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ABSTRACT

While deep neural networks have shown impressive results in automatic speaker recog-
nition and related tasks, it is dissatisfactory how little is understood about what exactly
is responsible for these results. Part of the success has been attributed in prior work to
their capability to model supra-segmental temporal information (SST), i.e., learn rhyth-
mic-prosodic characteristics of speech in addition to spectral features. In this paper,
we (i) present and apply a novel test to quantify to what extent the performance of
state-of-the-art neural networks for speaker recognition can be explained by modeling
SST; and (ii) present several means to force respective nets to focus more on SST and
evaluate their merits. We find that a variety of CNN- and RNN-based neural network
architectures for speaker recognition do not model SST to any sufficient degree, even
when forced. The results provide a highly relevant basis for impactful future research
into better exploitation of the full speech signal and give insights into the inner workings
of such networks, enhancing explainability of deep learning for speech technologies.

1. Introduction

Deep neural networks (DNNs) have become extremely effec-
tive in speaker recognition (SR) and its sub-tasks like speaker
verification (SV), identification (SI) or clustering (SC) [1]. De-
spite this success, deep learning remains driven by empiricism
[2], and the available theoretical insights into its workings [3]
all the more underline what is yet not understood about how
and why DNNs arrive at such a high performance [4], leaving
much room for improved explainability of such models [5] also
to guide future research.

Meanwhile, the key to human top performance in SR (specif-
ically, in challenging environments) is to make use of a com-
prehensive variety of spectro-temporal acoustic-phonetic infor-
mation in speech [6, 7]. Particularly, short-term spectral infor-
mation, equating to frame-based acoustic information (FBA)
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in automatic systems, is supplemented in humans by supra-
segmental temporal information (SST), also referred to as
speech prosody. SST varies between individuals [8, 9] and
is beneficial for automatic SR systems [10]. Latter authors
provided first evidence that succeeding in adequately model-
ing SST in addition to FBA holds the potential for an order of
magnitude less SR errors. Further evidence has been provided
using convolutional and recurrent deep learning architectures
[11–13], claiming that the achieved gains are due to the superior
sequence modeling capabilities of the DNNs that are “success-
fully capturing prosodic information” [13] – without explicitly
testing this. In a similar vein [14, 15]: Zhao et al. [14] ar-
gue that their BLSTM-enhanced [16] SV DNN is “supposedly
phonetically aware” and modeling “context information, which
could facilitate the ResNet to [. . . ] suppress the environmen-
tal variations”, because BLSTM layers have the capability to
model long ranges. Yet, these claims have never been verified.

If DNNs would not model SST adequately (but achieve their
superior results otherwise by focusing on FBA alone), this
would imply that the predicted performance gains [10] are still

ar
X

iv
:2

31
1.

00
48

9v
1 

 [
cs

.S
D

] 
 1

 N
ov

 2
02

3



2

to be realized. More specifically, if it could be quantified to
what extent state-of-the-art DNN-based SR systems actually do
or do not exploit SST, this would (a) add explanation to a high-
performing but opaque class of SR models, (b) show specific
directions for targeted future research (concretely targeting the
modelling of SST, if it turns out to be under-exploited), and (c)
verify theoretical as well as empirical findings in earlier studies,
practically guiding future developments. This way, the found
discrepancies between DNNs theoretical capabilities and their
practical workings are not just uncovered, but can be reconciled
in the future.

In this paper, we experimentally analyze this hypothesis
of superior modeling of supra-segmental temporal features
through contemporary DNNs made in prior work, suspecting
that it happens less than assumed. Our motivation is to bet-
ter understand and improve DNNs in their ability to model
fundamental aspects of the speech signal inherently. Hence,
we present a novel approach to quantify what amount of se-
quence modeling is actually occurring, and find the hypothesis
of superior SST modeling has to be rejected: Current DNNs
lazily rest on phone-level acoustic features alone (cf. Sec. 2).
We offer further analyses of this undesirable “deep cheating”
phenomenon (cf. Sec. 3) by gradually removing the speaker-
discriminant information contained in FBA features through in-
novative experimental setups, thus forcing models to rely on
other sources of information. Still they do not switch to model
available SST, as evidenced in extensive experiments using di-
verse state-of-the-art DNN architectures for SV using TIMIT
[17] and VoxCeleb [18] benchmarks.

