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Abstract

Humans and animals recognize objects irrespec-
tive of the beholder’s point of view, which may
drastically change their appearances. Artificial
pattern recognizers also strive to achieve this,
e.g., through translational invariance in convo-
lutional neural networks (CNNs). However, both
CNNs and vision transformers (ViTs) perform
very poorly on rotated inputs. Here we present
artificial mental rotation (AMR), a novel deep
learning paradigm for dealing with in-plane rota-
tions inspired by the neuro-psychological concept
of mental rotation. Our simple AMR implementa-
tion works with all common CNN and ViT archi-
tectures. We test it on ImageNet, Stanford Cars,
and Oxford Pet. With a top-1 error (averaged
across datasets and architectures) of 0.743, AMR
outperforms the current state of the art (rotational
data augmentation, average top-1 error of 0.626)
by 19%. We also easily transfer a trained AMR
module to a downstream task to improve the per-
formance of a pre-trained semantic segmentation
model on rotated CoCo from 32.7 to 55.2 IoU.

1. Introduction
Natural vision systems in humans and animals are able to
recognize objects irrespective of transformations such as
rotations and translations as well as the observer’s point
of view, all of which can have a tremendous impact on
the appearance of said object. This is a highly desirable
property for all vision systems, especially if they are to be
deployed in a real-world setting (Stadelmann et al., 2018;
2019). Both CNNs (Fukushima et al., 1983) and trans-
formers (Vaswani et al., 2017) (a.k.a. neural fast weight
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Figure 1. An example image from ImageNet (top left) and a ver-
sion of the same image with its corners masked, to allow for
non-obvious and reversible rotations (top right). The top-1 classifi-
cation error on ImageNet aggregated across 8 CNN architectures
for upright (orange) and rotated (blue) training, revealing a training
slow-down for rotated inputs (bottom).

programmers (Schmidhuber, 1992; Schlag et al., 2021)) in-
herently integrate translational invariance into their design.
For rotations, this is not the case and both methods perform
very poorly when facing inputs at an unusual angle. This
can be exploited for adversarial attacks (Engstrom et al.,
2019) and causes serious issues in applications where ro-
tated inputs are common. There are currently two main
research avenues trying to alleviate this issue:

One is focused on building architectures that incorporate ro-
tational invariance or sometimes equivariance directly into
the neural network design. Cohen & Welling (2016) intro-
duced Group Equivariant Convolutional Neural Networks
(G-CNNs) which are equivariant to a discrete symmetry
group of rotations. Marcos et al. (2017) on the other hand
proposed to rotate the convolutional filters instead of the
representations. A common drawback among rotation equiv-
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ariant neural networks is that the memory footprint grows
linearly with the angular resolution, severely limiting their
practical use.

Another much more widely used approach is based on input
data augmentation. The data is rotated at training time such
that the model can learn all appearances of an object. This
yields good results and can scale to any problem size. It is,
however, still an inefficient method because the different ap-
pearances of a single object are learned individually, which
artificially inflates the complexity of any given problem.
This results in slower training and, consequently, lower final
performance (see Figure 1).

It is a long-standing conjecture in neuro-psychology that
when humans try to identify an object, they mentally sim-
ulate rotations of that object with the goal of matching it
to an internal representation (i.e. they perform mental rota-
tion). Shepard & Metzler (1971) were the first to formally
study this phenomenon. They were able to show that the
time human subjects need to determine whether pairs of
3D figures have the same shape grows linearly with the
angle of rotation between the two objects. This strongly
suggests that humans perform mental rotation; otherwise,
the re-identification task would be completed in constant
time across angles.

Inspired by this finding, we propose a third way for deep
neural networks to deal with rotated inputs that we dub
artificial mental rotation (AMR). The core idea of AMR
is to first find the angle of rotation of a given input and
then rotate it back to its canonical appearance before further
processing, thus performing an artificial version of mental
rotation. This has the advantage that the underlying method
of visual recognition itself does not have to be hardened
against rotations, therefore all models (even trained ones)
can be used in conjunction with an AMR module without
any altering.

In short, our core contributions are: (a) We introduce the
concept of mental rotation to deep learning, (b) we present
a simple neural network architecture that implements AMR
and can be paired with all common CNNs and ViTs, (c)
we extensively test the merits of AMR on ImageNet, Stan-
ford Cars, and Oxford Pet, and conclude that it significantly
outperforms data augmentation, the current state-of-the-art,
(d) we present AMR results on MNIST to enable the com-
parison with computationally expensive alternatives, (e) we
study the viability of AMR in a scenario where only parts
of the test data are rotated, (f) we present comprehensive
ablation studies proofing that our trained AMR modules
work in practice on synthesized as well as naturally rotated
data, and (g) we show the easy transferability of a trained
AMR module by moving it to a downstream task (in this
case semantic segmentation), significantly increasing the
performance of an existing model on rotated data.

