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Abstract

Introduction: In contrast to current AI technology, natural intelli-
gence — the kind of autonomous intelligence that is realized in the
brains of animals and humans to attain in their natural environ-
ment goals defined by a repertoire of innate behavioral schemata
— is far superior in terms of learning speed, generalization capabil-
ities, autonomy and creativity. How are these strengths, by what
means are ideas and imagination produced in natural neural networks?
Methods: Reviewing the literature, we put forward the argument
that both our natural environment and the brain are of low com-
plexity, that is, require for their generation very little information
and are consequently both highly structured. We further argue that
the structures of brain and natural environment are closely related.
Results: We propose that the structural regularity of the brain
takes the form of net fragments (self-organized network patterns)
and that these serve as the powerful inductive bias that enables the
brain to learn quickly, generalize from few examples and bridge the
gap between abstractly defined general goals and concrete situations.
Conclusions:  Our  results have important bearings on
open problems in artificial neural network research.
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1 Introduction

There may be different kinds of intelligence. We here concentrate on the one
that is epitomized in humans and animals. This kind of intelligence is often
defined as the ability to successfully pursue general goals in varying contexts,
goals such as feeding oneself, avoiding danger or creating offspring. The empha-
sis of our communication is on the neural mechanisms that generate this ability,
our main point being that besides nature and nurture the process is dominated
by a third generative factor, emergence. In this context, ‘nature’ refers to the
influence of the genes and therewith to that of evolution, while ‘nurture’ to
that of experience, instruction and education. We would like to maintain here
that neither quantitatively nor qualitatively genes and experience alone can
account for the structure of the nervous system nor the intelligence it supports,
leaving a large gap to be closed by emergence.

On the quantitative side, as to ‘nature’, the human genome contains one
gigabyte of information (3.3 billion nucleotides of DNA [1]) while one petabyte
is required to describe the connectivity of the human brain'. In the case of
humans, ‘nurture’ during the first years of life is provided for by an environment
(the nursery, the family, toys, books etc.) that is deliberately kept simple and
could be simulated in its visual aspects on the basis of a virtual reality program
of a few gigabytes. Additionally, the rate at which humans absorb information
into permanent memory is estimated [2] at only 1—2 bits per second, signifying
a couple of gigabits over a long lifetime. These amounts of information are to
be compared to the petabyte needed to list all connections in the brain.

The qualitative side is the essence of the problem we want do address: how
can intelligence, in terms of ideas, imaginations and insights surpass so much
everything that has been ‘programmed’ into the genes, and how can it learn
so fast and generalize so boldly beyond all the examples it has seen before?

To deal with the quantitative side of the problem one has to distinguish the
raw amount of information needed to describe a structure from the minimal
amount of information required to generate it. The latter, the bit length of
the shortest algorithm that can generate the structure, is called Kolmogorov
complexity [3] and may be smaller by many orders of magnitude than the
amount of information required to describe the structure. An extreme example
of low Kolmogorov complexity is illustrated in Figure 1. Obviously, nature and
nurture need only gigabytes to construct, respectively instruct, the brain. A
logical consequence of this efficiency is that the brain is totally dominated by
structural regularity, so that instead of from all randomly possible connectivity

110 synapses, each taking 33 bits to address one of the 10'° neurons of the brain.
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Fig. 1 Illustration of Kolmogorov complexity. Julia sets (middle panel) need, literally, infi-
nite amounts of information to be described, but very little information suffices to generate
them (left; recursive definition and mathematical grammar). Perception and efficient learn-
ing are possible by reducing the flood of sensory signals produced by the environment to an
underlying low-complexity description (right).

patterns among its neurons nature and nurture only need to pick from a vastly
smaller space of pre-structured patterns. A central thesis of our communication
is that the structural regularity implied by this low Kolmogorov complexity
acts as the domain-specific inductive bias that any system needs [4, 5] or [6,
ch. 2.7] to be able to learn efficiently.

