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Physical models can help improve solar cell efficiency during the design phase as well as for quality control after the
fabrication process. We present a data-driven approach to inverse modeling that can predict the underlying parameters of
a finite element method (FEM) solar cell model based on an electroluminescence (EL) image of a solar cell with known
cell geometry and laser scribed defects. For training the inverse model, 75,000 synthetic EL images were generated with
randomized parameters of the physical cell model. We combine 17 deep convolutional neural networks (CNNs) based
on a modified VGG19 architecture into a deep ensemble to add uncertainty estimates. Using the silicon solar cell model,
we show that such a novel approach to data-driven statistical inverse modeling can help apply recent developments in
deep learning to new engineering applications that require real-time parameterizations of physical models augmented
by confidence intervals. The trained network was tested on four different physical solar cell samples and the estimated
parameters were used to create the corresponding model representations. Resimulations of the measurements yielded
relative deviations of the calculated and the measured junction voltage values of 0.2 % on average with a maximum of

10 %, demonstrating the validity of the approach.

I. INTRODUCTION

The transition of the world energy system to renewable,
fossil-free sources relies heavily on photovoltaic electricity'.
Due to the high energy consumption in the manufacturing pro-
cess, the energy payback time of monocrystalline solar mod-
ules is in the range of 10% of the total lifetime?. Therefore,
further improvements in cell design and cell production are
desirable.

One possible way to shorten the energy payback time of so-
lar cells is to reduce power conversion losses due to electrical
resistance in the solar cell and due to cell defects>*. To inves-
tigate these losses in detail, various measurement techniques
such as electroluminescence (EL), photoluminescence (PL),
and infrared (IR) imaging have been established both during
the design process in the laboratory and for quality assurance
integrated in the production line>°.

By combining the imaging techniques with physical mod-
eling, it is possible to gain detailed insight into the impact of
specific design decisions and defects on expected module per-
formance. To do so, the defining parameters of the cell have
to be extracted from measurements. It has been shown that
the characteristics of solar cells can be modelled with Finite
Element Method (FEM) models that solve an equivalent cir-
cuit representation that is defined by spatially distributed re-
sistances such as the sheet resistance of the electrodes, contact
resistivity, parallel shunt resistivity and spatially distributed
diode model parameters’.

The presented work is part of a larger effort to use model
calculations of solar cells to characterize defects, quantify
their effects on the solar cell and predict the impact of de-
fects and design decision during upscaling to larger cell areas
and modules®. Standard silicon cells are used in this work
because of better reproducibility and ease of use in measure-

ments. However, the method is intended to be transferred to
novel cell technologies such as perovskite cells, where the ori-
gin of the defects is less well understood and major challenges
exist regarding inhomogeneity, upscaling, and stability®1°.

Parameterization of the numerical model of a physical sys-
tem can be challenging if its parameters are not directly mea-
surable. Finding an appropriate set of model parameters that
will enable the model to reproduce important features of the
system must often be done indirectly, by finding a set of pa-
rameters that lead to model results which agree with the avail-
able measurements. Solving such an inverse problem is of-
ten a non-trivial, ill-posed task. In research and laboratory
work, model parameters are often manually fitted to match
model predictions with measurements. This process can be
automated by minimizing the model error with least squares
optimization techniques!!. If statistical analysis is required,
the problem can be reformulated in a Bayesian framework
and Markov Chain Monte Carlo (MCMC) algorithms can be
used to sample from the posterior distribution of the input
parameters'?.

For many foreseeable applications of physical models of so-
lar cells, such as quality control in a production line, these tra-
ditional approaches are insufficient due to their high compu-
tation time. This is particularly true in the use case presented
here where two- or three-dimensional models are needed to
describe features of the measured solar cell images. There-
fore, an explicit form of an inverse model that can replace
these steps by directly computing the model parameters based
on measured data would be beneficial'3. Deep neural net-
works (DNNs) are promising candidates to serve as such
inverse models, as they are able to adapt arbitrary nonlin-
ear mappings when trained on a sufficiently large training
dataset'*+17.

The use of a neural network as an inverse model has been
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successfully demonstrated by training an auto encoder surro-
gate model to recover the material parameters from simulated
current-voltage (IV) curves!®. A hybrid approach in which
part of the model parameters are predicted by a CNN while
the others are estimated with traditional optimization tech-
niques has showed promising results for determining layer
properties based on reflectance spectroscopy!®. In addition,
it has been demonstrated that CNNs can be used to predict
the cell efficiency or the location of defects based on elec-
troluminescence images?’2. By combining EL, PL and re-
flectance spectroscopy, CNNs have been used to predict the
full IV curve of a cell together with other key characteristics
of the cell?®?*. In a further work, a spatially resolved ap-
proach based on a U-net has been used to determine the local
dark saturation current®.