2. Related Work
There are ongoing efforts to incorporate rotation invariance
(or in some cases equivariance) directly into the architec-
tures of deep neural networks, especially for CNNs. Diele-
man et al. (2015) introduced a rotation invariant CNN sys-
tem for galaxy morphology prediction that uses multiple
rotated and cropped snippets of the same image as input. Co-
hen & Welling (2016) presented G-CNNs which are equiv-
ariant to a larger number of symmetries such as reflections
or rotations. This is achieved by lifting the network features
to a desired symmetry group. Romero & Cordonnier (2021)
presented group equivariant vision transformers by extend-
ing the symmetry group lifting concept to self-attention.
Worrall et al. (2017) introduce H-Nets which replace regular
CNN filters using circular harmonics. Alternatively, Marcos
et al. (2017) have proposed to rotate the filters of a CNN
and then apply spatial and orientation pooling to reduce
and merge the resulting features. (Laptev et al., 2016) in-
troduce a TI-pooling, which allows to pooling of the CNN
outputs for an arbitrary number of different angled versions
of the same input to create an equivariant feature. All these
methods share the key drawback that their memory footprint
grows linearly with the angular resolution, which severely
limits their practical usability.

Data augmentation (Baird, 1992) is very widely used to
improve the robustness and generalizability of vision mod-
els (Simard et al., 2003). It can even be used to harden
the model against adversarial attacks (Shafahi et al., 2019).
Data augmentation has also been shown to be very effective
for rotated inputs (Quiroga et al., 2020). Data augmenta-
tion is the current de-facto standard technique for dealing
with rotated data since it is easy to use and effective. How-
ever, data augmentation is not efficient because different
appearances of the same object are learned independently.

There have been previous attempts to leverage the concept of
mental rotation for computer vision. Ding & Taylor (2014)
trained a factored gated restricted Boltzmann machine to
actively transform pairs of examples to be maximally similar
in a feature space. Boominathan et al. (2016) train a shallow
neural network to classify if an image is upright. They
then combine this with a Bayesian optimizer to find upright
images. They use this setup to improve image retrieval
robustness. In the space of 3D vision a mental rotation-
based approach achieved state-of-the-art performance for
rotated point cloud classification (Fang et al., 2020).

3. Artificial Mental Rotation Module
Our AMR approach requires three components. First, a
base model (BM) is required, for which any common CNN
or ViT (Dosovitskiy et al., 2021) architecture can be used.
There is no need to modify the BM in any way, hence the
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Figure 2. Architecture of our artificial mental rotation module for CNNs. The base CNN, in this case a ResNet, is shown in grey. The
components of the AMR module are shown in blue. The information flow in stage 1 (angle classification) is purple while the information
flow in stage 3 (image classification) is shown in orange.

BM can generally be sourced in a fully (pre-)trained form.
Additionally, it requires a rotation algorithm designed for im-
ages; here we use the method available in OpenCV (Bradski,
2000). The last necessary component is the AMR module
itself, presented in this section. Due to their differing de-
signs, CNNs and ViTs use slightly varying AMR modules,
described in Sections 3.1 and 3.2.

AMR training While training the AMR module, the BM
is frozen such that its classification performance is not dis-
turbed. For the training, we use datasets, like ImageNet,
where the objects are typically shown in an upright position.
Under this constraint, we can employ self-supervised train-
ing by randomly rotating the input images and asking the
AMR module to recover the angle we previously applied.

AMR inference AMR inference is performed in a three-
step process: (1) The input’s angle is classified by running
it through the BM and the AMR module. (2) The input is
rotated by the negative amount of the angle determined in
step one. (3) The rotation-corrected input is processed by
the BM.
Step (3) is identical to AMR-free inference since the BM
is frozen during AMR training and there is no information
flow through the AMR module during this step. Therefore
AMR could also be framed as a preprocessing method by
reducing it to steps (1) and (2).

3.1. AMR module for CNNs

Our AMR module is designed as an add-on to a given BM
(see Figure 2), so it can repurpose the features computed
by the BM and only requires a small number of additional
weights. Features are copied into the AMR module at five
different BM stages. In the case of ResNe(X)ts (He et al.,

2016; Xie et al., 2017) (a.k.a. Highway Nets with open
gates (Srivastava et al., 2015)) this happens directly after
the stem and after each of the four ResNe(X)t stages. For
EfficientNets (Tan & Le, 2019) we use the end of stages 2, 4,
6, and 8 as extraction points. When the copied features enter
the AMR module they are first processed by a single 1× 1
2D convolution to compress the feature depth. For all but
the first AMR module stages, these features are then stacked
with the output of the previous AMR module stage followed
by another 1× 1 2D convolution to half the feature depth of
the stack. Only then the data is processed by a single ResNet
block. After the last stage, we employ average pooling and
a single fully connected layer with 360 outputs to create the
angle prediction.

