
highlighting coordinate prediction.

(b) Common direct UI access actions, refer-
encing the HTML element by its id attribute.

Fig. 9: Examples of common mouse, keyboard, and direct UI access actions.
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A text output action, denoted as type(e, text), fills a UI element e (e.g., an
input field) with text. The text generation process follows similar approaches to those
used in keyboard actions, including generating free text (e.g., Li et al, 2023), selecting
predefined text fragments (e.g., Shvo et al, 2021), or extracting text directly from the
instruction i (e.g., Jia et al, 2019).

Task-Tailored Actions

Task-tailored actions are typically not general purpose and are specifically designed
to fulfill specific sub-tasks. For instance, Wang et al (2024d) define application-specific
actions such as create event for a calendar application and send email for an email
client. Task-tailored actions are easier to use and learn than a trajectory of corre-
sponding general-purpose actions and, thus, provide a shortcut to the agent. However,
the use of task-tailored actions comes with certain limitations: they require additional
engineering effort to implement, as the environment must explicitly support these
actions, and they cannot be easily generalized across different tasks.

In contrast, there also exists domain-specific actions that have a higher degree of
generality. For example, Bonatti et al (2024) define the action open application,
which enables an agent to open and switch between applications on a Windows
operating system. Similarly, Nakano et al (2022) define a search action, which
allows the agent to navigate to specific text positions within a website. These
domain-specific actions strike a balance between general-purpose functionality and
task-specific relevance.

Executable Code

Another approach to control computers is to generate code that performs actions
within the environment when being executed. While actions generated by an agent
such as click(x,y) can be seen as interpretable code, we define executable code
here as generating program code that a common interpreter can execute, such as the
Python or the Bash interpreter. Executable code varies in its structure and the level
of abstraction provided by its application programming interface (API):

Structure of generated code:

Straight-line code consists of a sequence of statements without control flow
(e.g., Tao et al, 2023). It is akin to predicting a single or multiple actions.

Control-flow code includes control flow mechanisms such as conditional state-
ments (e.g., if), loops (e.g., for), and function definitions. Complex code can
represent the agent’s entire execution plan, as seen in Sun et al (2023), where the
agent dynamically adjusts its plan based on precondition checks failing.

API abstraction level utilized by generated code:

General-purpose API: Some agents use an API with functions akin to general-
purpose actions like clicking elements or screen coordinates. For example, Gur
et al (2024) use the Selenium WebDriver API8 providing such low-level actions.

8https://www.selenium.dev/documentation/webdriver/
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Task-tailored API: Some agents use an API of hand-engineered functions akin
to task-tailored actions. For example, Guo et al (2024a) define functions like def
insert rounded rectangle(...) for their PowerPoint agent.

Fig. 10 shows executable code as action space examples. Executable code is
generated using either general foundation models (e.g., Guo et al, 2024a) or special-
ized models (e.g., Gur et al, 2024). Foundation models often come pre-trained on
well-established APIs like Selenium WebDriver, while hand-engineered functions are
typically introduced through contextual prompts or, additionally, using an API selec-
tor to first retrieve relevant functions (Song et al, 2023b). An open question is the
benefits of using executable code over other action types. Chen et al (2023) and Gao
et al (2023) found that using straight-line code can reduce hallucinations in GPT-
3 compared to task-tailored actions. However, Assouel et al (2023) suggest that this
advantage disappears when using GPT-4, indicating that the benefits of executable
code over other action types diminish with more advanced models.

Fig. 10: Two examples for executable Python code as action space. Two different
levels of structure (straight-line or with control flow) and API abstraction level (task-
tailored or general-purpose) are shown.

Action Grounding

Action grounding, denoted as a∗t → at, refers to the process of converting an abstract
action, such as click submit button, into an executable action, at ∈ A, such as
click(e), where e represents the specific UI element. Grounding is essential when a
text foundation model generates an abstract, text-based plan that must be transformed
into a sequence of executable actions (Gao et al, 2024a; Kim et al, 2023). Several
approaches have been proposed for grounding actions:

Prediction-based grounding: A grounding model predicts the corresponding UI
element for an ungrounded action. For example, Li et al (2020b) predict click(e)
where e refers to the Settings App icon, based on the abstract action navigate to

settings.
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Rule-based grounding: A rule-based module matches an abstract action a∗t to
the actionable UI element. For example, Song et al (2024a) use text matching rules
to achieve this mapping, whereas Lee et al (2023b) first predict abstract template
actions containing placeholders (e.g., click(text="[contact name]")), followed
by rule-based grounding substituting the placeholders with context-specific values
derived from the user instruction i.

Grounding is not limited to textual models but is also used in vision-based agents.
These agents, particularly those using multi-modal foundation models, require ground-
ing due to the current inability of VLMs to precisely predict screen coordinates. Several
strategies for grounding in vision models have been explored and discussed by Zheng
et al (2024a). The most successful one is set-of-mark prompting (Yang et al, 2023a),
where actionable elements are annotated with bounding boxes and unique identifiers,
enabling the agent to access them directly using the identifier instead of relying on
coordinate prediction. There exist two approaches for identifying the actionable ele-
ments: Either using an additional textual screen representation with positional data
(e.g., Zheng et al, 2024a; Li et al, 2024e; Zhang et al, 2023) or extracting them from
the screenshot via a specialized model (e.g., Lu et al, 2024). While the latter approach
offers flexibility, it is often imprecise, leading to suboptimal performance (Bonatti et al,
2024).

Despite the success of set-of-mark prompting, we posit that this grounding step
may be a temporary solution driven by the current limitations of foundation mod-
els, which have not yet been trained sufficiently to predict screen coordinates directly.
However, recent studies suggest that learning visual grounding via coordinate predic-
tion is feasible and straightforward (Dardouri et al, 2024; Cheng et al, 2024), which
may eventually render the need for set-of-mark prompting unnecessary.

Fig. 11: Sankey diagram showing the connections in the reviewed literature between
the domains (left) and observation spaces (middle) and between the observation and
action spaces (right).
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Discussion

Fig. 11 illustrates the relationships between the domain, the observation space, and the
action space as present in the reviewed literature. The connection between observation
and action spaces is particularly important, as the structure of the action space is
often closely tied to the nature of the observation space. This gives rise to a general
rule: vision-based agents typically rely on mouse/touch and keyboard actions, while
text-based agents tend to use direct UI access actions. However, there are notable
exceptions. For instance, some agents (e.g., Song et al, 2024a; Wen et al, 2024a)
first translate screenshots into textual screen representations, which are then used to
perform direct UI access actions. Bishop et al (2024) and Li et al (2024c) predict
mouse actions based on HTML observations, where necessary spatial information is
automatically extracted and encoded into additional attributes via a web browser API.
Furthermore, Cho et al (2024) combine both mouse/touch and keyboard actions and
direct UI access actions, though they do not provide a detailed analysis or explanation
of this hybrid approach.

The choice of action space depends largely on the specific application and domain of
the agent. Tailored actions, while more efficient for particular tasks, are often less gen-
eralizable. In contrast, general-purpose actions are more flexible but typically harder
to learn to use well (i.e., to combine) for an agent, as they require complex orches-
tration to perform a wide variety of tasks. For most real-world applications, we argue
that a combination of general-purpose actions with domain-specific tailored actions,
such as a subroutine for switching between applications, represents the most practi-
cal and effective compromise in the literature at the moment. This combination offers
broad task applicability while maintaining task efficiency. Moreover, we anticipate that
future models will favor coordinate-based general-purpose actions over direct UI access
actions, with future foundation models being trained to predict screen coordinates
directly as coordinate-based actions align naturally with image screen representations.

5 Agent Perspective

Section 3 detailed the computer environments and Section 4 the agent-environment
interactions, describing the exterior of an agent. This section extends the taxon-
omy to the interior of CCAs by first introducing the two most common agent types
foundation agents (based on foundation models) and specialized agents (based on
domain-specific design). We analyze each design aspect separately while showcasing
connections, nuances, and exceptions across and beyond these agent types.