In this work, we propose an approach using a convolutional
neural network (CNN) as an inverse model that computes cell
parameters from EL measurements of silicon solar cells. The
CNN is trained on a training set of synthetic EL images sim-
ulated with the numerical model that it aims to invert*®. The
simulated training set has a predefined cell geometry. Shunt
defects with high parallel conductivity are added to the cell ge-
ometry by placing standardized rectangular subdomains. The
numerical model is a 2D+1D FEM model that calculates the
2D potential distribution of the cell’s top and bottom elec-
trodes based on domain specific electrode properties and cou-
pling laws. The model is implemented in the simulation soft-
ware Laoss 4.0 and distributed by Fluxim AG?”-?%. In order
to provide an uncertainty estimate of the calculated model pa-
rameters, we use a deep ensemble CNN model that is able
to predict a Gaussian approximation of the model parameter
probability distribution”®. The CNN model can then be ap-
plied to data acquired in a EL measurement setup to estimate
the underlying physical model parameters of the solar cells.
If successfully applied, this method enables the development
and training of a CNN that can almost instantly create a model
representation of the presented measurement sample.

The proposed method demonstrates a novel implementa-
tion of recent developments in machine learning that could
extend existing engineering applications of deep learning for
industrial practice®®3!. Bridging the gap between data-driven
and physical models raises new challenges that are less fre-
quently discussed in the deep learning literature: First, CNN
network architectures are designed and implemented for clas-
sification tasks in the majority of cases. Dealing with physical
parameters requires the use of multivariate regression mod-
els, which increases the complexity of the training. Second,
in science and engineering, there is often a need to provide
an uncertainty measure to evaluate the confidence in a result.
Common deep neural network architectures are designed to
provide point predictions. The use of deep learning in the
context of physical models therefore makes it necessary to
test and exploit the potential of recent developments in net-
work architectures that provide uncertainty estimates?. Our
work provides a comprehensive example of a engineering ap-
plication of a regression CNN that incorporates such an un-
certainty estimation. The methodology could be applied to
several other regression tasks in the surging area of physics-

based deep learning where either sufficient training data or a
detailed numerical model is available3.

The contributions of this work can be summarized as fol-
lows. We train deep ensemble CNNs to estimate physical pa-
rameters based on PV cell imaging data. The training data is
generated by a physical simulation model whose inverse is to
be approximated by the CNN. To our knowledge, such a com-
bination of deep ensemble CNNs and inverse modeling is a
novel combination of already successful concepts in science
and engineering. It is shown that the presented method can be
used to estimate physical model parameters without relying
on specific symmetries in the layout of the grid lines and bus
bars that form the front contact of the PV cell. Therefore, our
approach can be applied more generally to different PV cell
types. We show that the extracted parameter sets can be used
to parameterize the model and reproduce the measured im-
ages with high precision. We discuss the changes in the CNN
structure and training hyperparameters required to implement
and train such a deep ensemble CNN inverse model. In doing
so, we provide further evidence that standard implementations
of deep neural networks can be adapted for use in a scientific
setting with minor modifications.

A schematic of the proposed workflow is shown in Figure 1.
The steps of the developed method are described in this paper
as follows: The measurement samples are described in section
IT A. The geometry of this cell sample was extracted from an
EL measurement and used as the basis for the inverse model.
The Laoss simulation model is explained in section II B. Sec-
tion II C shows how Laoss is used to model the measured solar
cell samples. Additional post-processing steps applied to the
Laoss simulation results are explained in section IID. The
structure of the inverse model is defined in section IIE. The
inverse model is trained on a set of simulated EL images. The
Laoss parameterization used to generate the training data is
discussed in section ITF. The network architecture and train-
ing of the inverse CNN model are explained in section II G.
The results of the inverse model method are evaluated in sec-
tion III. A discussion and a brief outlook are given in sections
IVand V.