To the best of our knowledge, this paper represents the first
systematic study into the modeling of SST by DNNs. Its contri-
butions stand further out in several ways: First, our results ex-
plain what DNNs for SR do and do not model, namely that they
overfit on the easily exploitable FBA to the point where they
nearly ignore SST information, rectifying earlier published con-
jectures. Second, this opens strategic directions for future SR
research that are perpendicular to other current research trends,
namely to inquire into better exploitation of SST (cf. Sec. 4) to
realize the predicted performance gain of one order of magni-
tude less errors [10]. Third, the developed benchmark suite of
experimental protocol, test metric and established results makes
progress in this direction quantifiable.

2. Time scrambling approach to quantify SST exploitation

2.1. Objective and related work

We study SR DNNs that receive spectrogram-like input and
are interested in quantifying to which extent they rely on FBA,
i.e., spectral characteristics as contained in a single frame of
MFCCs [19], and to which extent they exploit SST, i.e., infor-
mation that is contained in the trajectory over many frames, like
intonation and rhythm. Works like [13, 14] assert that such se-
quence learning is happening automatically because it is a rea-
sonable explanation for the achieved superior results, given the
general sequence learning capabilities of the models. On the
other hand, Soleymani et al. [20] do not rely on CNNs to pick

up SST automatically just via filters that extend in time: In ad-
dition to feeding mel-spectrograms into convolutional layers to
extract FBA, they feed hand-crafted prosodic features for late
fusion into the DNN to achieve prosody-enhanced SV.

The survey by Bai and Zhang [21] shows that these two views
are omnipresent in the literature: Some works use DNN archi-
tectures inspired by computer vision [22, 23], thereby assert-
ing that exploiting dynamics will happen via filters and average
pooling along the time axis in the same way that such architec-
tures pick up image information along the x-axis automatically.
According to Bai and Zhang, this is “the most common [tem-
poral] pooling function”. At the same time, they survey works
that deal explicitly with integrating FBA over time, either via
collecting statistics [24, 25], applying self-attention [26] or per-
forming a trainable soft clustering of FBA [27]. In this section,
we lay the foundation for an informed decision on these op-
tions by quantifying how well DNNs inherently capture SST in
spectrogram-like input without additional explicit care for tem-
poral dynamics.

2.2. Methodology and experimental setup

The authors of [10] used a simple test to probe human re-
liance on SST: They randomly shuffled the columns of a spec-
trogram, re-synthesis the result back to audio, and conducted
human SR experiments. This way, they left all FBA informa-
tion intact but removed all SST within said spectrograms. In-
spired by this time scrambling approach, we aim to quantify
the amount of actual SST exploitation in a DNN by compar-
ing SR performance on original input data with performance
on time-scrambled input that contains no SST: Starting from
a mel-spectrogram input (front-end processing similar to [13]
for comparability), this is achieved by randomizing the order of
speech frames, i.e., columns in the spectrogram, thereby remov-
ing all original sequence information. The anticipated drop in
recognition performance would confirm an anti-proportionally
good exploitation of SST through DNNs, while no drop would
at least mean that the DNN can compensate missing SST equiv-
alently with the remaining FBA information, hence does not
rely on SST exploitation.

Specifically, we consider three ways to extract fixed-length
time-scrambled segments from a variable-length utterance (cf.
Fig. 1) according to the following reasoning: OS segments
will contain FBA and SST, offering a DNN all options to learn
these lower- and higher-level features. SS segments will, due
to a random trajectory of frames, contain no speaker-specific
dynamics, offering DNNs only the option to learn about FBA.
SU segments constitute certain middle ground, biased towards
FBA: While still containing no SST, they draw frames from the
full utterance rather than a limited segment, offering a richer
sample of FBA.