Foundation Agents: A foundation agent (e.g., Zheng et al, 2024a) uses a gen-
eral pre-trained foundation model (such as an LLM or VLM) as its policy π by
employing the model’s broad knowledge and in-context learning capabilities for
episodic improvement (see Sections 5.2.1 and 5.2.3). For example, a text-based foun-
dation model receives the HTML observation ot alongside a prompt specifying its
role as a web agent, a description of available UI actions A, and the instruction i.
The model then generates an action at, such as click(id=search). During each
episode, the agent typically accumulates a history of past observations and actions
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to provide additional contextual information to the foundation model as needed (see
Section 5.1).

Specialized Agents: A specialized agent (e.g., Humphreys et al, 2022) employs
a custom deep learning architecture as its policy π, which predicts actions at ∈ A
based on a given observation ot and instruction i, using predefined output possibili-
ties. For example, the architecture might process an image ot and a text instruction
i as inputs, generating logits for each action type such as clicking alongside addi-
tional outputs for screen coordinates (x,y). To track the past, observations are
continuously aggregated in an internal Markov state. Learning involves environment
learning techniques such as reinforcement learning (see Section 5.2.2).

Table 3 summarizes the key characteristics of the two common agent designs.

Architecture Action Memory Learning Strategy

Foundation agent LLM / VLM Generation history-based General + Episodic

Specialized agent Custom Prediction state-based Environment learning

Table 3: Properties of the two common CCA types (see main text for details).

5.1 Policy - How to Act

A policy is the decision-making component of an agent (Sutton and Barto, 2018,
Chapter 1.3). In the context of computer control, we distinguish three types of policies:
Memoryless policies, history-based policies, and state-based policies.

Memoryless Policies

The simplest form of a policy is a memoryless policy (e.g., Chen et al, 2024b), meaning
it does not utilize any memory to track past observations or actions and predicts the
next action at solely based on the current observation ot. Such policies are defined as
(see also Eq. (1)):

at ∼ π( · | ot, i ) (2)

Memoryless policies are sufficient for simple tasks but are generally inadequate
for computer control, where selecting an appropriate next action at at time-step t
often depends on aspects of past observations o0, o1, ..., ot−1 rather than solely on
the current observation ot. For example, in the context of purchasing multiple items
from an online store, an agent must remember which items were already added to
the shopping cart. Consequently, while memoryless policies can be utilized to simplify
model architectures (e.g., Shvo et al, 2021), more sophisticated policies with memory
capabilities are typically required for computer control tasks.

History-based Policies

A simple strategy to track the past is to accumulate observations and actions in a con-
tinuously growing sequence, called history ht = (o0, . . . , ot−1, a0, . . . , at−1) (e.g., Zheng
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et al, 2024a). For example, a vision-only agent’s history consists of all the screenshots
it perceived and the actions it performed during an episode. When predicting the next
action at, the agent retrieves relevant information from its history ht. We define such
policies as history-based policy :

at ∼ π( · | ot, i, ht ) (3)

Foundation agents typically use history-based policies as their foundation model
lacks an internal state. Due to the limited context length of foundation models, a
simplified history ht → h∗

t , is often used. A common simplification is to only
keep the past actions h∗

t = (a0, . . . , at−1) (e.g., Zheng et al, 2024a) and to discard
past observations. In extreme cases, only the last action h∗

t = (at−1) is retained
(e.g., Gao et al, 2024a). Other approaches retain certain previous observations o<t.
For example, Furuta et al (2024) keep the last two screenshots with all actions as
h∗
t = (ot−2, ot−1, a0, . . . , at−1). Some approaches compress previous observations, e.g.,

Lu et al (2024) use embeddings of the last four observations as part of the history
h∗
t = (õt−4, . . . , õt−1, a0, . . . , at−1). Similarly, Zheng et al (2024c) summarize past

observations into text, enabling to keep the entire summarized observation history
alongside raw actions h∗

t = (õ0, . . . , õt−1, a0, . . . , at−1).

State-based Policies

Alternatively, state-based policies track the past by continuously aggregating observa-
tions into an internal state, called the Markov state mt (e.g., Humphreys et al, 2022).
For example, a vision-only agent updates mt iteratively for each observed screenshot.
The agent learns to track the relevant aspects of the past observations in mt to better
predict future actions. Formally, state-based agents are defined as:

at ∼ π( · | ot, i, mt ) (4)

The state mt is updated at each time-step using a state-update function mt+1 =
f(ot,mt). Specialized agents commonly use state-based policies, incorporating mt and
f into deep learning models such as recurrent neural networks (e.g., Humphreys et al,
2022).

A notable exception is Zhang et al (2023), who propose a foundation agent with
a state-based policy using an external text-based state mt. The foundation model not
only generates the next action at but also the next state mt+1 given the current state
mt and observation ot, effectively operating as both policy and state-update function.

Mixed Policies

History-based and state-based approaches are also mixed. For example, Bonatti et al
(2024) prompt their internal foundation model with the past actions and the last
observation h∗

t = (ot−1, a0, . . . , at−1) and in addition keep an external text-based state
mt. Similarly, Iki and Aizawa (2022) feed the current observation ot, the last action
h∗
t = (at−1), and an external text-based state mt into a fine-tuned model to predict

the next action at as well as state mt+1.
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Discussion

Fig. 12: Frequencies of policy types.
Orange strips indicate agents that only
track past actions, neglecting observations.

Computer control agents utilize three
types of policies: memoryless, history-
based, and state-based (Eqs. (2) to (4)).
The distribution of these policies across
agents analyzed in this review is shown
in Fig. 12 (for a detailed association
to publications, refer to Table A2).
History-based policies dominate, partic-
ularly among foundation agents, reflect-
ing the prevalence of foundation mod-
els in computer control. In contrast,
memoryless and state-based policies are
more common in specialized agents,
with memoryless policies used for sim-
pler agents and state-based policies for
more advanced ones.

A problem with history-based policies is that the observations ot are typically
large, e.g., high-dimensional images, meaning they don’t fit into the context window
of a foundation model. A simple yet effective strategy to cope with this issue is only
to track past actions at, ignoring observations ot. We suspect this to be effective
because a user-friendly GUI does not require a user to remember information about
past screens. However, ignoring observations ot has inherent limitations, especially
as tasks become more complex, requiring agents to recall observed information, thus
making better history simplification strategies necessary. Currently, history simplifi-
cations are hand-engineered (e.g., Cho et al, 2024) or rely on environment-agnostic
summarization models (e.g., Zheng et al, 2024c). A promising future research direc-
tion might be to make history simplification learnable, enabling adaptation to specific
environments. Interestingly, the learnable state-update function f in specialized agents
already implements a sequential history simplification. While directly applying this
concept to foundation models is non-trivial, it offers valuable insights for designing
adaptive history-simplification mechanisms.

5.2 Learning Strategy - How to Learn to Act

Each agent’s learning strategy can be conceptualized as implementing the following
three steps (not every CCA uses all three steps):

General pre-training: The agent acquires broad, environment-agnostic knowl-
edge. Examples include foundation models learning general-purpose capabilities or
vision backbones learning image representations.

Environment learning: The agent learns to adapt to a specific computer environ-
ment. This involves explicit parameter (weight) updates or implicit methods, such
as storing environment experiences for later retrieval.

Episodic improvement: The agent refines its performance within the current
episode through methods such as instruction tuning or few-shot learning (Brown
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Fig. 14: Overview of learning steps and strategies: Pre-training involves acquiring
broad, environment-agnostic knowledge. Environment learning and episodic improve-
ment hone a CCAs agentic skills. A combination of these steps defines a learning
strategy. CCAs typically follow one of two strategies: (1) Specialized agents start from
scratch or use a pre-trained backbone, learn to act in a specific environment through
behavioral cloning (BC) or reinforcement learning (RL) (blue); (2) foundation agents
begin with a general-purpose foundation model, optionally storing successful episodes
for future demonstration retrieval, and employ in-context learning (orange).

et al, 2020). Unlike the previous steps, episodic improvement is temporary, as inter-
mediate outcomes are discarded once the episode ends, and no long-term learning
occurs.

Fig. 13: Frequencies of learning steps. Pur-
ple stripes indicate initial pre-trained.