Il. MATERIAL AND METHODS
A. Measurement Sample

The proposed method was carried out and tested for
a monocrystalline solar cell of type XS156B3-200R from
Motech Industries’*. Due to electrical current strength limi-
tations in the available measurement equipment, a laser cutter
was used to cut a 2 x 2 cm area from the wafer cell with a
busbar at the top. The smaller area of the cell sample also re-
duced the computation time of the FEM model. An additional
laser cut was used to introduce an artificial shunt between two
grid lines. Two contact strips were then soldered to the busbar
and rear solder pads of the sample cell.

The electroluminescence signal of the sample cell was
recorded with a Nikon D800 digital SLR camera. The cali-
bration constant for relating the EL signal with the junction
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FIG. 1: Workflow of the proposed inverse CNN model training.

voltage was determined with a low forward voltage of 0.55 V
assuming negligible current and a therefore a constant voltage
across the whole image>. The high-voltage EL image was ac-
quired with a forward voltage in the range of 0.60 V-0.64 V.
To increase the signal-to-noise ratio of the measurement, the
camera exposure time was set to 450 seconds at an ISO level
of 200. The measurement image was exported in NEF (RAW)
format and converted to grayscale. The resulting measure-
ment image is shown in Figure 2a.

The measured image shows dark areas at the edges of the
cell that are not present in the simulation. It is assumed that
the edge effects are caused by defects in the junction as a re-
sult of the laser cutting process. Since edge effects were not
included in the simulation model, this nonsimilarity was re-
moved by cutting an area in the center that is not affected by
the edge effects as the input to the inverse model (see Figure
2(a)). Since the calibration constant was calculated based on
the averaged luminance signal with the assumption of con-
stant junction voltage in the low-voltage image, the edge ef-
fects will decrease the average low-voltage signal and there-
fore lead to a overestimation of the junction voltage in the area
used as the model input.

B. FEM model

The simulation model of Laoss uses a 2D+1D concept, also
known as the "interconnected diode model"?%3¢38  In this
modelling approach, the potentials of the top (+') and bottom
(v?) electrodes of the solar cell are calculated using the Fi-
nite Element Method (FEM) to solve Ohm’s law for the given
sheet resistance Rg. The current continuity formula for the
top electrode is given in Equation 1. The formula for the bot-

tom electrode differs in an additional minus sign on the right
hand side.

s

2 AV = j(V V). )
0

The source current density j(v',v?) in Equation 1 is dependent
on the 2D potential distribution and calculated from a user-
provided coupling law that represents the diode properties of
the solar cell’s p-n junction. In this work, the one-diode model
is used, which includes both a parallel (p,,-) and an internal
series (pj,) area specific resistivity:

j(Vtavb) = ](AV) =
i {exp <Avj(Av)p,-m) 3 1] n Avfj(Av)p,-m. )

VT ppar

The additional parameters used in Equation (2) are the dark
saturation current jj and the thermal voltage V. A schematic
representation of the model used in Laoss as well as the input
parameters required and the output parameters provided are
shown in Fig. 3.

Alternatively, the algebraic diode model can also be re-
placed by a numerical charge drift-diffusion model consider-
ing the entire vertical cell structure (Fluxim’s drift-diffusion
simulation software Setfos integrates with the 2D+1D model
in Laoss). The advantage of the algebraic diode model, how-
ever, is the small number of free model parameters to define
the coupling law.
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FIG. 2: (A) EL measurement of a sample cell. (B) Cell geometry of the sample cell used for simulation. (withe: active area,
black: grid lines, red: shunt) (C) Unprocessed simulated EL image. (D) Post-processed simulated EL image.
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FIG. 3: Structure of the Laoss FEM solver?.

C. Model representation of the measurement sample

The bias voltage applied to the solar cell during an EL
experiment can be represented in Laoss as a fixed potential
boundary condition. In the experiment, we applied the for-
ward voltage at the bus bar which is visible as a dark area at
the top edge of the measurement image and highlighted by an
orange line in Figure 2(A). The corresponding position of the
fixed potential boundary condition in the model representation
with value V,,,,; is shown analogously in Figure 2(B)-(D). The
busbar was not included in the simulation geometry assuming
that the fixed potential boundary condition represents the in-
tersection between the busbar and the grid lines as well as
the active area on the top electrode. 75’000 parameter/image
pairs have been generated to build the training data of the in-
verse model. For each parameter set, two images were gen-
erated at different bias voltages to account for the calibration
procedure used in the measurement. The simulated images
were generated at random bias voltages. The lower voltage
was sampled from a uniform distribution in the range [0.54 V,
0.55 V] and the higher bias voltage was sampled in the range
[0.60V, 0.64 V].
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A coupling law with a non-zero value for the internal re-
sistivity pi,; is not yet implemented in Laoss 4. Therefore,
Equation 2 was solved externally with the hybrid algorithm
of MINPACK and passed to Laoss as discrete values in a text
file. The other values of the diode law were ideality factor
nig = 1, thermal voltage V7 = 2.38e—2V and internal resis-
tivity pjy =2.88e—4 Qm?. These values remained unchanged
during the simulation.