We carried out the following initial experiments on the
TIMIT database which provides a controlled acoustic record-
ing environment and normalized utterances (630 speakers under
clean studio conditions, 10 sentences per speaker of on average
3s length, 462 speakers in the training set). This laboratory
setup enabled us to first study voice recognition performance of
a DNN model per se, without complications induced through
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Fig. 1. Segment creation with and without SST: Starting (a) from a spectrogram per varying-length utterance, we extract segments of fixed length t from a
starting point according to 3 segment-drawing strategies as follows. Original Segment (OS): just cut out (b) the respective part; Shuffled within Segment
(SS): additionally, shuffle (c) the columns of the previous output; Shuffled within Utterance (SU): globally shuffle all columns (d) prior to cutting (e).

the environment (background noise, cross talk, etc.). As our
main interest is in understanding and improving DNN model-
ing for SR (in contrast to improving a complete SR pipeline),
we used three different DNN architectures to sample the space
of simple to advanced models without explicit care for temporal
modeling: (a) As a simple baseline, an adapted version of the
vanilla convolutional network (CNN) of [12], sped up by a Cos-
Face loss function [28] instead of the computationally heavy
KL divergence; (b) as the first model that claimed to model
prosody, the recurrent neural network (RNN) of [13]; (c) as a re-
cent architecture, the ResNet34s (ResNet) of [27] that innately
contains a GhostVLAD layer to aggregate FBA per segment,
adapted to the experimental setup of the previous models with
respect to front-end processing (see below); (d) additionally, to
account for recent developments in state-of-the-art approaches,
the Fast ResNet-34 (F-ResNet) of [29]3 that also serves as a
competitive baseline in the VoxSRC SR benchmarking efforts
[1], used here with its original parameters also for front-end
processing (and hence not directly comparable to the first three
models). Utmost care has been taken to keep all not explicitly
mentioned parameters (here or below) for, e.g., front-end pro-
cessing, DNN architecture and training, embedding extraction,
and classification equal to the respective original work in order
to allow for comparisons. Hence, the first three models allow
a comparison with prior work on modeling dynamic voice fea-
tures with DNNs, while the fourth model allows a comparison
with the current state-of-the art. We expected all models to suf-
fer performance loss in increasing magnitude when fed with
shuffled frames within segments due to increasing capability to
model SST.

For training of the CNN, RNN, and ResNet model, to war-
rant backward comparability with prior work, in each of 128
epochs we draw one t = 1s long segment (to account for short
utterances [30]) from a random location per utterance in the
training set, using a batch size of 100 and otherwise a similar
experimental setup as [13]. For the F-ResNet, to keep forward
comparability with current SR benchmarking efforts, we keep
all hyperparameters similar to the experimental setup in [29],
specifically using t = 2s long training segments (t = 4s for eval-
uation), 500 epochs and a batch size of 800. We repeat this for
each of the OS/SS/SU strategies to draw segments with/without

3Sourced from https://github.com/clovaai/voxceleb_trainer.

Table 1. SC results on TIMIT [MR µ/σ]. Bold font indicates best results
per model, cell coloring scales with quality per model. Cells marked by ⇓
are discussed in the text.