Fig. 13 provides an overview of
the distribution of these learning steps
observed among agents analyzed in
this review, while Table A2 details the
strategies employed by specific publi-
cations. Fig. 14 illustrates the sequen-
tial nature of the three learning steps
and their role in the learning strategies
of foundation agents and specialized
agents. The following sections explore
each learning step in detail, emphasiz-
ing current practices and highlighting
exceptions.

5.2.1 Leveraging General Pre-Training

Foundation agents leverage foundation models with broad knowledge and in-context
learning capabilities (Brown et al, 2020). These capabilities can eliminate the need for
environment-specific fine-tuning, allowing agents to operate in computer environments
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using only the foundation model’s broad knowledge and instructions provided through
prompts to adapt to specific environments (e.g., Kim et al, 2023).

For example, GPT-4 (OpenAI et al, 2024), when prompted as a web agent, can
complete tasks such as filling out forms or navigating website links (Zheng et al,
2024a). In contrast, specialized agents are either trained from scratch (e.g., Humphreys
et al, 2022) or initialized with a pre-trained backbone (e.g., an image encoder) to
accelerate learning the observation space (Li et al, 2024b). These agents typically
require additional fine-tuning to adapt to computer environments (see Section 5.2.2).
The foundation model or backbone choice depends on the observation space, action
space, and specific task requirements. For example, Zheng et al (2024a) use GPT-4
(OpenAI et al, 2024) as a multi-modal foundation model for their bi-modal agent.
Gur et al (2024) employ a coding-proficient foundation model (Chung et al, 2024)
to generate executable code. Shaw et al (2023) fine-tune a vision backbone for their
vision-based agent. Iki and Aizawa (2022) fine-tune a text backbone for their text-
based agent. Song et al (2024a) use pre-trained object detection and OCR models
to convert screenshots into text-based observations for direct UI access actions. Gur
et al (2024) pre-train an LLM from scratch on only HTML data while utilizing an
HTML-specific local and global attention mechanism.

5.2.2 Environment Learning

Fig. 15: Frequencies of environment learn-
ing strategies.

Environment learning is about learn-
ing to act in a computer environment
through experiences in the same or
a similar computer environment. This
process typically follows one of three
main strategies: Reinforcement learn-
ing, behavioral cloning, or leveraging
long-term memory.

Fig. 15 illustrates the distribution
of these strategies across the surveyed
publications, with detailed information
provided in Table A2. Many foundation
agents bypass the environment learning step, relying solely on their pre-trained, out-
of-the-box capabilities. While these capabilities can be remarkably effective (e.g.,
Zheng et al, 2024a), the absence of environment learning limits these agents, as they
lack mechanisms to adapt or improve their performance within specific computer
environments.

Reinforcement Learning

In reinforcement learning, an agent acts in an environment and learns to maximize a
cumulative reward by trial and error (Sutton and Barto, 2018). For computer control
tasks, such environments are hand-crafted simulations, called controlled environments,
designed to mimic real-world computer settings while providing a reward signal for
guidance. RL has been implemented with various algorithms, including approximate
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policy iteration (Humphreys et al, 2022), policy gradients (Shi et al, 2017), and
bootstrapping with tree search (Shaw et al, 2023).

Agents in simpler environments may rely on brute-force exploration to learn
directly from random behavior (e.g., Toyama et al, 2021; Shvo et al, 2021). However,
in most computer environments, rewards are sparse as they are only given upon com-
pleting the assigned instruction i (e.g., Shi et al, 2017), such as submitting a flight
booking form with all correct details. Sparse rewards make learning from an initial
random behavior often unsuccessful, as an agent is unlikely to predict a long action
sequence by random chance (Humphreys et al, 2022). One strategy to mitigate sparse
rewards is to begin by training an agent on human-labeled demonstrations (behavioral
cloning, see below), providing it with enough competence to start finding and learn-
ing from rewards (e.g., Shi et al, 2017; Humphreys et al, 2022). Relatedly, Liu et al
(2018) use human-labeled demonstrations to constrain the action space by defining
sets of valid actions based on similarity to demonstrated actions, increasing the like-
lihood of reward discovery. Without demonstrations, reward shaping (Ng et al, 1999)
can artificially reduce sparsity by providing intermediate guidance, as shown by Gur
et al (2019) and Li and Riva (2021). Alternatively, the task complexity can be adap-
tively adjusted. Gur et al (2021), for instance, introduce a controlled environment
that enables autonomous curriculum learning (Bengio et al, 2009) by automatically
changing a task’s complexity. Similarly, Gur et al (2019) employ curriculum learning
by gradually moving an agent’s starting point away from the goal state as it gains
competence.

The key advantage of RL is its ability to autonomously explore environments, effec-
tively navigating a dynamic dataset of all possible experiences. However, RL’s reliance
on controlled environments limits its application to broad computer control tasks,
as rewards must be defined and consequences suppressed, such as making purchases.
AndroidEnv (Toyama et al, 2021) is an exciting approach to combat this. They simu-
late a complete, virtual Android environment on top of which tasks can be configured
by defining instructions and rewards.

Behavioral Cloning

In behavioral cloning (BC) (Pomerleau, 1988), an agent learns to mimic a shown
behavior through supervised learning. The shown behavior is usually a sequence of
recorded observations and actions of a human controlling a computer to achieve an
instruction i. As mentioned, BC can be used to first train a somewhat competent agent
as initialization to RL in a controlled environment. Typically, RL further enhances the
agent by exploring aspects missing from the behavioral data. For instance, Humphreys
et al (2022) demonstrate that after training their agent on 2.4 million human-labeled
actions, RL increased the task success rate from approximately 30% to over 95%.
Nonetheless, some agents rely entirely on BC, which can suffice for simpler tasks (e.g.,
Gur et al, 2023).

Unlike RL, BC does not require the agent to execute actions in the environment,
making it applicable in uncontrolled environments. For example, Zhang and Zhang
(2024) fine-tune a model on Android demonstrations from Rawles et al (2023), while
Hong et al (2024) combine Android demonstrations from Rawles et al (2023) with
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Web demonstrations from Deng et al (2023). BC methods vary in training strategies
and data collection. For example, Gur et al (2023) train the entire model, Hong et al
(2024) only update specific components, while Li et al (2024c) use low-rank adaption
(Hu et al, 2021) to fine-tune a foundation model. Datasets are typically human-labeled
(e.g., Humphreys et al, 2022), but autonomous data collection methods also exist. For
instance, Furuta et al (2024) use rejection sampling to identify successful trajectories
from another agent’s actions in a controlled environment, leveraging the environ-
ment’s rewards for validation. Similarly, Lai et al (2024) iteratively collect successful
demonstrations using their improving agent.

Long-Term Memory

Foundation models exhibit strong few-shot learning capabilities (Brown et al, 2020),
enabling foundation agents to enhance action prediction by incorporating successful
demonstrations directly into their context (see Section 5.2.3). This paradigm, known
as in-context learning, allows agents to autonomously adapt to an environment by
collecting experiences for later retrieval. Fig. 16 illustrates the two main types of
experiences:

Environment transitions: The agent memorizes environment transitions as
triples (ot, at, ot+1), where at represents the action taken, and ot, ot+1 capture the
pre- and post-action observations, respectively. For example, the agent might store
that when it clicks on the calculator app (at) on the home screen (ot), the calculator
app opens (ot+1). Wen et al (2024a) collect such transitions for Android apps in an
offline phase by random exploration. They describe and summarize these transitions
using a large language model, enabling the agent to enrich actionable elements with
outcome information. For example, a More options button could be annotated to
reveal specific hidden menu items, informing the agent what to expect if this but-
ton is clicked. Autonomous transition memories can also be combined with human
demonstrations, as shown by Zhang et al (2023) and Li et al (2024e).