3.2. AMR module for ViTs

The AMR module for ViTs functions very similarly to the
one for CNNs. We again extract features at five different
locations. For ViT-16-b these are after encoder blocks 1, 4,
7, and 12. Since there is no spatial downsampling in ViTs
there is no advantage in processing the extracted features in
stages. We, therefore, stack them all at once followed by a
single 1× 1 2D convolution. This stack is then processed
by four ViT encoder modules. Lastly, we extract the same
classification token that was used in the BM and apply a
fully connected layer for the angle classification.

3.3. Motivation for add-on design

We opted to design our AMR module as an add-on to exist-
ing base networks because we conjecture that the features
that have been trained for classification will also be at least
partly useful for angle detection and the AMR module can
profit from the training resources that have already been

3
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Table 1. ImageNet top-1 accuracies. Upright testing (up) of the upright trained base model is assumed to be the performance ceiling (%
ceil). Average (by angle) rotated accuracies (rot) are given for the upright and rotated trained base models as for AMR 33 epochs and
AMR 5 epochs.

Upright Training Rotated Training AMR 33 AMR 5
Testing up rot % ceil rot % ceil rot % ceil rot % ceil
ResNet-18 0.695 0.433 0.62 0.598 0.86 0.676 0.97 0.666 0.96
ResNet-50 0.768 0.537 0.70 0.673 0.88 0.755 0.98 0.746 0.97
ResNet-152 0.779 0.552 0.71 0.730 0.94 0.767 0.98 0.760 0.98
EfficientNet-b0 0.680 0.454 0.67 0.611 0.90 0.666 0.98 0.656 0.96
EfficientNet-b2 0.692 0.467 0.67 0.612 0.88 0.678 0.98 0.669 0.97
EfficientNet-b4 0.710 0.485 0.68 0.618 0.87 0.696 0.98 0.689 0.97
ResNext-50-32x4d 0.773 0.551 0.71 0.686 0.89 0.761 0.98 0.754 0.98
ResNext-101-32x8d 0.785 0.571 0.73 0.728 0.93 0.772 0.98 0.766 0.98
ViT-16b 0.691 0.459 0.66 0.503 0.73 0.669 0.97 0.664 0.96
Average 0.730 0.501 0.69 0.640 0.87 0.716 0.98 0.708 0.97

invested into the base network. This design choice therefore
allows for an AMR module that consists of very few layers
on its own and thus can be trained very quickly. We confirm
this conjecture with an ablation study (see Appendix B).

4. Experiments
We aim to showcase the merits of AMR on natural images.
Therefore, we test it on ImageNet (ILSVRC 2012) (Rus-
sakovsky et al., 2015) and verify our results on Stanford
Cars (Krause et al., 2013) and Oxford Pet (Parkhi et al.,
2012). To ensure that artificial rotations are not obvious,
we mask out the corners of all images such that a centred
circle remains (see Figure 1 and Section 5 for an ablation
study ensuring the artificial rotations are not carrying any
unwanted information). For a fair comparison between up-
right training (without data augmentation) and training with
random rotations as input data augmentation (rotated train-
ing), we train all of our base models from scratch with this
masking applied. For all of our training runs, we use im-
age normalization based on dataset statistics. No further
data augmentation is applied to keep the experiments as
simple as possible (except, of course, input rotation for the
rotated training models). To obtain representative results
we replicate our experiments on a variety of base models.
We use three different ResNets, three EfficentNets, and two
ResNeXts for a total of eight CNN architectures. On Ima-
geNet we also employ a vision transformer in the form of
ViT-16b, which is unsuited for the other smaller datasets.
For each upright trained base model, we train two AMR
modules: One is trained for one-third of the base model’s
training time (in epochs) and the other one for one-twentieth.

Training details For all base models, we use the imple-
mentations from the torchvision (maintainers & contributors,
2016) Python package without any modifications. To enable

optimal training speed our code is based on the ffcv library
(Leclerc et al., 2022). All training details and links to code
and trained model weights can be found in Appendix C.

Testing We first evaluate the upright base models on up-
right data. We use these performances as the ceiling of
what can be achieved on rotated data. Then we test the up-
right and rotated base models as well as the AMR-enhanced
models for rotated performance by rotating the test set two
degrees at a time and running a full evaluation for each an-
gle. We present the resulting data visually in polar plots (see
Figure 3 and Figure 4) as well as in table form (see Table 1
and Table 2) by averaging across angles.