↓ training / test→ OS SU SS

CNN [12]
OS a⇓ 0.00 σ0.00 9.75 σ0.94 a,f⇓ 9.00 σ2.15

SU 8.50 σ2.42 e⇓ 0.50 σ0.61 1.75 σ0.61

SS a⇓ 9.00 σ1.66 1.00 σ0.50 b⇓ 1.25 σ0.00

RNN [13]
OS d⇓ 1.25 σ1.12 2.75 σ0.94 f⇓ 2.75 σ0.50

SU 3.75 σ1.37 0.00 σ0.00 2.50 σ1.58

SS 2.00 σ1.00 1.25 σ0.79 d⇓ 0.25 σ0.50

ResNet [27]
OS d⇓ 1.00 σ0.94 8.25 σ4.78 f⇓ 11.50 σ4.29

SU 2.50 σ1.77 1.00 σ0.50 3.00 σ1.27

SS 2.75 σ0.94 1.25 σ1.12 d⇓ 1.00 σ0.94

F-ResNet [29]
OS 11.50 σ2.15 37.50 σ4.18 33.75 σ4.18

SU 16.50 σ2.42 5.75 σ1.70 4.25 σ1.00

SS 15.50 σ2.57 6.75 σ1.50 j⇓ 3.75 σ0.79

Table 2. SV results on TIMIT [EER µ/σ]. As with the SC results on TIMIT
in Tab. 1, the F-ResNet is out of competition here due to different front-end
processing.

↓ training / test→ OS SU SS

CNN [12]
OS c⇓ 6.38 σ0.12 12.02 σ0.51 f⇓ 11.90 σ0.46

SU 8.55 σ0.49 g-i⇓ 5.55 σ0.06 6.12 σ0.12

SS 8.16 σ0.42 5.33 σ0.18 c⇓ 5.78 σ0.16

RNN [13]
OS d⇓ 3.53 σ0.07 4.19 σ0.09 f⇓ 3.90 σ0.12

SU 3.99 σ0.16 3.78 σ0.10 3.66 σ0.13

SS 4.00 σ0.07 3.89 σ0.06 d,g-i⇓ 3.54 σ0.05

ResNet [27]
OS 4.96 σ0.19 10.34 σ1.56 f⇓ 9.21 σ1.15

SU 6.59 σ0.25 6.25 σ0.23 6.37 σ0.35

SS 5.89 σ0.25 6.11 σ0.31 g-i⇓ 5.80 σ0.11

F-ResNet [29]
OS 12.20 σ0.25 23.41 σ1.73 20.47 σ1.50

SU 15.12 σ0.84 10.46 σ0.28 9.69 σ0.20

SS 15.91 σ0.90 9.86 σ0.11 j⇓ 8.95 σ0.13

SST, thus training three separate versions of each model. We
use these models to extract embeddings for two downstream
tasks: For SV, we pair every sentence in the TIMIT test set
with every other sentence therein, and evaluate the equal error
rate (EER) as the standard metric used for SV [1], resulting in
2.82 mio. pairwise comparisons. For SC, we perform hierarchi-
cal clustering of 2 utterances (comprising 2 and 8 concatenated
sentences) per 40 speakers as in [13], measured by the mis-

https://github.com/clovaai/voxceleb_trainer
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classification rate (MR) as the established measure [11] (6, 400
pairwise comparisons). For each reported EER/MR, we aver-
age over 5 train/test runs and report mean and SD.