Task demonstrations: The agent memorizes task demonstrations by storing a
tuple (i, τi) containing the instruction i and a successful demonstration τi =
(o0, a0, . . . , ot, at) of solving i. Since only successful attempts are informative for

(a) Memorize transitions (ot, at, ot+1) (b) Memorize task demonstrations (i, τ)

Fig. 16: Two kinds of experiences an agent can store in its long-term memory.
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the agent, the agent must have a mechanism to filter successful trajectories. A
common approach is to use a controlled environment’s reward (e.g., Tao et al,
2023). To manage memory constraints, trajectories are typically simplified to
τ∗i = (õ0, a0, . . . , õt, at) before being stored. For instance, Deng et al (2024b) store
only the actions τ∗i = (a0, . . . , at), while Sun et al (2023) store the complete exe-
cutable program that solves i. These simplifications mirror history simplifications
(ht → h∗

t ), as the history ht is a (partial) trajectory. An alternative approach to dis-
covering successful trajectories is programming by demonstration. Here, a human
supervises the agent, intervenes if necessary, and demonstrates the correct solution
for i, enabling online learning. Song et al (2024a) propose this method to summarize
the corrected behavior for future retrieval.

A critical perspective on long-term memory emphasizes its focus on storing spe-
cific experiences rather than learning abstract concepts from them, akin to early
reinforcement learning approaches that memorize tabular state values instead of learn-
ing approximations. To mitigate this, Lee et al (2023b) organize memories into a
graph where observations are nodes, actions are edges, and both are generalized to
unify related experiences. For example, an action a = click(text=Bob) is general-
ized to a∗ = click(text=[contact name]). When retrieving memories, the graph is
searched, and parameterized actions are instantiated based on the current state (ot, i),
grounding parameters like [contact name] to specific values.

Discussion

Fig. 17: Number of publications by kind of
environment learning over the last 5 years.

Recently, foundation agents have
achieved significant progress without
any environment learning technique
(e.g., Zheng et al, 2024a), and prob-
ably will improve further with future
foundation models. However, agents
without environment learning are prone
to repeat errors in an identical scenario.
They fail to autonomously adapt and,
thus, fail to exhibit rational behavior
as defined by Russell et al (2022, Chap-
ter 2.2). Thus, rational agents require
some form of environment learning.

Fig. 17 illustrates the evolution of
environment learning approaches over
the last five years. A few years ago, reinforcement learning with initial behavior cloning
dominated (e.g., Humphreys et al, 2022). In the last two years, the focus shifted to
foundation agents, relying solely on behavior cloning (Lù et al, 2024) or long-term
memory (Zhang et al, 2023).

However, reinforcement learning remains a high-potential paradigm and can be
utilized to fine-tune foundation models to adapt to a specific computer environment.
For example, Fereidouni and Siddique (2024) demonstrate that reinforcement learning
applied to a smaller foundation model (780M parameters) outperforms in-context
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learning on larger models (3B parameters). Adapting foundation models effectively
remains an open research challenge. In Section 8, we discuss this further from a more
practical perspective.

5.2.3 Episodic Improvement

Episodic improvement refers to an agent’s ability to “think” about its current situation
to enhance performance within a single episode without retaining any knowledge for
future episodes. This approach effectively trades test-time compute for better task
execution during the ongoing episode.

Foundation agents commonly achieve episodic improvement through in-context
learning (Brown et al, 2020), encompassing techniques such as instruction tuning,
where guidance is provided to the model through the prompt, and few-shot learning,
which gives examples of successful trajectories as demonstrations to the agent. In
contrast, current specialized agents typically do not employ episodic improvement.
However, analogous practices exist in other domains, such as agents that “think ahead”
by searching through the simulated consequences of predicted actions, as demonstrated
by game-playing agents (Silver et al, 2017).

In-Context Learning through Instruction Tuning

Foundation models can be optimized by prompt engineering. Table 4 exemplifies some
snippets taken from the (much longer) prompts in the literature. Typically, these
prompts are designed by humans to adapt a foundation model to specific environmen-
tal conditions (e.g., Zheng et al, 2024a). However, there are exceptions. For example,
Sun et al (2023) uses a second model as a planner to autonomously generate prompts
for the agent. This strategy, known as self-prompting, involves using multiple instances
of the foundation model, each fulfilling different roles and interacting with one another
through iterative prompting (e.g., Song et al, 2024b). The rise of vision-based foun-
dation models has led to the development of visual prompt engineering. This includes
techniques such as extending screenshots to incorporate user instructions (Lee et al,
2023a), overlaying bounding boxes on actionable UI elements (e.g., Bonatti et al,
2024), and adding unique identifiers for visual grounding (e.g., Zhang et al, 2024b).

In-Context Learning through Demonstrations

Fig. 18 illustrates four common techniques for collecting and providing demonstrations
to the agent:

Human-crafted: For a given class of tasks, a fixed set of human-crafted demon-
strations {τ1, τ2, . . .} is provided to the foundation model (e.g., Kim et al, 2023).

Semantic search: Based on the semantic similarity of the instruction i compared
to previous instructions, an agent retrieves human-crafted demonstrations from a
database (e.g., Cho et al, 2024).

Auxiliary model: A secondary agent is first used to generate a large set of demon-
strations, after which the agent retrieves those demonstrations that are semantically
relevant to the current instruction i.
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Category Prompt Snippet

Action Generation [...] you can click an object by referring to its id, such as

’click id=..., [...]’ (Li et al, 2023)

Provide history ht Previous Actions: {PREVIOUS ACTIONS} (Zheng et al, 2024a)

Prescribe a role Imagine that you are imitating humans doing web navigation [...]

(Zheng et al, 2024a)

Elicit intermedi-
ate, structured
thoughts

[...] think about what the current webpage is [...] analyze each

step of the previous action history [...] based on your analysis

[...] decide on the following action [...] (Zheng et al, 2024a)

Provide general
guidelines

To be successful [...] only issue a valid action [...] only

issue one action [...] (Zheng et al, 2024a)

Table 4: Example snippets of actual prompts. See Table 6 in (Zheng et al, 2024a) for
a full example of a prompt.

Agent-collected: The agent autonomously collects its own demonstrations,
referred to as long-term memory, by searching through its past experiences (see
Section 5.2.2).

Given the limitations of context length, a provided trajectory τ =(
(o0, a0), (o1, a1), ...

)
is typically simplified τ → τ∗, similar to how a history ht is

simplified ht → h∗
t (see Section 5.1). In addition to the trajectory, a demonstration

may include rationales for each action taken (e.g., Cho et al, 2024). These rationales,
inspired by chain-of-thought prompting (Liu et al, 2023a), can aid the agent when
making similar decisions. Such reasoning can be written by humans (e.g., Wang et al,
2023) or generated autonomously by another model (e.g., Cho et al, 2024; Sodhi et al,
2023).

(a) Human-crafted (b) Semantic search

(c) Auxiliary model (d) Agent collected

Fig. 18: The four most common few-shot learning strategies for CCAs (see main text
for details).
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Episodic Improvement through Planning

CCAs are goal-directed, meaning they must plan to achieve a non-trivial instruction i
(Russell et al, 2022, Chapter 2.4). Most agents perform implicit planning in their latent
space, a process Li et al (2023) term iterative planning, where future states or action
consequences are not explicitly constructed. However, some foundation models gener-
ate explicit plans in text form: One common method is chain-of-thought prompting
(Liu et al, 2023a), which guides the model to produce intermediate reasoning steps
before deciding on an action, improving performance (e.g., Rawles et al, 2023; Zhang
et al, 2024d). Another method involves decomposing an instruction into sequential
sub-tasks, such as breaking down the task Book an economy class flight from

Hangzhou to Beijing into steps like Open the Alipay app and Input ’Hangzhou’

as the departure city (Guan et al, 2023). Generated plans can be iteratively
improved. For instance, Kim et al (2023) prompt their foundation model to critique
and refine its generated plans recursively. While this can yield minor improvements,
(Kambhampati, 2024) suggests that the benefits of self-critiquing may be limited.
After initial prompting, agents may either follow their initial plan rigidly (e.g., Kim
et al, 2023) or adapt it based on new observations (e.g., Sun et al, 2023). In contrast
to these prompt-based planning strategies, Koh et al (2024b) use a formal planning
approach that involves a search algorithm. They simulate actions in a controlled envi-
ronment and search through potential future states (observations) to better decide on
the next action. This approach shows significant performance gains, with task success
rates improving by 50% at a search depth of 5. Building on this, Chae et al (2024)
fine-tune a model to predict the effects of actions on current observations, allowing
for better decision-making without relying on an external simulator. Those ideas are
similar to recent test-time compute techniques using agentic workflows (Snell et al,
2024; Singh et al, 2024).