ImageNet We train all of our base CNNs for 100 epochs
on ImageNet, and the vision transformer is trained for 300
epochs, in accordance with the training recipes for the
torchvision base models. We then train two AMR mod-
ules in conjunction with each upright trained base model,
one for 33 epochs and the other for 5. Table 1 contains
the top-1 accuracies on rotated data for all models. Addi-
tionally, the ceiling accuracy is also reported (upright data
with upright trained model). As suspected, there is a steep
drop in accuracy between upright and rotated testing for the
upright-trained models, both for the CNNs as well as the
ViT. On average only 69 percent of the ceiling performance
(% ceil) is retained. The models which have been trained
with random rotations fare much better, they achieve 87%
ceil. It is noteworthy that the ViT only rises from 66 to 73 of
the ceiling performance. This makes sense since ViTs tend
to be less sample efficient compared to CNNs and there-
fore suffer more from the increased problem complexity
caused by the random rotations. AMR-33 achieves 98%
ceil, significantly outperforming rotated training. AMR-5 is
slightly worse with 97% ceil, but it shows that it is possible
to obtain an AMR module that is very useful with mini-
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Table 2. Stanford Cars and Oxford Pet top-1 accuracies averaged across all architectures, columns are analogous to the Table 1 shown
above for ImageNet.

Upright Training Rotated Training AMR 300 AMR 50
Testing up rot % ceil rot % ceil rot % ceil rot % ceil
Stanford Cars 0.867 0.165 0.19 0.618 0.71 0.796 0.92 0.746 0.86
Oxford Pet 0.741 0.483 0.65 0.603 0.81 0.712 0.96 0.670 0.90
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Figure 3. Polar plots of ImageNet top-1 accuracies by angle, av-
eraged across architectures (except ViT). The performances of
the upright base models are shown in solid orange, the rotated
training base models are shown in dash-dotted green, and AMR
performance (averaged across both epoch regimes) is shown in
dotted blue lines.

mal training resources. Figure 3 contains polar plots that
show the ImageNet top-1 accuracies of the different archi-
tecture families by angle. The solid orange lines show the
accuracies of the upright-trained base models. We observe
that the accuracies have their highest points at zero degrees
rotation and then symmetrically drop off with increasing
angle, reaching their lowest points at 135 and 225 degrees.
We further observe that rotated training (green dash-dotted
line) and AMR (blue dotted line) both achieve rotational
invariance and exhibit performances that are independent
of test time angles. Corresponding to the reported results
in Table 1, AMR performance is consistently better than
rotated training.

Stanford Cars and Oxford Pet Due to Stanford Cars
and Oxford Pet being smaller datasets we forgo ViTs and
train the CNN models for more epochs on Stanford Cars
and Oxford Pet. On Stanford Cars we train the base models
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Figure 4. Polar plots of Stanford Cars (left column) and Oxford
Pet (right column) top-1 accuracies analogous to the ones shown
above for ImageNet (see Figure 3).

for 1000 epochs, and the corresponding AMR modules are
trained for 300 and 50 epochs, respectively. On Oxford Pet,
we train the base models for 3000 epochs and the AMRs
for 1000 and 150 epochs. Table 2 shows the top-1 accu-
racies averaged across architectures and averaged across
angles where appropriate (for full table see Table 5 in the
Appendix) and Figure 4 polar plots, analogous to the ones
for ImageNet in the above paragraph. Our core findings are
replicated on both datasets: Rotating the images reduces
all the models’ performances and AMR remains the most
potent way of addressing rotations. On Stanford Cars, the
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Table 3. Top-1 accuracies of ResNets on upright (up) and rotated (rot) ImageNet, accompanied with breakpoints (BP) that signify the
share of rotated data in the test set necessary for alternative methods (rotated training, AMR) to outperform upright training.

Upright Training Rotated Training AMR-33
Testing up rot up rot BP up rot BP
ResNet-18 69.5 43.3 59.3 58.9 35.5% 67.1 67.6 9.0%
ResNet-50 76.5 53.7 69.2 67.3 35.0% 75.1 75.5 6.1%
ResNet-152 77.9 55.2 73.6 73.0 19.5% 76.2 76.7 7.4%
Average 74.6 50.7 67.4 66.4 30% 72.8 73.3 7.5%

Table 4. Top-1 accuracies on rotated MNIST for ResNet-18 based
methods as well as related works, accompanied by ResNet-18
upright top-1 accuracy as a baseline.