Laoss exports the potential and current results on a rect-
angular grid which can then be converted to a raster image.
In the following, the spatial position of the simulated and
measured values are denoted by [x,y]. The simulated lumi-
nance value has been calculated according to the following
formula®

plune

SeLlx,y] = exp (WM> . 3)

Niq Vr

The junction voltage is calculated from the voltage difference
between vyop and Vperom provided by the Laoss results.

An unprocessed image of Sgy(x,y) generated with parame-
ters set manually to reproduce the measured sample is shown
in Figure 2(c). The silver grid is assumed to completely block
fluorescent light and therefore appears as sharp dark lines.

D. Simulation Post Processing

The simulated image and the camera image of the mea-
surement sample were brought into closer agreement in an
additional post-processing step. EL images exhibit inherent
blurring due to lateral carrier diffusion in the emitting sili-
con cell*’, photon scattering in the silicon CCD caused by
absorption depths that are longer than the pixel size*!*?, and
metal finger scattering®’. Therefore, the simulated image was
convoluted with a Gaussian kernel of size 5 pixels to match
the blur level of the EL measurement. In a second step, 148
patches of dark areas were cropped from the camera image.
These were then scaled to the range of the pixel values of
the simulated image, randomly rotated and flipped, and over-
laid with the simulated image to imitate the precise camera
noise of the setup that consists of a combination of Gaus-
sian noise, shot noise and salt-and-pepper noise. The post-
processed version of the simulation image example is shown
in Figure 2(d). A comparison with the unprocessed image in
Figure 2(c) shows the effects of blurring and noise, resulting
in features similar to the measured image in Figure 2(a).

E. CNN inverse model

The Laoss modelling approach to calculate the simulated

junction voltage v/"*“[x,y] described in Section 1B can be

formalized as following:

]unc

Vsim [x y]
k k
Z Z F applaRDa](hl/ppar)[ Ly— m] h[lvm}
I=—km=—k
+efy]. @)

The function F represents the Laoss simulation model, # is
the convolution kernel of the artificial camera blur and € the
artifial camera noise added. Given a measurement Vyeqs[x, ],
the goal of parametrizing the Laoss model to create the best
possible model representation of the measured cell results in
the following minimization problem:

: 2
res=min )Y (v Ty - vidi ko)) )
Vapp]-,RDJ()vl/Ppar Xy
In this work, we attempt to avoid this optimization problem
by replacing it with an inverse model. The inverse model F~!
of the forward calculation

F (VapthDajOv l/ppar) = Viili;l;meas [X,y] (6)

is a function that directly maps measurement outcomes to the
model parameter space:

F! (Vi;::,l;meas [x.y]) = (VapplaRDanz l/ppar)~ (7N

To construct a suitable inverse function F~!, we follow a
data-driven approach based on training a regression CNN. The
Laoss forward model is used to create training data that con-
verts the model parameter ranges of interest. In the following,
the CNN will be trained to recover the model input param-
eters for each simulated EL image. A conventional way of
CNN training is to perform gradient descent steps based on
a mean squared error loss function averaged over N training
samples:

loss = Z Z (Otipmd —a;)?

l 1 OCG{Vapp] RO,
]Oal/ppar}

1

TN (F "V e y]i) — o)%. (8)

™M=

i

1 aevap])lvRD~j07 1 /ppar

Here, we follow an approach based on deep ensembles that
extends the point prediction of neural networks with an uncer-
tainty measure. This is accomplished predicting both a mean
u and a variance ¢ value for each model parameter which
replaces the inverse function as follows:

1%/ junc _
F- ( stm/meas[x’y]) -

2 2 2 2
ppl’GRD7GJO’Gl/Ppar)' (9)

(“Vappz » MR u]ovul/ppa,7

The variance prediction of the neural net is then included in
the training by using the negative log-likelihood loss function:

d 2

loss* = — Z ! )
2 2

l 1 aevnpthD JOvl/ppar 2l0g(0- )) 20—

o,i o,

(10)
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The predicted parameter pairs { o, var(e)} are assumed to de-
fine a Gaussian probability distribution**. By minimizing the
negative log-likelihood loss function, the network tries to find
the predicted distribution in which the probability of the real
model parameter ¢ is maximized. Thus, if insufficient corre-
lations are found between simulated data vy, [x,y] and a model
parameter ¢, the network has the freedom to reduce the loss
function value by increasing the predicted variance 62.