2.3. Results and discussion

Results are shown in Tabs. 1 and 2. For the analysis, we first
focus on SC results (Tab. 1) and original timing vs. segment-
wise shuffled (rows/columns marked with OS/SS), ignoring the
rest. With reference to the lowercase letters in the cells marked
by ⇓, we can say: (a) Looking at the CNN model only, every-
thing appears as expected as best results (MR = 0 in all 5 runs,
the best result ever reported on this benchmark) are achieved
for training and testing with OS, and worst results are achieved
when SS is used for training or evaluation. (b) But already
looking at training and testing using SS raises doubts w.r.t. ac-
tual SST exploitation: MR = 1.25 is a very good result for
the task, still outperforming the previous state of the art [13],
but not using any SST (as it has been removed from the data).
(c) Taking, secondly, SV results (Tab. 2) into account, these
doubts are confirmed. For the CNN model, training/testing us-
ing SS/SS outperforms OS/OS by 0.6 difference in EER. (d)
A similar picture is seen for the RNN on both tasks and the
ResNet on SC, where SS/SS either outperforms or (within σ)
equals OS/OS. (e) When adding SU for training and/or testing
into the picture, this tendency is confirmed: SU/SU outperforms
SS/SS and is almost on par with OS/OS (cf. a). (f) However,
models do pick up something about inter-frame relationships
as in cross conditions like OS training and SS testing, a per-
formance drop is evident for the CNN and ResNet (not so for
the RNN). We argue that this is rather the effect of mismatched
train/test conditions as is usual in any machine learned model;
previous discussion (specifically, that best results are achieved
using SU in several cases) has shown that (almost) nothing use-
ful is extracted from the trajectory. (j) The F-ResNet, which
uses the front-end processing and architectural parameters op-
timized for SV on the by orders of magnitude larger VoxCeleb
dataset, has expected difficulties with the tiny TIMIT bench-
mark (which could be cured by proper pre-training, but would
not help the purpose of these experiments). It hence ran out of
competition here, but will play a major role in later experiments
(see Section 3). For now, it suffices to say that it behaved quite
similar to the ResNet. That the best scores are achieved using
the SS/SS setup on both tasks can be explained with the general
lack of sufficient amounts of training data, specifically when us-
ing longer segments, and that in this regime SS provides most
FBA information per segment (i.e., the higher sample efficiency
can partially make up for lacking training data).

Summarizing, we found that completely randomizing the or-
der of speech frames in segments used for training and eval-
uation still produced state-of-the-art or even better SV (e.g.,
SU/SU for the RNN) and SC (e.g., SS/SS for the RNN) results.
This is notwithstanding the obviously also state-of-the-art re-
sults of the OS/OS setup for several models (e.g., the CNN for
SC; ResNet for SV) – the point here is not that the results using
SS or SU are in any way superior to OS, but that they are some-
times not worse. Given this analysis, we believe to have strong
evidence that the tested DNN models do not rely on SST (they

Fig. 2. Visualization of FBA equalization: Compressed spectrograms of
the same sentence (SA1) of a male (a: MDAB0) and female (b: FCJF0)
TIMIT speaker with derived synthesized (a1/b1) and noise-vocoded (a2/b2)
variants.

might model them, but are ultimately able to produce similar
results without them). We conjecture that this is due to purely
modeling FBA is easy and efficient enough: It quickly brings
the loss down to a local minimum from which the training can-
not recover as switching features to a different set would intro-
duce too high intermediate losses again. This is in accordance
with studies claiming that DNNs are lazy in learning complex
concepts when easy ones work already [31], and tend to learn
shortcuts [32]. To put it drastically, DNNs “cheat” by ignoring
the harder task of modeling dynamics if they can.

Technically speaking, the model overfits to FBA information
to the point of neglecting other evidence. An ablation study
gives further evidence of this: Remarkably, replacing the CNN
in the TIMIT SV task with a simplistic model per speaker that
only holds a row-wise average of all the speaker’s training spec-
trograms (i.e., a single-Gaussian model with unit variance) out-
performs the CNN. Apparently, having access to the full fre-
quency resolution of the spectrogram at decision time is a larger
advantage to the simple model than pooling in frequency and
time is for the CNN. Overcoming this problem calls for a novel
form of regularization on the task-level, which will be explored
in the following section.

3. Regularization approaches to increase SST exploitation

3.1. Objective and context

Our objective here is to find ways to force models to revert
to SST. As one implication of the results of Sec. 2 is that the
predicted performance improvements [10] from exploiting SST
are still to be harvested, this holds large prospects. It could be
realized, e.g., by combining a model that focuses on FBA with
one regularized to focus on SST [33].