Method Top-1 Acc.
ResNet-18 (upright - ceil performance) 0.996
ResNet-18 0.48
ResNet-18 + rotated training 0.978
ResNet18 + AMR 0.981
Harmonic Networks (Worrall et al., 2017) 0.983
Ti-pooling (Laptev et al., 2016) 0.988
G-CNNs (Cohen & Welling, 2016) 0.977
RotEqNet (Marcos et al., 2017) 0.989

performance loss caused by rotations on the upright trained
model is much more severe (19% ceil) compared to Ima-
geNet (69% ceil), with the models failing almost completely
when facing rotations larger than 20 degrees (see left column
of Figure 4). This makes sense intuitively since cars are al-
most always upright in pictures with minimal variation, thus
the models experience almost no variation during training.
This is further supported by the observation that Oxford Pet,
which is also a small dataset but contains animals that are
naturally less static compared to cars, exhibits a milder drop
off (65% ceil). We further observe that on Stanford Cars
and to a lower extent on Oxford Pet, EfficientNets perform
much better than ResNe(X)ts on rotated data, both with
rotated training and AMR, while all architectures perform
roughly equally well on upright data. We conjecture this
is because EfficientNets have been designed to be sample
efficient. This could allow them to train filters useful for a
wide variety of tasks (such as AMR) even on a small dataset
and a relatively short training time. However, an unexpected
result is that AMR paired with ResNe(x)t models showed a
decline in performance when approaching 0 degrees, while
EfficientNets do not suffer from this effect. See Appendix
A for further investigation of this phenomenon.

Comparison with existing rotation equivariant methods
The focus of AMR is large datasets like ImageNet and be-
yond. The current literature for rotation equivariant methods
is focused on computationally expensive methods that re-

engineer the basic structure of the used neural networks
(as mentioned in Section 2). Consequently, MNIST is the
benchmark dataset of choice for most of these methods. We
put our work into perspective with these related works by
presenting the performances of ResNet-18, ResNet-18 +
rotated training and ResNet18+AMR on MNIST (see Ta-
ble 4). The ceiling performance of ResNet18 on upright
MNIST is almost one, which is to be expected. Similar to
the larger datasets above is the performance of AMR far
superior to rotated training. Most importantly, the perfor-
mance of ResNet18+AMR is comparable to the ones of
the related works which are much narrower in scope. This
shows that AMR not only exhibits the best performance on
large datasets but also achieves state-of-the-art performance
on a small dataset amongst highly specialized methods.

AMR usefulness given the prevalence of rotated data
In an applied scenario, it is not always realistic that all
inputs are presented at a random angle. We therefore inves-
tigate the usefulness of AMR when the test data consists
of a combination of upright (up) and rotated (rot) images.
To this end, we compute top-1 test errors on ImageNet of
the ResNet family models on rotated and upright inputs
separately. We repeat this process for upright training, ro-
tated training and AMR-33 (see Table 3). We then linearly
combine up and rot performances to obtain the final perfor-
mances for mixed datasets consisting of both upright and
rotated data. We increase the percentage of rotated data
in the test mix until alternative methods (rotated training,
AMR-33) start outperforming the default of upright training.
We call percentages of parity between methods breakpoints
(BP). Unsurprisingly, the BPs for rotated training (30% on
average) are much higher than the ones of AMR-33 (7.5%).
The key finding here is that BPs for AMR-33 are all below
10% which shows that only a small portion of the test set
needs to be non-upright for AMR to be a worthwhile choice.

5. Validity of self-supervised training built on
artificial rotation

Self-supervised learning based on artificial data modifica-
tions always warrants great caution. It is often unclear if the
model learns to solve the desired task or if it simply learns to
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Figure 5. Photographs of two printed ImageNet validation samples taken at 12 different angles. Both samples are shown in their original
state (raw) and after the mental rotation step (corrected). The color of the masked-out region indicates if the corresponding image has
been correctly classified. The mental rotation and classification steps have been performed by ResNet50 + AMR33.

find unintended shortcuts in the self-supervision procedure.
In our case, we use a digital rotation algorithm on our input
images. While none are visible to the human eye, algorithm-
specific artefacts are introduced to the rotated images. This
raises the question if the AMR module learns to classify
the correct rotation angle based on unwanted traces of the
rotation algorithm rather than by understanding the contents
of the image. To ensure this is not the case, we perform
the following ablation study: We print out seven images
sourced from different classes from the ImageNet validation
set. We then take photos of each of those printouts at twelve
different in-plane rotations by physically rotating the print
in 30-degree intervals. This way we naturally introduce
rotation and can guarantee the absence of any rotation algo-
rithm artifacts that the model could have learned to use. The
images were printed using a Konica Minolta bizhub 450i on
maximum resolution with guidelines to enable accurate an-
gular distances (see Figure 9 in the Appendix). The photos
were then taken by hand using a Nikon Coolpix P7000 dig-
ital camera. Figure 5 shows all twelve re-digitized photos
for two cases (raw). The color-coded background indicates
if that photo was correctly classified by a standard trained
ResNet50 base model (green denotes correct, red an error).
We observe a similar effect as with Stanford Cars: Like a
car, bells have a very clearly defined upright position. The
bell, therefore, is only classified correctly when it is upright.
Dogs on the other hand are very variable in appearance
(e.g. head turned, laying down etc), thus the dog is only
misclassified when it is completely upside down at rotations
between 150 and 240 degrees. The second rows (corrected)
show the outcome of applying Resnet50 + AMR33 to the
above photos. The AMR module is able to correct the ori-
entation of all but one photo. We can therefore conclude
that it learned to classify the angles by understanding the
image contents rather than relying on artifacts introduced
by the self-supervision process. We further observe that the
rotation correction is much more precise in the bell case