The deep ensemble prediction is then completed by training
M networks in parallel using different splits for the training
and validation data and different initial weights for the CNN.
The predictions of the different CNNs are assumed to form a
Gaussian mixture. For simplicity, the mean and the variance
of this Gaussian mixture are then used to present the results
and for further computation:

1 M
IJ'*:* Moy (11)
o Ml-;
oz—lM(o%L 2y —u2 (12)
(X_M. o “(x “C{

1

F. Training and Validation Data Generation

The simulations for generating the training data were per-
formed using Laoss 4°°. The used geometry has three subdo-
mains (active area, grid and shunt) and is shown in Fig. 2(b).
The input geometry was manually adjusted to match the di-
mensions and gridline structure of the sample cell. In the fi-
nal workflow, this step could be replaced by an algorithm that
assists in extracting the cell geometry from the EL image us-
ing edge detection and morphological operations. A random
number of up to 4 shunts was placed on the artificial images.
The position of the shunt was randomly chosen but was con-
strained by the following conditions:

1. The shunts cannot intersect with a grid line.
2. The shunts cannot intersect each other.

3. All shunts have the same dimensions and orientation
(height=0.01 mm, width=1 mm). This corresponds to
the assumed shape of the laser shunt scribed into the
measurement sample.

A total of 75,000 images were simulated and used for train-
ing the inverse CNN model. In each of the three subdomains,
four free parameters are chosen to be predicted later by the
CNN model and therefore varied during the simulation of the
training images. An overview of the parameters can be found
in Table I. Some of the parameters are sampled from a prob-
ability distribution. The others, such as the parallel resistivity
Ppar Of the active area, are kept constant at a physically mean-
ingful value. The values of p,,, were independently sampled
for shunts on the same simulated cell, resulting in shunts with
different intensities that the neural network should learn to
distinguish.

G. Network Setup and Training

The network was implemented using the Keras/Tensorflow
framework. The network architecture was adapted from the
VGG19 implementation of Keras*. All modifications follow
recommendations given for transferring CNN networks from
classification to regression problems*®. In all hidden layers,
ReLu activation functions are used. Dropout layers have been
included after the two dense layers at the top of the network
and a batch normalization layer was included in front of the
last dropout layer. The top layer was removed and replaced
by a dense layer consisting of 8 output neurons with a linear
activation function to obtain a regression network for the 4
target parameters’ (4,07) pairs.

The input image presented to the CNN was built from the
cropped, post-processed simulation images. In order to reduce
the memory consumption during training, the images were
downsampled to a resolution of 80x40 pixels. Since every
subdomain of a simulated EL image has its own distinct model
parameters, we designed the CNN such that it predicts the val-
ues for one subdomain at the time. The first channel of the in-
put contains the complete voltage image. The second channel
encodes the mask in which the pixels defining the subregion
for which the parameters should be predicted are set to 1 and
the pixels of areas that should be ignored are set to 0. Since
a standard implementation of VGG19 was used, a third chan-
nel was present but remained empty in all images to keep the
original architecture and dependent hyperparameter ranges in-
tact. Figure 4 shows the structure of the input and the output
data for the example image of Figure 2(b) which contains a
single shunt. The approach results in 3 different two chan-
nel images as input to the CNN model with identical values
in the first voltage image channel and different masks in the
second channel. The parameters of the subdomains can then
be collected and used to build a complete simulation model.
The CNN model provides all four parameters independently
from the subdomain defined in the mask. For shunt subdo-
mains, V,,,; has no direct physical definition since the fixed
voltage boundary condition is only applied to the upper edge
of the grid lines and the active area. Therefore, the parameter
V;Z,”‘?’ can be omitted when constructing the simulation model
based on the predicted parameters and is put in brackets in
Figure 4. The training set consisted of 94 % of all available
images, while the validation set contained the remaining 6 %.
Target values were scaled to a feature range of 0.01 to 0.99 be-
fore training. A batch size of 512 and the Adam solver were
used. Training was performed over a total of 200 epochs with
an early stopping as soon as the validation loss did not im-
prove for 20 epochs. The negative loss likelihood loss func-
tion defined in Equation 10 can lead to numerical instabilities
during network training when intermediate predictions of the
variance o are zero or close to zero. To avoid this, the acti-
vation of the output neurons for the variance 62 was set to a
strictly positive ELU+1 function with alpha = 1. In addition,
the values for the variance ¢ have been clipped to the range
[0.0001, 1] in the calculation of the loss function and gradient
clipping with a value of 0.5 was used in the Adam solver.
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TABLE I: Model parameters used for the simulation of the training data