The remainder of this paper is organized as follows: In Section 2 we put
forward the hypothesis that the Kolmogorov algorithm of the brain is net-
work self-organization as studied extensively on the example of the ontogenetic
development of retino-topic connections. In Section 3 we discuss a small num-
ber of cognitive sample processes that are in need to be understood and
implemented. In Section 4 we try to make plausible how net fragments can
serve as basis to solve these problems and in Section 5 we discuss the relevance
of the perspective we are creating to open problems within the current field of
AL

2 Network Self-Organization as Kolmogorov
Algorithm of the Brain

What is the type of mechanism, the concise Kolmogorov algorithm, by which
the connectivity of the brain and hence the structural regularity is generated
under genetic guidance? We suggest to adopt as paradigm the experimentally
and theoretically well-studied mechanism of the ontogenesis of retinotopic con-
nections: The axons growing out from the retinae of vertebrates reach their
target structures (e.g., the optic tectum) in more or less random order, but
after a relatively brief period they order themselves so as to establish a smooth
mapping conserving geometry [7]. Of all the mechanisms that have been pro-
posed to explain the process only one survived comparison to experiment,
network self-organization [8, 9]. Its general idea is quite simple. An initial con-
nectivity supports spontaneous activity. This activity acts back by synaptic
plasticity to alter the network, and this loop, from connectivity to activity and
back to connectivity, continues until a stationary state, an attractor network,
is reached.
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Therefore we propose that network self-organization, as displayed in the
retino-tectal system, is the Kolmogorov algorithm generating the wiring of the
brain. Sensory signals, as soon as they become available, participate in the
mechanism, co-determining the attractor networks that are allowed to form.
Attractor networks can be characterized by optimizing two properties: sparsity
and consistency. A network is sparse if it has a small number of connections
converging on or diverging from any neuron and connectivity is consistent if
it supports high-order temporal correlations between sets of signals arriving
at any given neuron. This consistency means that a network is dominated by
sets of alternative signal pathways (of approximately equal conduction delay)
between many pairs of source and target neurons [10].

As result of such network self-organization, the brain develops as an overlay
of attractor networks (‘net fragments’) [11]. Each net fragment comprises a set
of neurons and the connections among them. If a set of neurons is activated
again and again for a sufficient total time its internal connectivity can converge
towards an attractor state. There is positive feedback between the activity of
the set and the structure of its connectivity. As large sets of neurons are very
unlikely to occur more than once, only small sets will be given a chance to
establish themselves as net fragments. Each neuron can be part of several net
fragments.

Many systems of low Kolmogorov complexity and implied high regular-
ity arise by emergence. Such systems are composed of building elements that
interact by physical, chemical, mechanical etc. forces. Well-known examples
are soap bubbles or crystals: Under appropriate conditions (e.g., low temper-
ature in a liquid) large-scale ordered configurations arise in which the forces
between the elements interlock such as to lend the configuration stability. In
these, weak interactive forces between the building elements (e.g., molecules)
can achieve large-scale stability only by interlocking in consistent configura-
tions. In the brain, where quite a number of connections have to conspire
(i.e., fire simultaneously) to activate a neuron, a vanishingly small subset of
all possible connectivity patterns is singled out by their ability to dynamically
self-stabilize as attractors of network self-organization.

After sufficient self-organization of the system larger sets of neurons can
only be active as interlocking net fragments, each of which can only become
active in the context of overlapping other fragments. This favors the activation
of large coherent nets, that is, networks which, if given sufficient time, would
be attractors under network self-organization. The term ‘net’ emphasizes com-
position of smaller fragments, although a net can itself be a fragment of larger
nets.

In order not to be caught in local optima, network self-organization needs
to start from an initial state that already establishes a coarse global structure
from which it can proceed in a coarse-to-fine manner (for which a gradual
tightening of inhibitory strength over the course of development [12, 13] may
be the basis). This initial connectivity structure, set up by earlier ontogenetic
processes which rely on genetically controlled emergence [14] establishes gross



Natural Intelligence 5

connectivity between sensor organs, effector organs and the behavioral control
circuits enabling animals to already function at the time of birth.

In the next sections we will give a sample of typical cognitive processes
that are to be implemented and understood (Section 3), will explain how net
fragments can serve to do so (Section 4) and how this framework supports
efficient learning, generalization and autonomy (Section 5).

3 Cognitive Processes to be Implemented

What essential functions are at the basis of natural intelligence? A lioness
stalking pray in the savanna has to integrate a complex array of factors into
one coherent strategy in order to be successful. One little disturbing factor can
throw off the whole situation. It may be that this complexity of natural situa-
tions, in distinction to the logical simplicity of classical Al accomplishments, is
responsible for Moravec’s paradoxon (“it is comparatively easy to make com-
puters exhibit adult level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skills of a one-year-old when it
comes to perception and mobility” [15, p. 15]).