We suspect that current computer control benchmarks likely do not require exten-
sive planning, as many tasks can be completed with a few independent actions (e.g.,
filling out a web form). However, more complex tasks with sequentially dependent
steps, such as looking up different, dependent information, will require planning
(Russell et al, 2022, Chapter 11).

5.2.4 Discussion

General pre-training focuses on acquiring knowledge independent of any specific envi-
ronment and is largely disconnected from agent theory. Environment learning and
episodic improvement are both about adapting a CCA to a computer environment.
Environment learning techniques are about an agent autonomously learning a spe-
cific environment. In contrast, episodic improvement refers to manually adapting an
agent’s existing capability to a specific environment. In this context, we predict that
planning will become a crucial component for computer control agents to tackle more
challenging tasks.

33



Fig. 19: Datasets over time by domain. In general, complexity increases over time.
For the Web domain: MiniWoB and MiniWoB++ contain 100 tasks on a simplified
UI. WebShop is a more realistic single web shop application focusing on realistic prod-
uct diversity. Mind2Web contains 2350 demonstrations across 137 actual websites.
WebArena is a controlled environment of 4 realistic web applications. VisualWebArena
extends WebArena with 910 more visual tasks and an additional application. For the
Android domain: PixelHelp contains step-by-step instructions across 4 applications.
AndroidEnv provides a framework to define custom tasks in Android applications.
MoTIF contains 756 demonstrations across 125 applications. Android in the Wild
provides over 700, 000 demonstrations across 357 applications. For the personal com-
puter domain: AgentBench is a benchmark framework that spans operating systems,
databases, web, and gaming tasks, including existing benchmarks like WebShop or
Mind2Web. OmniACT contains 9802 tasks labeled with straight-line code actions
spanning 57 applications on Windows, MacOS, Linux, and the Web.

6 Computer Control Datasets

This section discusses computer control datasets. We limit the discussion to the most
prominent datasets based on recency and citations. Fig. 19 highlights their chrono-
logical development, while Table A3 provides an overview of all considered computer
control datasets and their key properties. In the following, we discuss different dataset
types, relate them to our taxonomy, discuss their complexity, and describe the usage
of datasets as benchmarks to compare agent capabilities across publications. We do
not cover datasets used for general pre-training of foundation models or those only
partially relevant for computer control, such as question answering (e.g., Hudson and
Manning, 2019) and tool usage datasets (e.g., Patil et al, 2023).
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6.1 Dataset Types

CCAs leverage two types of computer control datasets:

Controlled Environments: A controlled environment is simulated, meaning an
agent can act freely without consequences, as the simulation can always be reset.
Thus, they can be utilized for reinforcement learning given they provide an addi-
tional reward signal (e.g., Humphreys et al, 2022). Furthermore, they can be utilized
to collect long-term memories in a safe simulation phase (e.g., Wen et al, 2024a)
and to plan at inference time by simulating potential actions (Koh et al, 2024b).

Offline Dataset: An offline dataset is collected by instructing, e.g., humans on a
computer task while recording observations and executed actions. The agent only
sees the recorded interaction during training, meaning it never acts in the under-
lying environment, making training safe from consequences. Offline datasets can
be utilized for few-shot learning (e.g., Deng et al, 2023) or fine-tuning an agent
(e.g., Rahman et al, 2024) in an uncontrolled environment like a productive website.
Furthermore, an offline dataset of a controlled environment can be used for initial
behavioral cloning to combat sparse rewards (Humphreys et al, 2022).

Both dataset types have distinct characteristics. Controlled environments are costly
to create because they involve engineering simulations that mimic real-world behav-
iors, but the agent can explore all aspects of the environment autonomously. In
contrast, offline datasets can be recorded in any environment but are incomplete as not
every possible interaction can be captured. Furthermore, offline datasets only show a
single trajectory to achieve an instruction, but maybe multiple ones exist.

6.2 Domains, Observation and Action Spaces

Fig. 20: Dataset counts by domain.

Both controlled environments and
offline datasets are typically domain-
specific. As shown in Fig. 20, the
majority of existing datasets are from
the Web domain (e.g., Zhou et al,
2024), followed by the Android domain
(e.g., Rawles et al, 2023) and the per-
sonal computer domain (e.g., Hong
et al, 2024).

The types of observations and
actions available in these datasets vary
depending on the domain and data col-
lection method. For observations, some
datasets provide only image screen rep-
resentations (e.g., Rawles et al, 2023), some only textual screen representations (e.g.,
Pasupat et al, 2018), while others offer both (e.g., Chen et al, 2021). Regarding actions,
some datasets focus solely on mouse/touch and keyboard actions (e.g., Kapoor et al,
2024), some provide direct UI actions (e.g., Chen et al, 2024b), while others focus on
task-tailored actions (e.g., Liu et al, 2024). Table A3 shows an overview. In many cases,
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additional observation and action types can be generated through post-processing
efforts. For instance, HTML representations can be rendered through a web browser
to provide image-based screen representations.

6.3 Dataset Complexity

Several factors, including the size of the state, observation, and action spaces and the
diversity of the tasks, influence the complexity of a computer control dataset. Con-
trolled environments are often simplified and less diverse compared to offline datasets.
For instance, in MiniWoB++ (Shi et al, 2017), all tasks are performed within a uni-
form, simplified website design with minimal graphical user interface (GUI) elements
and clean HTML. Similarly, WebShop (Yao et al, 2022) is limited to a single, sim-
plified webshop application. While WebArena (Zhou et al, 2024) offers more realistic
web environments, it is limited to four tasks. Offline datasets tend to feature more
realistic observations, with the diversity depending on the variety of scenarios, such as
how many websites were included. For example, Mind2Web (Deng et al, 2023) records
tasks from 137 websites across 31 categories, providing substantial diversity. Similarly,
Android in the Wild (Zhang et al, 2024d) records tasks spanning 357 Android apps or
websites. The complexity of tasks varies greatly across datasets. For example, Mini-
WoB++ (Shi et al, 2017) includes 100 tasks with randomized text and an average of
3.6 actions per task, ranging from simple actions like clicking a button to more complex
tasks like filling out a form to book a flight. WebShop (Yao et al, 2022) offers 12,000
crowd-sourced instructions, all related to shopping, with an average of 11.3 actions
per task. Mind2Web (Deng et al, 2023) provides 2,000 tasks averaging 7.3 actions,
while WebArena (Zhou et al, 2024) features 812 tasks, some requiring actions across
applications, such as the task to create a Reddit account mirroring a GitLab profile.

Generally, the complexity of newer datasets increases as agents become more capa-
ble. A straightforward way to do this is to make observations and tasks more diverse
and challenging. For example, WebArena (Zhou et al, 2024) has a more realistic obser-
vation space than MiniWoB++ (Shi et al, 2017), and tasks require more actions to
be achieved. However, there are many other ways to increase complexity: VisualWe-
bArena (Koh et al, 2024a) adds images as part of the instruction, such as asking
an agent to create a post selling a product shown in an image. AgentStudio (Zheng
et al, 2024b) provides video-based observations, requiring agents to process dynamic,
time-dependent information. MT-Mind2Web (Deng et al, 2024b) extends Mind2Web
by introducing multi-turn tasks, where users give sequential instructions to the agent,
requiring a more nuanced agent behavior. MoTIF (Burns et al, 2022) introduces infea-
sible instructions in its offline dataset, challenging agents to recognize unachievable
tasks.

6.4 Datasets as Benchmarks

A benchmark refers to a controlled environment or offline dataset used to evaluate and
compare the performance of agents across different publications. To enable meaningful
comparisons, it is crucial that the same environment configuration and metric are
used across studies. However, this standardization is often lacking in the literature.
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Fig. 21: Task-level metrics measure performance across individual tasks (instruc-
tions). Step-level metrics measure performance across individual steps (actions).

For example, in the MiniWoB++ benchmark (Shi et al, 2017; Liu et al, 2018), various
studies selected different subsets of the 100 available tasks, complicating cross-study
comparisons. For example, Humphreys et al (2022) used all 100 tasks, while Zheng
et al (2024c) focused on only 64 tasks.