Subdomain  Vjy, [V] jo [A/m?]

active area  uniform [0.6,0.7] log-uniform [le—10, le—8§]
grid line uniform [0.6,0.7] log-uniform [le—10, le—8§]
shunts not defined log-uniform [le—10, le—8§]

1/ ppar [S/m?]
constant (50)

Ro [Q/0]
uniform [10, 120]
constant (50) log-uniform [le—4,1e—2]

log-uniform [1e3,2¢6] constant (10)
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FIG. 4: Structure of the CNN input and output data.

Ill.  RESULTS

Four different measured samples (MO, M1, B1, T2) were
used to test the proposed approach. For all samples, the pre-
viously trained deep ensemble was used to predict a model
parameterization of the FEM simulation model. The quality
of this inverse model was then tested by comparing the for-
ward simulation based on these parameters with the original
measured data. In addition to the measured test data, a sim-
ulated image (MO-sim) included in the validation set during
CNN training was used to analyze the extent to which the per-
formance of the approach degrades when real instead of syn-
thetic data is used as input.

The results of the regression output of a single CNN model
from the deep ensemble are shown in Figure 5. The x-axis
value respresents the value used during the simulation of the
EL image. The points on the y-axis show the mean of the
predicted Gaussian probability distribution of the parameter.
The error bars show the standard deviation calculated from
the predicted variance. The results show that the CNN learns
to predict V,p; from the simulated EL image with very high
accuracy, which is correctly represented by corresponding low
variance predictions. The predictions of the parameters pq,
and Rg show higher uncertainty values, which also corre-

sponds to larger offsets between predicted and true values.
The largest uncertainties with respect to the defined param-
eter range are found in the predictions of jy. Interestingly, the
model seems to correctly identify values with large offsets by
predicting high variance values in these cases.

The trained deep ensemble consists of 17 CNNs. The en-
semble results of the simulated validation image MO-sim are
shown in Figure 6. In the case of the simulated validation im-
age, the original parameters used to simulate the image are
known and can be compared to the predictions. In general,
the mean predictions of each network vary significantly and
so the predicted confidence intervals do not necessarily over-
lap. The true parameter used for the simulation of MO-sim is
within the confidence interval of the predicted ensemble dis-
tribution in the case of V,,,;, R of grid lines and pj,, of the
laser cur shunt area. The predicted probability distributions of
Jjo and R parameters of the active area deviate significantly
from the actual simulation parameters, indicating that the EL
image does not provide sufficient information to determine the
two parameters.

The full parameter prediction results for all four measure-
ment samples and the simulated validation image are shown
in Figure 9. The validation images and corresponding resimu-
lations using the mean values of the distribution predicted by
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FIG. 5: Regression results of a single instance inverse CNN model’s predictions for the applied voltage (A), the sheet resistance

(B), the dark saturation current (C), and the parallel resistivity (D) including predicted uncertainties. The plot shows the results

for 100 randomly selected images for both the validation set and the training set. The value ranges of the different subdomains

are highlighted in (C) and (D). The sheet resistance of the shunts and the parallel resistivity of the active area as well as the grid
line were constant in all images. Therefore, all data points of the two sets are superimposed.

the deep ensemble are shown in Figure 7 for (MO-sim, MO
and M1). The part of the image that was used as the input of
the CNN is highlighted with a red rectangle. A general vi-
sual inspection of the images shows good agreement in terms
of EL intensity and voltage drops due to the grid line layout.
The intensity of the resimulated shunt resembles the measure-
ment closely in the case of the simulated test image. For the
measured images, the predicted distribution’s mean values for
Ppar of the laser cut area result in visually more pronounced
voltage drops. The average error in the junction voltage value
when comparing the resimulated image with the measured im-
age is 0.2 %. The maximum error that can be found in both
images is 10 %.