than for the dog. This ties in with our assumption that the
network’s filters are much more precisely tuned to a sharp
upright position for the bell compared to the dog. Across all
84 photos, the standard ResNet50 achieves a top-1 classifi-
cation accuracy of 0.57. ResNet50 + AMR33, on the other
hand, achieves a top-1 accuracy of 0.96, showing that the
AMR module properly works on all printed images.

6. Application to a Novel Downstream Task:
Semantic Segmentation

Since they use the same neural network building blocks,
the assumption that models for other vision tasks like
object detection or semantic segmentation also struggle
with rotated inputs suggests itself. In this section, we
test this hypothesis and demonstrate how a trained AMR
module can be used to easily improve the rotational
stability of models for other tasks than classification. Here
we choose semantic segmentation as an example. As
the base model, we use a fully convolutional ResNet50
and source the matching pre-trained weights named
’FCN ResNet50 Weights.COCO WITH VOC LABELS V1’
from torchvision. These weights have been trained on
MSCoCo-Stuff (Lin et al., 2014), with a reduced class
set only containing the classes that are also available
in PascalVOC (Everingham et al.). We again mask the
corners of all images. On this data, the pre-trained model
achieves a mean intersection over union (IoU) of 57.6. We
then randomly rotate the images which causes the mean
IoU to drop to 32.7. This confirms that not only object
classification models but also semantic segmentation and
likely most other vision models perform far worse when
confronted with rotated inputs. We now take our ResNet50
+ AMR33 which has been trained on ImageNet and use it
to perform AMR steps (1) and (2) on CoCo without any

7



Efficient Rotation Invariance in Deep Neural Networks through Artificial Mental Rotation

Figure 6. Two rotated examples (rows) from the CoCo validation set with their corresponding ground truth, segmentation output, and
AMR-corrected segmentation output (columns). The segmentation on the rotated image exhibits bad performance in both samples. In
row one, the persons are segmented fairly well but the table is missing fully, in row two the segmentation fails almost completely. The
column AMR-segmentation shows the output for the images that have been un-rotated using AMR. The AMR module identified the
correct rotation angle in both cases, which lead to significantly improved segmentation performance (again in both cases).

additional retraining or modification. The angle-corrected
inputs are then fed back into the base semantic segmentation
model. This approach yields an IoU of 55.2, showing that
AMR also works for semantic segmentation and that a
trained AMR module can be easily transferred between
similar datasets. Figure 6 shows two examples from the
CoCo validation set with their corresponding ground truth,
segmentation output, and AMR-corrected segmentation
output visually confirming our findings. For both examples,
the AMR module correctly inverted the angle of the image,
which (again in both cases) significantly improves the
segmentation performance.

7. Limitations and Future Work
A key drawback of AMR is that two forward passes are nec-
essary. This is part of the core design and cannot be changed.
It is mitigated partially by the fact that a smaller model can
be chosen in conjunction with AMR and still outperform a
large model trained with rotational data augmentation due
to the inefficiency of that approach resulting in a less costly
forward pass even at test time. With applicability in mind,
we opted to focus on 2D in-plane rotations of whole im-
ages featuring one dominant object. Our work is therefore
not suited for cases where multiple objects are individually
rotated. This scenario could be addressed by combining a
region-proposal based method such as Faster-RCNN (Gir-
shick, 2015) with AMR at proposal level. In the real world,
3D objects are rotated on two axes, which can lead to much
more drastic changes in appearance. Extending AMR to

3D objects would be a very promising, most natural exten-
sion of this work. An exciting future application for AMR
models would be reducing the rotational variability of an
existing dataset (e.g. ImageNet, by making all appearing
objects upright). This would further disentangle the training
of upright appearances from rotations which would likely
lead to improved training efficiency of base models.