3.2. Methodology and experimental setup

First, we test the conjecture that DNNs only model those fea-
tures necessary to solve the task, starting with the easiest to
learn. Therefor, we increase the difficulty of the task by in-
cluding an acoustically more challenging dataset and check for
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Table 3. SV results on VoxCeleb (left) and noise-vocoded (middle) as well as resynthesized (right) TIMIT [EER µ/σ of 5 runs].
VoxCeleb TIMIT-NV TIMIT-Syn

↓ training / test→ OS SU SS OS SU SS OS SU SS

CNN [12]
OS g⇓ 25.75 σ0.13 37.23 σ0.74 36.96 σ0.78 32.56 σ0.62 35.32 σ0.46 35.41 σ0.55 46.24 σ0.18 48.94 σ0.15 48.97 σ0.23

SU 32.70 σ0.34 27.04 σ0.34 27.99 σ0.30 35.16 σ0.52 h⇓ 30.39 σ0.30 30.91 σ0.47 47.26 σ0.15 45.98 σ0.34 46.16 σ0.27

SS 33.26 σ0.29 27.91 σ0.32 28.50 σ0.28 35.25 σ0.69 30.63 σ0.38 31.23 σ0.27 47.14 σ0.22 45.88 σ0.12 i⇓ 45.66 σ0.12

RNN [13]
OS g⇓ 20.67 σ0.23 30.67 σ0.36 30.00 σ0.32 h⇓ 19.34 σ0.16 27.20 σ0.42 26.12 σ0.44 i⇓ 40.39 σ0.07 44.29 σ0.65 42.43 σ1.40

SU 26.20 σ0.18 22.02 σ0.10 23.57 σ0.09 22.95 σ0.24 21.48 σ0.40 21.15 σ0.25 43.63 σ0.35 41.93 σ0.26 41.64 σ0.25

SS 28.28 σ1.30 26.30 σ0.59 26.58 σ0.84 22.82 σ0.40 21.89 σ0.25 21.04 σ0.12 43.62 σ0.21 42.55 σ0.34 41.53 σ0.23

ResNet [27]
OS g⇓ 12.49 σ0.15 34.11 σ0.54 32.19 σ0.39 h⇓ 21.12 σ0.43 37.83 σ1.17 36.57 σ1.45 i⇓ 40.33 σ1.32 47.28 σ2.06 46.60 σ2.02

SU 22.05 σ0.43 19.08 σ0.26 20.02 σ0.16 27.03 σ0.63 23.38 σ0.41 24.02 σ0.25 43.44 σ0.86 42.97 σ0.51 42.65 σ0.59

SS 20.74 σ0.46 21.02 σ0.34 20.36 σ0.23 27.25 σ1.37 23.57 σ0.46 23.32 σ0.58 42.48 σ0.45 43.07 σ0.72 41.59 σ0.36

F-ResNet [29]
OS g⇓ 2.39 σ0.05 25.02 σ1.21 23.45 σ1.29 k⇓ 24.72 σ0.54 37.17 σ0.57 34.54 σ0.66 k⇓ 39.06 σ0.50 47.52 σ0.58 46.48 σ1.02

SU 11.00 σ0.57 6.69 σ0.11 6.58 σ0.15 31.46 σ0.86 22.40 σ0.42 21.67 σ0.49 42.85 σ0.47 40.10 σ0.11 40.19 σ0.10

SS 10.85 σ0.43 7.02 σ0.24 6.60 σ0.19 31.44 σ1.11 22.04 σ0.12 k⇓ 21.24 σ0.17 43.23 σ0.29 40.44 σ0.18 40.36 σ0.20

an increase of actual SST modeling via the test established be-
fore, using the VoxCeleb corpus while keeping other parameters
equal to the TIMIT analysis in Sec. 2 (i.e., for the CNN, RNN,
and ResNet models we keep the experimental setup compati-
ble with [13] while for the F-ResNet model we keep it com-
patible with [29]). VoxCeleb1 contains 148, 642 utterances of
varying length (few seconds up to several minutes) from 1, 211
different speakers recorded in the wild, thus holding a variety
of background noises including cross talk; VoxCeleb2 contains
more than 1 million utterances from 5, 994 speakers. We use
the standard experimental protocol of Chung et al. to train a
SV system on VoxCeleb2 , and evaluate SV performance on
the “hard” test set of VoxCeleb1 [29]. We omit SC results on
VoxCeleb as experiments in Sec. 2 led to similar conclusions
for both tasks.