Horizontal and vertical cross sections of the test cells are
shown in Figure 8. For each pixel, the standard deviation has

been calculated by simulating 24 images with parameters that
have been sampled from the parameter distributions predicted
by the deep ensemble. The values of the cross section con-
firm the impression that the applied voltage range and volt-
age drops between grid lines are correctly modelled by the
mean values of the predicted distributions. The deep ensemble
tends to overestimate 1/p,q, in the laser cut region. Addition-
ally, the parallel resistance of the cell samples M1, B1, and
T2 have been calculated by fitting a lumped-parameter equiv-
alent circuit diode model to the cell’s current-voltage curve.
The global parallel resistance has then been multiplied with
the total shunt area to estimate the area specific resistivity of
the shunts. In the case of M1, it is assumed that the two shunts
contribute equally to the measured global parallel resistance.
The results shown in Figure 9 confirm that the CNN model
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overestimates the value 1/p, which leads to a stronger volt- is able to correctly deliver uncertainty values such that 3 out of
age drop in the vicinty of the shunt subdomain. However, the 4 measured values lie within the predicted confidence interval.
calculated confidence ranges for 1/p,,, show that the model
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FIG. 7: Comparison of the input images (A)-(C) and the corresponding resimulations (D)-(E) based on the parameters
predicted by the CNN inverse model.

IV. DISCUSSION

The results presented in section III show that the deep en-
semble CNN used is a promising candidate for an inverse
model for a silicon solar cell. It was possible to train the net-
work to predict the used model parameters with high accuracy
based on the simulation results. In cases with lower prediction
accuracy, the model correctly predicts high error bars thanks
to the negative log-likelihood loss function used. Resimula-
tions based on the parameters predicted by the deep ensemble
inverse model confirm the overall consistency of the approach
by showing good agreement between original data and resim-
ulations where the inverse calculation of the parameters was
used for a forward simulation.

High uncertainties exist in the inverse prediction of jy and
RO. Nevertheless, the forward calculation confirmed that the
predicted parametrizations lead to a valid model representa-
tion of the given sample. This is an indication that the inverse
problem defined by the equations implemented in the Laoss
model is ill-posed. By substituting Equation 2 into Equation
1 one can show that in the regime of low internal resistivity
Pin: the derivative of Av' depends only on the product of jg
and Rf,. This leads to a strong correlation of the two parame-
ters that makes it difficult to resolve them independently from
a voltage image alone. The dependency is also confirmed by
the resimulation of the ensemble prediction results of MO-
sim shown in 6. The CNN model underestimates the value
of jo. Since the value of Rg is simultaneously overestimated,
the resimulation of MO-sim in Figure 8 agrees well with the
CNN input image. This behavior is also consistent with the
luminance imaging theory, which requires a combination of
EL and PL imaging to determine jo and R separately. There-

fore, if only a model based reconstruction of the EL image is
of interest, a possible modification for inverse modeling could
be to predict only the product of jj - R, which would simplify
the problem. Similarly, in the discussed regime of low inter-
nal resistivity p;,, the parallel resistivity affects Equation 1
only through the quotient Rry/pp,r. Since there is no domain
in which these two parameters have been varied simultane-
ously, this did not lead to further implications in the present
study since one of the two values of the quotient has always
been constant. An alternative to avoid the ill-posedness of
the problem by guessing well-defined parameter combinations
coudl be a physics-informed neural network that includes the
knowledge of the governing equations during training of an
inverse model neural network. Such an approach could help
to force the network to correctly account for interdependent
model parameters.

The parallel resistivity of the shunt region were less accu-
rately predicted by the inverse deep ensemble model. Since
the deep ensemble performed significantly better on the simu-
lated validation image, it can be assumed that this is partly due
to differences in the detailed appearance of the shunt region in
the measurement when compared to the simulated data. Al-
though much effort was put into accurately modeling the re-
sulting voltage drop, even the best modeling results showed
significant deviations from the measured data. During train-
ing, the CNN only learns to recognize the shape of the model-
based shunts. Therefore, shunts in the measured data with
different appearances are not expected to be handled correctly
by the deep ensemble CNN. This is particularly evident for
the second shunt in sample M1, which has a more triangu-
lar shape compared to the ellipsoidal shunts in the other test
cells. Due to this unknown geometry, the CNN significantly
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FIG. 8: Horizontal (A)-(C) and vertical (D)-(F) cross section of the input image and the corresponding resimulation based on
the parameters predicted by the CNN inverse model including the simulation model uncertainty.

overestimates the conductance of the shunt in this case. An-
other reason for the overestimation of the shunt conductivities
is the overestimation of the measurement’s junction voltage
in the area that was used for the input to the CNN model due
to the inclusion of the areas affected by edge effects in the
calibration procedure (see Section I A. The CNN model will
interpret this as a higher level of applied voltage in which case
the same absolute voltage drop in the shunt area will only be
possible with an increased shunt conductivity.