Offline datasets have inherent challenges in serving as proper benchmarks. Mul-
tiple paths may exist to achieve a given instruction, but only one path (taken by
the human) was recorded in the dataset. For instance, Zheng et al (2024a) observed
that their agent’s task success rate increased significantly—from 12% to 36%—simply
by switching to online evaluation with a human evaluating the end state. However,
online evaluation introduces its own issues, such as high costs and a lack of consistent
reproducibility, which limits its broader applicability in benchmark comparisons.

One problem we found when reviewing the current CCA literature is that agent
capabilities are difficult to compare across publications. This is because many pub-
lications introduce a custom benchmark or simplify existing benchmarks, often to
highlight specific aspects of their method. Thus, we advocate that publications
evaluate their proposed agent on established, reproducible, and complete benchmarks.

7 Agent Evaluation

Various evaluation metrics are used in the current literature. We identify three groups
of evaluation metrics (see also Fig. 21): Task-level metrics, step-level metrics, and
other metrics.

7.1 Task-Level Metrics

Task-level metrics focus on the overall effectiveness of an agent in achieving an instruc-
tion i. Task success rate is the most common task-level metric, which measures the
overall success rate of completing an entire task (Deng et al, 2023; Zhang et al, 2024d).
For controlled environments, the environment indicates successful task completion.
For offline datasets, an agent predicting the full trajectory correctly counts as a suc-
cessful task completion. However, as discussed in Section 6.4, this underestimates the
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real task success rate, as other trajectories than the recorded trajectory may be viable.
To estimate an agent’s actual performance in an uncontrolled environment, an agent
must be deployed in an online setting, and a human evaluator judges if an agent com-
pletes the task (Zheng et al, 2024a; Song et al, 2023b; Li et al, 2017). Ideally, agents
must also predict a final end action as part of completing a task to stop themselves
in, e.g., a productive setting (e.g., Wang et al, 2024a). In the literature, task success
rate is also called complete match (e.g., Li et al, 2020b).

Other less common task-level metrics exist, often providing a more nuanced assess-
ment of the agent’s capabilities. Task progress measures the average task completion
progress, meaning how far the agent, on average, is to complete a task (e.g., Sodhi
et al, 2023; Zhang et al, 2024d). Average reward, captures the average reward obtained
across episodes within a controlled environment (e.g., Jia et al, 2019). This metric
helps compare agents during development but not for comparing agents across different
environments, as they may define different reward functions.

7.2 Step-Level Metrics

Step-level metrics focus on the overall effectiveness of an agent in predicting actions
(steps) across tasks. Step success rate is the most common step-level metric, which
assesses the accuracy of action prediction (e.g., Deng et al, 2023). In the literature,
step success rate is also called partial match (e.g., Li et al, 2020b) or action accuracy
(e.g., Wen et al, 2024a).

Each step (action) is part of a trajectory (a sequence of multiple actions), which in
turn represents a single task in the dataset (comprising multiple tasks). Consequently,
step-level metrics must define how to average step scores both within their trajectory
and across tasks, similar to other fields like multi-class classification, where metrics
are averaged within classes and across samples (Grandini et al, 2020). Two natural
approaches for averaging exist:

Macro averaging: Step scores are averaged first within their respective trajectory
and then across tasks. As a result, each step score is weighted by the inverse of its
corresponding trajectory’s length.

Micro averaging: Step scores are averaged across all steps (of all trajectories).
This assigns equal weight to each step score regardless of trajectory length.

For computer control, macro averaging seems to be the prevailing approach, estab-
lished by Mind2Web (Deng et al, 2023) and adopted by subsequent work (e.g., Zheng
et al, 2024c).

Other less common step-level metrics include the action F1 score (e.g., Li et al,
2024b), action recall (e.g., Li and Riva, 2021), or measuring only if parts of the
action are correct like the element accuracy for direct UI access actions (e.g., Deng
et al, 2023). Finally, all step-level metrics only exist for offline datasets, as controlled
environments’ rewards do not indicate the correctness of individual actions.
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7.3 Other Metrics

Other metrics in the literature measure performance indicators other than an agent’s
capabilities. Song et al (2023b) evaluate agent efficiency by measuring the number of
API calls required to execute an instruction successfully, emphasizing minimal resource
usage during task execution. Zhang et al (2024b) incorporate a safeguard mechanism
to seek user confirmation before executing critical actions (e.g., delete) to build a safer
and more trustworthy agent. The safeguard rate measures how accurately the agent
identifies sensitive actions and requests user confirmation.

7.4 Discussion

The task success rate measures an agent’s effective performance, focusing on the pro-
portion of tasks completed from start to finish. This metric is distinct from alternatives
such as task progress, which measures how far an agent progresses on average, or step
success rate, which tracks the accuracy of individual action predictions. While the
task success rate can be measured reliably and reproducibly in a controlled environ-
ment, it is more challenging for an offline dataset. Measuring the offline task success
rate, based on strict trajectory matching, underestimates the actual performance, pro-
viding a lower bound. This limitation arises because any deviation from the recorded
trajectory, even if the deviation is a viable alternative, renders the entire trajectory
incorrect. For instance, solving a task may require filling out form fields not only cor-
rectly but also in the exact (and potentially arbitrary) order captured in the dataset9.
Online evaluation with human assessors offers a more accurate measure of the true
task success rate, as only the task outcome is evaluated (Zheng et al, 2024a). However,
this approach introduces reproducibility challenges. First, human evaluators are prone
to human error (Reason, 1990). Second, the involvement of human evaluators incurs
additional costs. Third, online evaluation may have to run on live systems, which
could result in adverse consequences such as irreversible changes (e.g., data deletion).
Despite these challenges, we suggest to use the task success rate as the primary met-
ric for comparing agent performance on specific benchmarks. For offline datasets, it
is essential to clarify whether the reported task success rate is derived from offline
(trajectory matching) or online evaluation. When using online evaluation, the process
should be thoroughly documented to ensure reproducibility.

8 Challenges for Deployment and Application

Current research in computer control agents focuses on enhancing their autonomous
capabilities across various domains and benchmarks. However, deploying these agents
in production introduces several additional challenges.

9Step-level metrics face similar issues, but the impact is less severe since alternative viable actions affect
only specific action predictions without invalidating the entire trajectory.
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8.1 Technical Challenges and Considerations

Challenges of a Production Setting

A production setting entails a specific environment, such as a business application,
that the agent must be able to control. Thus, a CCA must be adapted to that produc-
tion environment either through environment learning (see Section 5.2.2) or prompting
(see Section 5.2.3). Foundation agents with prompting start with impressive out-of-
the-box performance (e.g., Zheng et al (2024a) achieve 51.1% task success rate on
Mind2Web (Deng et al, 2023)) but lack a practical way to improve performance to
become production-ready. Environment learning techniques provide a path for such
improvements but are often too costly, depending on many labeled demonstrations or
a controlled environment. Effectively adapting an agent to a comprehensive produc-
tion environment remains an open research question. Next to the specific environment,
a production setting provides additional challenges like diverse user hardware, such as
different screen resolutions or a multi-monitor setup, as well as different device con-
figurations, including a wide range of Android distributions, home screen setups, or
color schemes (Lee et al, 2024). Finally, a production environment is non-stationary
as applications undergo continuous enhancement (Humble and Farley, 2011), chang-
ing their interfaces and behavior. A production-ready agent must be able to handle
those everchanging circumstances, either autonomously or through continuous updates
implemented by its developers.

Speed, Cost, and Availability

While current research primarily focuses on an agent’s autonomous capabilities, prac-
tical deployment demands careful consideration of prediction speed, operational costs,
and availability. Faster prediction time leads to less latency and a better user experi-
ence. Costs can be monetary through API calls to third-party foundation models or
hardware considerations for local agents. In terms of potential monetary costs, solving
a single task costs roughly $0.28 when assuming to use a state-of-the-art founda-
tion model, processing 765 image tokens (high-resolution screenshot), 600 text tokens
(agent prompt and user instruction), 1000 text output tokens (reasoning and action
prediction), and 7 actions per task (as in Deng et al, 2023) and current API pricing
(December 2024). Furthermore, reliance on external resources introduces dependen-
cies that can impact availability, such as requiring a stable internet connection and
the reliable operation of third-party services.