The organization of behavior within a given scene is based on a represen-
tation of that scene in the brain. Scene representation, a contested concept
[16, 17], does not imply static and complete rendering of detail as in a photo-
graphic image but is rather to be seen as an organizational framework putting
abstract interpretations of scene lay-out and scene elements in relation to each
other and to potential actions and emotional responses. This framework sup-
ports quick flashes of attention which materialize detailed reconstructions of
narrow sectors of the scene. Scene representations have to be built up by percep-
tion. Perception is difficult because sensory data are insufficient and ambiguous
and contain in only entangled form the different factors (shape, color, mate-
rial, motion etc.) that make up the scene. Perception is therefore to be seen as
an active process that constructs a model of the scene that uniquely explains
the sensory signals and their changes under motion.

According to ethologists, animal and human behavior is defined and con-
trolled by a number of drives (such as to satiate hunger or avoid danger), each
of which is laid down under genetic guidance in a schematic form [18, 19].
A behavioral schema can be activated by a sensory trigger feature, executes
a behavioral response, evaluates the outcome and is modified by the experi-
ence. The basic behavioral machinery, which serves a function analogous to
a computer user acting through the machine’s operating system, is the fruit
of evolutionary trial and error over many generations, and presumably is laid
down in the style of business process models or Petri-nets in terms of rela-
tively few appropriately connected neurons or neural pools. To integrate this
basic machinery in a meaningful way into the flow of scene representations is,
however, a very complex affair and is the basic goal of learning.

Even beyond the organization of behavior, there is a long tradition [20—
22] or [23, pp. 147-172] of discussing schemata as basis for understanding
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phenomena and define meaning. It therefore seems important to have a clear
view how concrete instances can be related to abstract schemata.

Learning takes place inside tasks that are governed by the behavioral
drives. The currently active drive decides which elements of the scene are rel-
evant, focuses attention accordingly and curtails the scene representation to
its needs. The drive, as originally defined and further developed by experi-
ence, can be seen as an abstract scene description that can serve to shape
and interpret actual scenes as schema instantiations. This setting, a behavioral
schema-interpreted scene, serves to powerfully constrain the learning process.

How can these functions be understood and implemented on the basis of
net fragments?

4 Net Fragments as Implementation Medium

As we have argued, both our natural environment and our brain have very
low Kolmogorov complexity (cf. Figure 1). We take computer graphics and
virtual reality as models for the structure of our natural environment, and we
take network self-organization, as studied on the example of the ontogenesis
of retinotopy, as the mechanism by which the connectivity of the brain arises.
We further note that for a system to efficiently learn it needs to have a strong
bias towards its domain [4, 5] or [6, ch. 2.7]. As the human brain indeed
learns very efficiently we feel encouraged to propose the hypothesis that the
connectivity structures that result from network self-organization, together
with the neural dynamics that governs their activation in the establishment of
scene representations (see below) are the inductive bias, the a priori structure
(compare [20]), that tunes the brain to the natural environment.

In the remainder of this section we will discuss how net fragments can serve
to implement structures and processes, taking vision as sample modality.

4.1 Data Structure of Primary Visual Cortex

Primary visual cortex is populated with a collection of feature detector neurons
with an abundance of short-range lateral excitatory connections between them
[24]. Sensory signals coming from a point within the retina in response to visual
input activate a subset of the feature neurons whose receptive fields cover that
point and its immediate environment. Different local textures activate different
such sets. Within some months of early experience network self-organization
will re-arrange the excitatory connections within each of these sets and with
neurons in the neighborhood. There are 100 times more neurons in primary
visual cortex compared to the number of axons coming out of the retina [25],
opening the way to sparse codes (as in [26]). Visual input first briefly acti-
vates an exuberance of neurons, most of which will then be silenced (by, e.g.,
balanced inhibition [27]) leaving only the small subset of those neurons active
that can support each other by lateral connections inside net fragments (for a
model of this process see [28]). (Membership in activated fragments is perhaps
indicated by bursting activity [29, 30].) As result of early visual experience



Natural Intelligence 7

texture patches (at the scale of the range of lateral connections) that dominate
the statistics of the input will therefore become represented by net fragments.