Second, we aim at actively nudging models to learn SST by
making FBA less attractive, inspired by the previous approach
that scrambled SST. While scrambling the frequency axis by
naı̈vely randomizing the rows in a spectrogram would effec-
tively remove SST as well (as it depends on the evolution of
sound over frequency band borders), we instead propose the
regularization strategy of largely equalizing (instead of random-
izing) FBA amongst speakers while retaining their discrimina-
tive SST. Note that this is done specifically to study the ef-
fect of devalued FBA on SST-modeling by our DNNs, not as
a general way to augment speech data [34]. Specifically, we
chose two equalization strategies (cf. Fig. 2) on the TIMIT
corpus: (a) Noise-vocoding the sentences with just 4 broad fre-
quency bands [35], modulated by the original speakers’ energy
levels, to reduce spectral differences; and (b) using a custom
version of the Slang TTS [36] speech synthesizer (able to use
speaker-specific phoneme-level timing annotations and energy
contours from the TIMIT corpus as additional input) to recreate
every sentence from its text transcript with an identical syn-
thetic voice, thus eliminating spectral differences but keeping
some SST.

3.3. Results and discussion

SV results on VoxCeleb are shown in the left part of Tab. 3.
Comparing them with SV on standard TIMIT (Tab. 2) and using

the cell annotations marked by ⇓, the following is noteworthy:
(g) On TIMIT, competitive results are achieved using SU/SU
(CNN) and SS/SS (RNN, ResNet) that are only marginally
worse than the best result per model and in particular strong
in comparison with OS/OS. On VoxCeleb, OS/OS now clearly
is better than all other combinations that include randomiza-
tion by a larger margin. While the absolute scores are bad for
the two simpler models, the ResNet shows a reasonable EER
using OS/OS on VoxCeleb, only about 3 times worse than the
best result on the much simpler TIMIT and about twice as good
as the best result involving any randomization. The F-ResNet
shows state-of-the-art performance under OS/OS (i.e., normal)
conditions, thereby conforming that the experimental setup and
codebase used for these experiments is sound. We conclude that
providing a more challenging task (one that cannot be solved re-
lying on simpler frequency-domain features alone, as research
prior to the deep learning era has shown [37]) stimulates the ex-
ploitation of SST in models to some degree, depending on the
ability of the model – as all conditions with scrambled SST fall
far behind in performance (by a factor of ≥ 2.75 for the best
model, F-ResNet).

The middle part of Tab. 3 contains the results on noise-
vocoded TIMIT, where speakers’ individual timbre has been
largely removed. Again comparing with the respective results
on standard TIMIT, it is noteworthy that (h) best results are now
achieved by OS/OS for the RNN and ResNet. However, the
CNN still has best results involving random timing, and also for
the RNN and ResNet models, the margin for OS/OS is small
and EERs are 4-5 times higher than on standard TIMIT. We
conclude that the effect seen on VoxCeleb (a harder task makes
the models start learning SST) is visible to some degree, but
less pronounced. (i) The same is true for the results on resyn-
thesized TIMIT (cf. right part of Tab. 3), except that best results
for the CNN are achieved using another form of randomization
and the EERs are 8-11 times worse here. (k) It is different for
the F-ResNet, where best results on noise-vocoded TIMIT are
still achieved using SS/SS (and only with a very thin margin
using OS/OS on resynthesized TIMIT). We conjecture that this
is again due to the tininess of the TIMIT database for training
this large model (see (j) discussed in Sec. 2).
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We conclude that diminishing the dominance (i.e., speaker
discriminativeness) of FBA partially (using noise vocoding) or
fully (through resynthesis) brings forth some exploitation of
SST for SV, but not optimally (which would be evidenced not
necessarily by lower absolute EERs, but by larger margins be-
tween top OS/OS results and everything else). Moreover, such
an effect is even less pronounced when switching tasks from SV
to SC (tables omitted): No benefit of OS/OS can be observed on
TIMIT-NV and only little evidence for it is seen on TIMIT-Syn.
We conjecture that the attempt to model SST apart from FBE
is suboptimal (in accordance with the literature [6, 7] that cat-
egorizes SST as of subordinate importance but helpful in addi-
tion to FBA). Evidence for this is the experiment on VoxCeleb
that shows that under challenging circumstances ResNets can
achieve unparalleled results by exploiting FBA and SST jointly.