Privacy

While LLMs can run on local machines (Tuggener et al, 2024), many state-of-the-art
models such as GPT-4V OpenAI et al (2024) are only available through an API. Agents
relying on external resources, such as proprietary foundation models, introduce pri-
vacy concerns. Individuals and companies may be reluctant to send screenshots to an
external server streamed over the internet. This raises similar data privacy challenges
observed in other foundation model applications (Neel and Chang, 2024). However, a
crucial difference emerges with agents: traditional user education on data-sharing prac-
tices becomes insufficient, as users cannot fully control an agent’s access to information
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when it operates autonomously on their devices. For example, an agent in financial
reporting might inadvertently open, observe, and thus transmit sensitive financial doc-
uments without the user’s explicit consent and in contradiction to contractual or legal
requirements.

8.2 Safety Considerations

Despite advances in autonomous agent development, current systems often lack the
reliability and comprehensiveness required for safe real-world deployment. The con-
sequences of an agent’s unintentional, erroneous actions can differ depending on the
domain, ranging from minor disruptions, such as playing the wrong music video, to
more severe issues, like the unauthorized disclosure of confidential medical records. For
production, the risk of erroneous actions must be balanced with the agent’s capabili-
ties and the benefits of automation. This balance can be achieved by adjusting design
parameters: The agent’s level of autonomy and the scope of its deployment.

Reducing Automation

Most CCA research is about full automation, meaning the agent is in control, and it is
assumed no human is in the loop. To decrease the risk of erroneous actions, agents can
operate in conditional automation, meaning the agent is in control, but it can hand
back control to the user for critical actions. For example, Li et al (2024e) let their
agent determine critical actions, such as validating payments. However, this approach
still risks the agent overlooking critical actions, which can be avoided in use cases like
payment by requiring external validation through a separate payment processing sys-
tem inaccessible to the agent. In contrast, Wang et al (2023) also allows agent-initiated
conversations, allowing them to solicit information. A further restriction would be
running the agent in partial automation, meaning the human is in control and hands
it to an agent only to fulfill a straightforward sub-task. For example, web browsers
providing auto-fill functions for typical web forms can be considered partial, non-
instruction-based computer control agents. An even further automation restriction is
agents only assisting users, meaning the human stays in control the whole time while
the agent provides only suggestions. This design is typical for non-instruction-based
computer control agents like GitHub CoPilot10 or Grammarly11.

Managing the Scope of the Production Environment

To decrease the risk of erroneous actions, the scope of the production environment can
be constrained. For a given use case, the action space A can be restricted by removing
high-risk actions, such as disabling critical deletion operations. This can be achieved,
for instance, by limiting the agent’s file system permissions. Additionally, safety checks
can be implemented to autonomously verify the feasibility and safety of actions prior
to execution, effectively providing guardrails for the agent (Liang, 2023). Similarly, the
state space S can be reduced to simplify the operational environment. For example, a
web agent’s access could be restricted to a predefined set of curated websites instead of

10https://github.com/features/copilot
11https://grammarly.com/
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granting access to the entire web. In the context of personal computers, the operational
domain could be narrowed to specific applications, such as those within an office
productivity suite. These constraints not only limit the agent’s potential behaviors
but also simplify environment learning and enable more accurate assessments of the
agent’s capabilities.

8.3 Adapting Generally Capable Agents

Leading AI companies, such as Anthropic, have begun advancing into the realm of
CCAs, offering generally capable, out-of-the-box solutions (Hu et al, 2024). However,
we anticipate that truly general autonomous instruction-based CCAs – defined as
those with capabilities, resilience, and safety comparable to highly skilled human com-
puter users across most domains – are unlikely to emerge in the next two years, given
the current state-of-the-art, for example, the unavailability of massive and challenging
training data.

This projection highlights a critical research question: How can generally capable
agents be effectively adapted to address specific organizational use cases? For example,
enabling an agent to autonomously, safely, and reliably control a unique business
application currently requires comprehensive customization. It involves tailoring pre-
trained, capable agents to meet the precise needs of a given use case, warranting
exposition to a lot of on-task training experience.

For pure text-based agents, the parallel challenge of adopting a generalist model to
organizational needs and know-how is currently approached using retrieval-augmented
generation (RAG) strategies, where foundation models are equipped with use-case-
specific knowledge by grounding them in internal documents (Lewis et al, 2020).
Similarly, the focus in adapting computer control agents would lie in achieving robust,
organization-specific adaptation starting from a general-purpose, pre-trained agent –
yet a similar process or framework has yet to be developed.

9 Conclusions

9.1 Summary

We provided a structured guide to the field of instruction-based computer control,
categorizing 86 concrete CCAs along the way as examples for specific aspects of their
design. Therefore, we provided a simple and effective taxonomy that enabled the first
comprehensive overview of the whole field. Throughout our analysis, we identified
several open research challenges and made key predictions for future advancements in
the field that we summarize below:

Open Research Challenges

Efficient environment learning : In Section 5.2.2, we discussed strategies
enabling agents to adapt to specific environments, such as reinforcement learning,
behavioral cloning, and long-term memory. Each method has crucial challenges to
overcome for efficient and safe deployment of agents in real-world scenarios, as we
have pointed out in Section 8.
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Planning : As discussed in Section 5.2.3, explicit planning remains underdevel-
oped in current CCAs despite its theoretical importance for achieving goal-oriented
behavior. This gap represents a significant area for future research.

Optimal interaction interfaces : In Section 4, we examined observation and
action spaces, pointing to the open questions whether bi-modal observations and
execution through code provide tangible advantages.

Predictions for Future Development

Human-aligned observations and actions: We anticipate that image screen
representations will emerge as the predominant form for observations due to their
closer alignment with human perception and hence GUIs designed for humans. Fur-
thermore, we foresee this will lead to screen coordinate-based mouse/touch actions
becoming the predominant general-purpose interaction for CCAs, as these actions
operate in pixel space.

Temporary role of set-of-mark prompting: We expect the reliance on set-of-
mark prompting for grounding actions to diminish with advancements in foundation
models. Training these models for direct coordinate prediction will likely render
such approaches obsolete.

Recommendations on Evaluation and Benchmarking

We also examined 33 existing datasets and benchmarks used for training and evaluat-
ing CCAs. Current evaluation practices often rely on custom benchmarks or subsets
of established ones, hindering reproducibility and cross-publication comparisons. To
address this, we advocate for:

Standardized evaluation practices: The community should prioritize evaluat-
ing agents on all tasks of established, reproducible benchmarks to enable more robust
comparisons of agent performance across studies. In the near future, more com-
plex and standardized benchmarks will be needed, making room for an ImageNet
moment (Krizhevsky et al, 2012) of the field.

Task success rate as a measure for agent capabilities: The task success rate
quantifies the effectiveness of agents in solving tasks. It is critical to differentiate
between offline and online task success rates, as these metrics respectively represent
a lower bound of the agent’s performance and its true capabilities. While supple-
mentary metrics may provide insights into other aspects of agent behavior, they
should be considered auxiliary and used in conjunction with the task success rate
to ensure comparability between agents.

9.2 Discussion

CCAs are highly relevant both as an academic topic for research as well as industrially
as emerging products. The task of automating computer control offers a challenging
benchmark for AI progress beyond traditional simulated environments and holds the
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potential to automate various real-world computer tasks. The rise of foundation mod-
els has significantly advanced the capabilities of such agents, attracting increasing
attention from researchers.

We anticipate the emergence of CCAs that deserve a designation as “personal
AI assistants” by using the user’s device starting from 2027. For their development,
the huge potential of individual training experience by monitoring the user’s own
interaction with the device could be tapped into. This brings interesting challenges
of privacy and, in privacy’s service, distributed learning and trusted business models.
This way, the CCA field could prove transformative for the tech industry itself as well
as for regulatory approaches.
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A Structured Overview of Existing Work

For this review, we identified 86 CCAs and 33 datasets and categorized them according
to the introduced taxonomy. Here, we present a detailed list of the identified literature
and their classification.