The use of synthetic data for training a neural network can
only be successful if the distribution of the training data fully
covers all samples of interest to which the model is to be ap-
plied. If the network is applied to data that have features that
are not present during the training phase, uncontrollable ex-
trapolations are possible. The deep ensemble did not provide
reasonable results for two of the four test samples. The re-
sults of the failed cases are shown in the Appendix in Figure
10 and in Figure 11. In these cases, the measurement samples
were not perfectly aligned due to inaccuracies in the chosen
measurement setup. As a result, the grid lines and the mask in
channel 2, which define the pixels of the subregion to be pre-
dicted, have a small shift that causes the network to calculate
values for R that are averaged between the high conductivity
of the grid line and the low conductivity of the active region of
the cell. This leads to a complete breakdown of the method.
The results demonstrate the sensitivity of data-driven methods
to the quality and comprehensiveness of the training data set.

V. CONCLUSION AND OUTLOOK

In many engineering applications, finding model parame-
ters of numerical models based on an indirect measurement
can be a difficult and time consuming task. In this paper, an
inverse modelling approach based on a deep ensemble CNN
was demonstrated utilizing a numerical model for the simula-
tion of EL images of silicon solar cells with known cell geom-
etry and known defect areas.

The work confirmed that a CNN is a valuable candidate for
a data-driven inverse model. In total 75’000 simulated im-
ages have been created with Laoss based on parameters ran-
domly sampled from a predefined range. With 94 % of the
images in the training set and 6 % in the validation set, the
CNN model has successfully been trained to learn the inverse
mapping from the measurement image to the corresponding
model parameters. By using a deep ensemble CNN model, an
uncertainty prediction for the model parameters was included
which is a key component for using the method in a scientific
environment.

The model performance was tested with forward simula-
tions based on the predicted model parameter distributions.
The tests showed relative deviations of the calculated mean
junction voltage from the original measured junction voltage
of 0.2 % on average with a maximum of 10 %. The measured
junction voltage was within the estimated uncertainties of the
model results. The resistivities of the shunt subdomains have
been estimated based on the measured current-voltage curve
and compared to the values predicted by the CNN model. 3
out of 4 measurements are within the predicted uncertainty
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range which confirms the consistency of the approach. Fail-
ures of the method can be explained by mismatches between
the simulation model results and the measurement data which
leads to a simulation-reality gap. This critical dependency on
accuracy of the synthetic training data is well known in similar
methods*748.

By essentially pre-calculating an inverse model, the method
shows a promising approach to create fast and accurate cal-
culation of the parameters of a physical cell model. Since
domain specific information is only present during the train-
ing data simulation stage, the approach is highly transferable
to other types of solar cell or other engineering applications
where a numerical simulator is available. For each cell lay-
out a separate model has to be trained. Additionally, the pre-
sented results are restricted to shunts with standardized af-
fected area and orientation. In order to include other defect
types, they would have to be included into the training data
generation. This would significantly increase the computation
time needed for the generation of the images. However this
training stage is responsible for the main effort of the method
and the model can still provide fast and reliable results dur-
ing the prediction stage. In particular, we expect that such a
model can be used in the near future for efficient extraction of
parameters of batches of novel solar cells with identical lay-
out, for quality control, and to enable further improvements
in the production and upscaling process. The full potential of
such a model would be realized if it is used for quality con-
trol in a industry scale production line to characterize cells or
modules and improve quality assurance, default classification
and defect removal.

In a next step, we plan to apply the method to perovskite
cells, where there is a high potential for improvement through
detailed defects and cell characterization. Future improve-
ments of the methods could also include integrating physical
knowledge into other parts of deep neural network training,
such as the loss function or network architecture, to improve

data efficiency and out-of-sample predictions®.
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FIG. 11: Horizontal (A) and (B) and vertical (C) and (D) cross section of the input image and the corresponding resimulation
based on the parameters predicted by the CNN inverse model including the simulation model uncertainty (failed cases).