8. Conclusions
We have presented AMR, a neuropsychology-inspired ap-
proach for handling rotated data in vision systems, novel
to deep learning. We have shown that AMR consistently
outperforms the current standard of input data augmenta-
tion across different deep architectures and datasets. We
have shown the viability of AMR in realistic cases where
the data is a mixture of upright and rotated inputs. We
further presented a sanity check which confirms that our
self-supervised learning setup learns to identify rotations
by the content of the images and not by any artifacts intro-
duced by the training procedure. Lastly, we have shown
how a trained AMR module can easily be transferred to
another model built for a different task (in our case semantic
segmentation) to greatly improve its rotational stability.
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Table 5. Stanford Cars (top) and Oxford Pet (bottom) top-1 accuracies for all architectures analogous to the one shown above for ImageNet
(see Table 1).

Stanford Cars

Upright Training Rotated Training AMR 300 AMR 50
Testing up rot % ceil rot % ceil rot % ceil rot % ceil
ResNet-18 0.854 0.163 0.19 0.412 0.48 0.812 0.95 0.800 0.94
ResNet-50 0.892 0.182 0.20 0.535 0.60 0.807 0.90 0.705 0.79
ResNet-152 0.886 0.169 0.19 0.671 0.76 0.737 0.83 0.615 0.69
EfficientNet-b0 0.825 0.140 0.17 0.687 0.83 0.820 0.99 0.785 0.95
EfficientNet-b2 0.831 0.138 0.17 0.770 0.93 0.823 0.99 0.808 0.97
EfficientNet-b4 0.885 0.163 0.18 0.786 0.89 0.877 0.99 0.860 0.97
ResNext-50-32x4d 0.877 0.185 0.21 0.507 0.58 0.763 0.87 0.728 0.83
ResNext-101-32x8d 0.885 0.179 0.20 0.577 0.65 0.725 0.82 0.666 0.75
Average 0.867 0.165 0.19 0.618 0.71 0.796 0.92 0.746 0.86

Oxford Pet

Upright Training Rotated Training AMR 1000 AMR 150
Testing up rot % ceil rot % ceil rot % ceil rot % ceil
ResNet-18 0.700 0.442 0.63 0.579 0.83 0.665 0.95 0.624 0.89
ResNet-50 0.750 0.477 0.64 0.590 0.79 0.712 0.95 0.660 0.88
ResNet-152 0.752 0.460 0.61 0.579 0.77 0.697 0.93 0.633 0.84
EfficientNet-b0 0.740 0.496 0.67 0.630 0.85 0.727 0.98 0.699 0.94
EfficientNet-b2 0.763 0.518 0.68 0.617 0.81 0.753 0.99 0.720 0.94
EfficientNet-b4 0.735 0.515 0.70 0.605 0.82 0.719 0.98 0.686 0.93
ResNext-50-32x4d 0.743 0.489 0.66 0.579 0.78 0.711 0.96 0.679 0.91
ResNext-101-32x8d 0.748 0.469 0.63 0.645 0.86 0.712 0.95 0.656 0.88
Average 0.741 0.483 0.65 0.603 0.81 0.712 0.96 0.670 0.90

A. Extended results on Stanford Cars and Oxford Pet
We investigate the phenomenon that for Stanford Cars (and to a lesser extent) Oxford Pet the AMR performance decreases
when inputs are close to upright. We create polar plots of the Stanford Cars top-1 accuracies where AMR training duration
and base architecture are shown individually (see Figure 7). We observe that longer training of the AMR module helps to
some extent. Using a small, data-efficient architecture such as ResNet18 on the other hand almost completely removes this
effect. It shows that AMR module training is much more reliant on a sample-efficient, appropriately sized (with respect to
the dataset) base model compared to standard classification training where large models tend to perform best. We, therefore,
suspect that models which are oversized for a simple dataset such as Stanford Cars can learn very task-specific filters in early
layers that only retain information used for classification. This in turn causes the angle classifier to fail when an upright
image is used for which these filters have been optimized and very minimal information is retained in the features extracted
from the base model.

B. Are the base network features useful for rotation estimation?
We opt to use the features generated by a base classification network as the input to our AMR module instead of using a
distinct specialized network for angle prediction. This allows us to design an AMR module with a very low number of
weights such that it is quickly trained. The intuition behind this choice is that the features which are trained for classification
also carry valuable information for angle prediction. This should be especially true for the early layers which tend to consist
more of lower-level, class-agnostic, features. In this section, we present an ablation study exploring the validity of this
assumption. We train AMR modules attached to a ResNet-18 with restricted information flow from the base model to the
AMR. First, we train a module and only open the connection from the Stem to the AMR module (see Figure 2). We repeat
this for each of the four other connections (Stage 1 - Stage 4). Figure 8 shows the evolution of the top-1 angle classification
errors over the training time. The best single source of information is the output of Stage 1. A close second is the module
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Figure 7. Polar plots of Stanford Cars top-1 AMR accuracies, shown individually by training duration (dashed vs dotted) and base model
architecture (color coded) instead of averaged.