A.1 Environment and Interaction Perspective

Table A1: Literature overview: Domain and interaction types. ✓ indicates the full
presence of an aspect; (✓) indicates the presence of an aspect with variations; empty
means the aspect is absent.
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Web ✓ ✓

Iki and Aizawa (2022) Web ✓ ✓

Lo et al (2023); Fereidouni
and Siddique (2024); Guan
et al (2023)

Web ✓ ✓

Cho et al (2024) Web ✓ ✓ ✓
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(2021); Jia et al (2019); Zheng
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Deng et al (2023); Gur et al
(2023); Lutz et al (2024); Lai
et al (2024)
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Web ✓ ✓
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et al (2024)
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Web ✓ ✓ ✓

Furuta et al (2024);
Mazumder and Riva (2021);
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Wang et al (2024a); Zhang
and Zhang (2024); Zhang
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(2022); Wu et al (2024b);
Ding (2024); Li et al (2020a);
Nong et al (2024)

Android ✓ ✓

Dorka et al (2024) Android ✓ ✓ ✓

Abukadah et al (2024); Song
et al (2023a, 2024a); Li
(2021); Ma et al (2024b)

Android ✓ ✓

Rawles et al (2023) Android ✓ ✓ ✓

Wen et al (2024b); Li et al
(2020b)

Android ✓ ✓
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Android ✓ ✓
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Android ✓ ✓ ✓
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Cheng et al (2024); Hong et al
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Web,
Android

✓ ✓

Lu et al (2024)
Web,

Android
✓ ✓
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Gao et al (2024a) PC ✓ ✓ ✓

Song et al (2024b) PC ✓ ✓ ✓

Wang et al (2024d) PC ✓ ✓

Wu et al (2024c); Guo et al
(2024a)

PC ✓ ✓

Zhang et al (2024b) PC ✓ ✓ ✓ ✓

Bonatti et al (2024) Web, PC ✓ ✓ ✓ ✓ ✓ ✓

Yan et al (2023)
Android,

iOS
✓ ✓

Song et al (2023b) API ✓ ✓
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A.2 Agent Perspective

Table A2: Literature overview: Core agent design principles. PT = general pre-
training; EL = environment learning; EI = episodic improvement; BC = behavioral
cloning; RL = reinforcement learning; LTM = long-term memory; ✓ indicates the full
presence of an aspect; (✓) indicates the presence of an aspect with variations; empty
means the aspect is absent.
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Ding (2024) ✓ ✓ ✓ ✓

Sun et al (2023); Lee et al
(2023b)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Tao et al (2023) ✓ ✓ ✓ ✓ ✓ ✓

Wu et al (2024c) ✓ ✓ ✓ ✓ ✓

Nong et al (2024) ✓ ✓ ✓ ✓ ✓ ✓

Kim et al (2023); Zhang et al
(2024e); Zhou et al (2024); Sodhi
et al (2023); Cho et al (2024);
Koh et al (2024b); Deng et al
(2024a)

✓ ✓ ✓ ✓ ✓ ✓

Zheng et al (2024c); Bishop et al
(2024)

✓ ✓ ✓ ✓ ✓

Chae et al (2024); Song et al
(2023b)

✓ ✓ ✓ ✓ ✓

Li et al (2023); Ma et al (2024a);
Zheng et al (2024a); Wang et al
(2024a); Wen et al (2024b);
Cheng et al (2024); Wang et al
(2024d); Guo et al (2024a)

✓ ✓ ✓ ✓
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Murty et al (2024); Deng et al
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et al (2024d); Li et al (2024c)
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Deng et al (2024b); Lutz et al
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Furuta et al (2023); Gur et al
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Song et al (2024a) ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Zhang et al (2024b) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bonatti et al (2024) ✓ ✓ ✓ ✓ ✓

Xu et al (2021) (✓) ✓ ✓

Song et al (2024b) (✓) ✓ ✓ ✓ ✓

Abukadah et al (2024) (✓) ✓ ✓ ✓ ✓

Zhang and Zhang (2024) (✓) ✓ ✓ ✓ ✓

Gur et al (2023); He et al (2024);
Wu et al (2024b); Lu et al (2024);
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(2024)
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Lo et al (2023) (✓) ✓ ✓ ✓

Nakano et al (2022); Fereidouni
and Siddique (2024)

(✓) ✓ ✓ ✓ ✓

Furuta et al (2024); Kil et al
(2024); Dorka et al (2024)

(✓) ✓ ✓ ✓ ✓

Liu et al (2018) ✓ ✓

Zaheer et al (2022); Li et al
(2020a,b)

✓ ✓ ✓

Gur et al (2019, 2021); Jia et al
(2019); Li and Riva (2021)

✓ ✓ ✓

Shi et al (2017); Li (2021) ✓ ✓ ✓ ✓

Mazumder and Riva (2021) ✓ ✓ ✓

Li et al (2024d) ✓ ✓ ✓ ✓

Shaw et al (2023) ✓ ✓ ✓ ✓ ✓

Lin et al (2021); Sun et al (2022) ✓ ✓ ✓

Yan et al (2023) ✓ ✓ ✓ ✓

Humphreys et al (2022) ✓ ✓ ✓ ✓

Iki and Aizawa (2022) ✓ ✓ ✓ ✓ ✓
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A.3 Datasets

Table A3: Literature overview: datasets

Paper Domain Type OS AS
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MiniWoB (Shi et al, 2017) Web ✓ ✓ ✓ ✓

MiniWoB++ (Liu et al, 2018) Web ✓ ✓ ✓

WebShop (Yao et al, 2022) Web ✓ ✓ ✓ ✓ ✓

Mind2Web (Deng et al, 2023) Web ✓ ✓ ✓

WebArena (Zhou et al, 2024) Web ✓ ✓ ✓ ✓

VisualWebArena (Koh et al, 2024a) Web ✓ ✓ ✓ ✓

PixelHelp (Li et al, 2020b) Android ✓ ✓ ✓ ✓ ✓

AndroidEnv (Toyama et al, 2021) Android ✓ ✓ ✓

MoTIF (Burns et al, 2022) Android ✓ ✓ ✓ ✓

Android in the Wild (Rawles et al,
2023)

Android ✓ ✓ ✓

AgentBench (Liu et al, 2023b) PC ✓ ✓

OmniACT (Kapoor et al, 2024) PC ✓ ✓ ✓ ✓

Other datasets

RUSS (Xu et al, 2021) Web ✓ ✓ ✓ ✓

gMiniWoB (Gur et al, 2021) Web ✓ ✓ ✓ ✓

WebVLN (Chen et al, 2024b) Web ✓ ✓ ✓ ✓

MT-Mind2Web (Deng et al, 2024b) Web ✓ ✓ ✓

WorkArena (Drouin et al, 2024) Web ✓ ✓ ✓ ✓ ✓

AutoWebBench (Lai et al, 2024) Web ✓ ✓ ✓ ✓

QBE-F-Droid (Koroglu et al, 2018) Android ✓ ✓ ✓
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Table A3 – continued from previous page

Paper Domain Type OS AS
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Im
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T
e
x
tu

a
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o
u
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D
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e
c
t

T
a
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o
re

d

C
o
d
e

AppBuddy (Shvo et al, 2021) Android ✓ ✓ ✓

Meta-GUI (Sun et al, 2022) Android ✓ ✓ ✓ ✓

UGIF (Venkatesh et al, 2023) Android ✓ ✓ ✓ ✓

Mobile-Env (Zhang et al, 2024c) Android ✓ ✓ ✓ ✓

DroidTask (Wen et al, 2023) Android ✓ ✓ ✓

Android in the zoo (Zhang et al, 2024d) Android ✓ ✓ ✓

GUIAct (Chen et al, 2024c) Android ✓ ✓ ✓

AssistGUI (Gao et al, 2024a) PC ✓ ✓ ✓ ✓

ScreenAgent (Niu et al, 2024) PC ✓ ✓ ✓

OSWorld (Xie et al, 2024) PC ✓ ✓ ✓ ✓

AgentStudio (Zheng et al, 2024b) PC ✓ ✓ ✓

PPTC (Guo et al, 2024a) PC ✓ ✓ ✓

RestBench (Song et al, 2023b) API ✓ ✓

GUI-World (Chen et al, 2024a) Multi ✓ ✓ ✓
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