This developing structure of the primary visual cortex resembles associative
memory [31, 32], except that due to the short range of lateral connections it
has the two-dimensional topological structure of the visual field and that its
stored local states are defined on a statistical basis. The local net fragments can
be compared to the codebook vectors of some image compression algorithms
[33]. They can be considered as filters that interpret the actual visual input
in terms of patterns previously experienced with statistical significance. They
suppress redundancy and regularize responses, as is important, for instance,
to extract stereo depth [34] or motion. The net fragments that respond to
the surface of a coherent object overlap in terms of neurons and connections
and thus form a coherent net, covering the object. Net fragments can thus be
seen as implementation of the Gestalt laws [35], and the coherent nets they
form as realization of the ‘force fields’ that that movement is speaking of. The
coherence of a net covering the cortical region occupied by an object can serve
as basis for figure-ground discrimination [36].

The example illustrates the power of net fragments as inductive bias. Local
texture-representing net fragments as such could be replaced by the higher-
level feature neurons of deep learning systems. However, due to neuron-wise
overlap net fragments in distinction to those are exclusively activated when
merging into a coherent field, a Gestalt. Net fragments and their dynamics
thus naturally render the topological structure of the continuous surfaces that
dominate our environment and allows them to be handled as a whole, as seen
in the next subsection.

4.2 Invariant Object Representation

A concrete object can appear in the visual cortex in an infinitude of versions
differing in position, size, orientation and other factors. In all these versions
the object image gets represented, as just discussed, by coherent nets com-
posed of local net fragments. To store and later recognize the object when
it appears in the retina in transformed version it is necessary to lay down
connections that permit to construct, in response to visual input, nets that
represent views of the object independent of its position, orientation etc. In
the human brain these invariant representations presumably are located in
infero-temporal cortex [37]. There is psychophysical evidence [38] that for a
large class of structured object types the visual system is able to construct
such invariant representations out of shape primitives that are common to
such objects. We propose to see these shape primitives be represented as net
fragments which have the flexibility to adapt to the shape of actual objects
in spite of metric deformations, depth rotation and of course position within
object-centered coordinates. The identity and relative position of these shape-
primitive-representing net fragments can then serve to identify the object type
[38] and serve as basis for manipulation.
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To enable such invariant responses to the position- etc. variant represen-
tation of objects in the primary cortices the proposal has been made [39-41]
that there are rapidly switchable connections (‘shifter circuits’) between the
primary visual cortices and invariant representations in infero-temporal cortex
that can connect nets in those two areas in a structure-preserving way. In both
areas the object is represented by a two-dimensional field of neighborhood-
connected neurons. A mapping between them is called structure preserving
(‘homeomorphic’) if it is smooth (connecting neighbors in one field to neighbors
in the other) and connects only neurons of the same type.

Simple versions of invariant object recognition on the basis of shifter circuits
have been demonstrated [41-43]. Shifter circuits are composed of net fragments
and can be formed by network self-organization [44]. Active maps that connect
variant images with their invariant representation as well as the movements
and deformations of those maps constitute valuable information (as argued in
the introduction of [41]), so that, for instance, the shape of an object rotating
in front of the eyes can be deduced from the deformation of this map. The
separation of visual object representation into external coordinates (‘where’)
and internal structure (‘what’) is an important example of the disentanglement
of sensory patterns into the factors they contain.

The example of invariant object representation again illustrates the power
of self-organized net fragments as inductive bias. Different views onto the same
object or surface are related by homeomorphy, and net fragments are a nat-
ural way to form homeomorphic mappings. Such mappings, seen as dynamic
entities, can track and model the movements of objects and surfaces in the envi-
ronment and their relations to the eye. They are an essential element needed
to reconstruct and model in the brain the geometry, kinematics and dynamics
of the natural environment.

It is tempting to see invariant visual object representation as a special case
of the more general problem of representing the relationship between abstract
schemata and instances they apply to. Assuming that this relationship has
the character of a homeomorphic mapping (preserving types of entities and
their relations) it is conceivable that the ensemble of schema, instance and
mapping between them comes to be represented by a coherent net composed
of previously established fragments, just as in the example of invariant object
representation.