Figure 8. Top-1 angle accuracies for ResNet-18+AMR with the information flow from the base network restricted. Legend indicates
which channels (see Figure 2 in the main manuscript) from the base network are open.

that is only attached to the stem (making it essentially a separate network). As expected are the outputs of the later stages far
less informative. We train an additional module with input from Stage 1 plus Stem, it outperforms the other modules which
are attached to only one of those quite significantly. This shows that the channels carry some complementary information.
Finally, the module attached to the base network at all five connections clearly performs the best. Therefore we can conclude
that the features of the base network are helpful for angle prediction and feeding the output of all base network stages into
the AMR module is the best design choice.

C. Reproducibility notice
This section provides all the necessary information to reproduce every result presented in this work. Our experiments were
run on machines with 4xTesla V100-SXM2-32GB or 4xNVIDIA Tesla T4 16GB. When running on a single GPU we
recommend the linear learning rate scaling rule (Goyal et al., 2017).

Data
ImageNet, Stanford Cars and Oxford Pet are public datasets and can be sourced from their original authors. Our
photographed-at-an-angle versions of ImageNet images can be downloaded here: https://github.com/tuggeluk/
ffcv-imagenet/tree/rotation_module/sanity_check_data.

Code
Our code is publicly available on GitHub at https://github.com/tuggeluk/ffcv-imagenet/tree/
rotation_module.

Hyperparameters
We logged hyperparameters as well as relevant metrics of each run to wandb.ai. The easiest and safest way to exactly
replicate a run is to first check out the git state and then use the run command given in the overview tab of each run. The
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Table 6. Links to wandb.ai projects containing hyperparameters and relevant metrics of all training and evaluation runs created for this
work.

ImageNet CNN
Training
Base models https://wandb.ai/tuggeluk/train_base_models
AMR modules https://wandb.ai/tuggeluk/train_angleclass_no_lossshape
Evaluation
Base models https://wandb.ai/tuggeluk/evaluate_final_base_models_highres
BM + AMR https://wandb.ai/tuggeluk/evaluate_final_angle_class_highres,

https://wandb.ai/tuggeluk/evaluate_final_angle_class_highres_5ep

ImageNet ViT
Training
Base models https://wandb.ai/tuggeluk/base%20ViT
AMR modules https://wandb.ai/tuggeluk/train_angleclass_no_lossshapeViT
Evaluation
Base models https://wandb.ai/tuggeluk/evaluate_final_base_models_highres_ViT
BM + AMR https://wandb.ai/tuggeluk/evaluate_angle_class_ViT

Stanford Cars
Training
Base models https://wandb.ai/tuggeluk/train_base_models_stanfordcars
AMR modules https://wandb.ai/tuggeluk/train_angleclass_no_lossshape_StanfordCars
Evaluation
Base models https://wandb.ai/tuggeluk/evaluate_final_base_models_highres_StanfordCars
BM + AMR https://wandb.ai/tuggeluk/test_angleclass_stanfordcars

Oxford Pet
Training
Base models https://wandb.ai/tuggeluk/train_base_models_oxfordpet
AMR modules https://wandb.ai/tuggeluk/train_angleclass_no_lossshape_OxfordPet
Evaluation
Base models https://wandb.ai/tuggeluk/evaluate_final_base_models_highres_OxfordPet
BM + AMR https://wandb.ai/tuggeluk/test_angleclass_oxfordpets

MNIST
Training
Base models https://wandb.ai/tuggeluk/train_base_models_MNIST
AMR modules https://wandb.ai/tuggeluk/train_angleclass_no_lossshape_MNIST

logs of each training and evaluation run can be found under the URLs shown in Table 6.

Model weights
The model weights for each trained model we use here can be obtained using the following link https://github.com/
tuggeluk/ffcv-imagenet/tree/rotation_module/downloads.md.

D. Re-digitized Images
Figure 9 shows one example of the printouts that were used to create the manually rotated images for Section 5. The
additional helper lines were printed to facilitate the creation of photographs of the printout at exactly the twelve desired
angles. Figure 10 shows the re-digitized images at an angle (top rows) and after AMR (bottom rows) with their classifications
color coded analogous to Figure 5 but for all seven test images.
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Figure 9. Example printout featuring helper lines to facilitate photographs at exact angles.
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Figure 10. All re-digitized photos raw (top rows) and after AMR (bottom rows) with their corresponding classifications color coded.
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