4. Conclusions, future work and limitations

In this paper, we have presented the first systematic study on
learning supra-segmental temporal features by DNNs for SR.
Not focusing on presenting a new kind of model or SR method-
ology, we have instead shown that state-of-the-art CNN, RNN
and ResNet models for SV and SC, when trained on clean data,
simply ignore any useful supra-segmental temporal cues in the
audio signal despite contrary conjectures in the literature and
the models’ principal abilities to learn such features. We have
called this phenomenon “deep cheating”. It is relevant since re-
lated work provided evidence [10] that improved modeling of
such higher-level features should result in one order of mag-
nitude lower error rates in related tasks and hence holds a key
for targeted future research, guided by our test to quantify ac-
tual SST explotation. It is also of importance in the context
of explaining how DNNs achieve their superior results (XAI),
where our explanation goes beyond activation visualization to
explain individual classifications towards a broader understand-
ing of signal processing by DNNs.

Furthermore, we have presented two approaches to force
DNNs to exploit SST, and measured their effectiveness: (a) In-
creasing task difficulty by using acoustically more challenging
data (VoxCeleb instead of TIMIT), and (b) removing the dis-
criminative power of FBA by equalizing speakers’ timbre. The
results indicate that both approaches achieve respective results
nominally, thereby confirming other studies that attest DNNs
laziness in modeling only the easiest available features to solve
a given task. Theoretical and empirical studies suggest that
scaling up training time might help overcome such imperfect
local minima [38].

We have conducted extensive experiments to verify the cor-
rectness and stability of our results for a wide range of design
choices. Our claims hold for reasonable settings of the hy-
perparameters learning rate, number of epochs, segment and
hop length, and embedding size; when using the original loss
functions of published models instead of speed-ups; with vary-
ing number of frequency bands for the noise vocoder or using
MBROLA [39] as another synthesizer; and for evaluating on
VoxCeleb2. TIMIT, though small, is a sound basis for our find-
ings (cf. [38]): It has been used successfully for this purpose by

the community before; we do not observe problems with over-
fitting for all but the F-ResNet model, although by construction
of the mini batches, we only exploit a fraction of the available
training data; it contains pure voices without exogenous diffi-
culties (noise, brevity, . . . ), offering to study SR capability in
isolation and hence granting an unbiased look at DNNs’ abili-
ties for voice modeling.

However, we have also shown that attempting to learn SST
apart from FBA results in severely underperforming models
that verge on random SV results and are even less helpful for
SC. Hence, our results are preliminary with respect to find-
ing better ways of exploiting speaker-specific SST with DNNs.
Thinking of perceivable instantiations of SST like personal lin-
guistic melody, it is elusive how such strong rhytmic-prosodic
patterns are not picked up by any of the most capable gen-
eral pattern recognition methods we know today, deep neural
networks. Future work should therefor concentrate on finding
inductive biases for deep networks that fully exploit the time
axis for speaker specificity. Inspired by how auto-regressive
self-supervised learning in text processing works [40] and
building on the success of respective large language mod-
els, transformer-based architectures and large-scale pre-training
could be a way to integrate handling of dynamic features either
directly into the model or into methods for speech augmenta-
tion. Such work should use the test presented in Sec. 2 to
benchmark the success of actually exploiting STT. Our code is
available online at https://tinyurl.com/deepcheating.
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