4.3 Net Fragments as Data Structure of the Mind

There is a broad consensus of seeing neurons as atoms of meaning [45]. As
such, individual neurons may refer to entities on any level of complexity, but
in doing so they act merely as labels, while beyond a low level of complexity
they cannot render unambiguously the specific structure of what they refer to.
To do this requires a compositional data structure (as convincingly argued in
[46]). The lack of compositionality in artificial neural networks is referred to
as the binding problem [40, 47].
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We here argue that net fragments are the brain’s compositional data struc-
ture and its solution to the binding problem. It is illustrated by the visual
representation of objects in both the variant and the invariant versions. Indi-
vidual feature neurons can, in response to visual input, fire stably only in the
context of a net fragment they are part of (see Subsection 4.1 or [28]), and
this net fragment can do so only when overlapping with other net fragments
(as neurons only fire as part of a net fragment they are part of), so that the
response to the input actually is that of a net spanning the whole object as cur-
rently pictured. This net is a one-time structure rendering the never-repeating
way the object appears at any moment. It responds holistically, as result of a
collective effect [48], just as the Gestalt psychologists [35] would have it, and
it still renders the Gestalt in minute detail. A hierarchy of features of various
complexity levels is represented by nested net fragments of different size.

A good composite data structure has to be able to exert effect on the basis
of its structure and be productive in the sense of giving rise to analogous
structures [46]. Our example of invariant visual object recognition illustrates
this condition. The actual recognition takes place by the activation of a net
forming a homeomorphic point-to-point mapping between the invariant and
the variant representation. This net gets created by the activation of net
fragments each of which connects a small region in the plane with the vari-
ant representation (primary visual cortex) with a corresponding small region
in the invariant representation (infero-temporal cortex). These ‘maplets’ are
activated by homeomorphy between the small regions they connect and they
overlap such as to form a coherent global map between variant and invariant
representations of the object, as demonstrated in [39, 40]. Consequently it takes
just one exposure to a new object type and formation and storage of a model
thereof in the invariant domain to recognize that type of object independently
of transformation state. This explains the brain’s ability [49] to recognize novel
objects in altered position and pose after a single brief exposure. The repre-
sentation of objects is compositional and productive, as requested by [46], in
that the composite mappings can serve any object and represent the position,
size and orientation of the variant object image, the invariant representation
of an object can render a large number of variant versions thereof, and the
net fragments in the two domains can be re-used for an infinitude of different
objects.

Compositionality applies also to representing cognitive structure in terms
of submodalities (in vision, for instance, texture, color, motion, form, size,
position etc.). Whereas sensory signals contain submodalities in implicit form,
specific submodality patterns can be represented separately within their own
specialized cortical regions. Submodalities are basically independent of each
other — object form, for instance, abstracting from position, size, surface tex-
ture or coloring. Concrete mental objects can be constructed by linking them
together with the help of maps of connections as described above, in a process
analogous to the way computer graphics creates visual output by mapping
different sub-modalities to each other and into the virtual camera.
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Mental objects thus constructed are to be seen as larger net fragments com-
posed as mergers of pre-existing net fragments. In a sufficiently pre-trained
brain such nets, once selected by input, are stable constructs that are attrac-
tors both in terms of the fast dynamics of neural activation and inactivation
and the slow dynamics of network self-organization. Like in associative memory
[31], active neurons are pushed by a number of simultaneously firing excita-
tory connections into a high-activity state, while silent neurons are reliably
suppressed by converging inhibitory connections. Such network states can be
characterized as of high consistency — consistency between different signals
arriving on individual neurons and consistency between the set of currently
active neurons and and their connectivity. Network self-organization works on
a slower time-scale by performing something like a stochastic gradient descent
of neural connections with a cost function, at each individual neuron, that
favors binary dynamics with either a highly excited or deeply suppressed state.

4.4 Neural Dynamics: How a Trained Brain Perceives

Perception is difficult due to the paucity and ambiguity of sensory signals and
because scene representations have to be spontaneously constructed such as
to uniquely explain the sensory input. Given the speed with which our brain
routinely performs the task, this construction cannot be based on sequential
memory search. To this speed we offer the following explanation. The sensory
signals in their great ambiguity reach and alert all net fragments that are com-
patible with them. Among these, some overlap and dynamically support each
other while others are mutually inhibitory. Buried in this dynamics is (given,
of course, sufficient previous experience) the comprehensive net that represents
the scene. Due to its pervasive consistency of all connections this net prevails
in the dynamic process, establishes itself and inhibits all incompatible net frag-
ments. The activation of this net is due to a collective process [48] comparable
to a phase transition [50] (like magnetization) instead of to sequential search.

5 Relevance to Open Problems

Grave limitations [51-54] of contemporary Al [55] have to do, first, with inabil-
ity to generalize sufficiently beyond human-provided examples. We trace this
inability to the lack, in current systems, of a sufficiently powerful inductive
bias for learning. Inductive biases are specific to application domains [4—6].
We accordingly focus on what we call natural intelligence which is tuned to
solving general problems in our natural environment.

So far, we have argued that our natural environment has low Kolmogorov
complexity, interpreting today’s virtual reality systems (which have low com-
plexity) as sufficiently convincing approximation to that environment. We have
further noted that the brain also is of low Kolmogorov complexity and have
subscribed to the view that its connectivity structure arises by emergence real-
ized by network self-organization. We have taken the brain’s tremendous power



Natural Intelligence 11

to learn and generalize from scant examples as indication that emerging con-
nectivity structures (net fragments) are the data structure of the brain and
constitute its inductive bias for learning.

As to learning, two stages have to be distinguished: First, a system has to
develop the toolbox that is necessary to model the surrounding scene. Second,
once it is in a position to model specific arrangements and processes it can learn
to relate them in finer and finer detail to its set of behavioral schemata and the
corresponding goals. For brains, the first stage is partly reached in pre-natal
development under genetic guidance, partly by sensory-motor experimentation
by the young individual. In the context of AI, this stage is modeled in the field
of developmental robotics [56].

For brains, learning in the second stage is, by comparison to current Al
technology, powerfully alleviated by two factors. First, during scene construc-
tion in interaction with and under the influence of a currently ruling behavioral
schema the schema-relevant scene elements are labeled as such by their map-
ping to and from the schema. This goes a long way towards credit assignment
during the evaluation of the ongoing experience and suppresses irrelevant
detail. Second, the essential structure to be picked up from the current situ-
ation (object, motion pattern, etc.) is already modeled as part of the scene
representation, not only in concrete detail but also on more abstract levels. It
is therefore possible to tie together all essential elements of the situation — the
relevant scene elements, their relative arrangement, their roles as defined in the
behavioral schema — by strengthening or creating a small number of connec-
tions to fixate the experience. This fixation has to happen at an appropriately
abstract level (the ability to find this level being a subject for an appropri-
ate kind of meta-learning), so that the particular experience generalizes to
analogous situations.

For AI systems, however, this generalization ability is still to be realized.
The presented methods could therefore, if properly implemented, mitigate the
above-mentioned problems of sample efficiency (including slow learning) and
generalization in a principled and unified way, with the effect of leading to
results that can approach common sense (compare with compartmentalised
approaches in [57-59]).

A second set of weaknesses of present Al technology revolves around low
level of autonomy. In typical applications rather narrow goals are formulated
by humans, application-specific data are collected and human-tuned archi-
tectures and hyper-parameter settings are empirically determined [60]. This
limits systems to specific applications and causes great expense, which is well
illustrated by the enormous time and investment in terms of human effort nec-
essary to develop autonomous vehicles. True autonomy requires a complete
(in some sense) set of abstract goals and behavioral schemata together with
the ability to (learn to) relate these schemata to concrete situations. The dif-
ficulty of this is due to the enormous distance in terms of abstraction between
concrete scene elements and the representations of general goals. We suggest
that this distance is bridged by homeomorphic relationships, and that these
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homeomorphic relationships can be found with the help of composition of net
fragments.

The superiority of human intelligence over that of animals is due to a very
rich complement of culturally acquired schemata many of which are absorbed
in verbal or symbolic form. We are born with a behavioral repertoire that is
very similar in principle to that of a range of animal species, but soon new
goals are acquired, grafted upon a small set of innate behavior patterns (such
as wanting to please or imitate social partners) acting as gateways. It has been
argued that higher intellectual abilities grow in the individual as layers of gen-
eralization by analogy, starting with the sensory-motor coordination structure
acquired early in life [56, 61]. So far it hasn’t been possible to model and artifi-
cially replicate that process. We suggest that the missing element is a potently
pre-conditioned data structure and that network self-organization is providing
this pre-conditioning in our brain.

6 Conclusion

A deep riddle of our existence is the question how the ideas and imaginations
in our mind arise. Super-natural influences and exotic force fields or quantum
processes are widely invoked. According to our proposal mental phenomena
appear like mathematical structures, which are singled out by the condition
of logical consistency and seem to be there even before being discovered by
mathematicians.
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