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Abstract Modern Al systems achieve remarkable performance through fun-
damentally stochastic processes—machine learning models that function as
high-dimensional probability density functions, outputting the most likely pre-
dictions given training data. While these systems can match or exceed human
performance on average, their methodology produces fundamentally different
failure modes than human reasoning, leading to errors that appear nonsen-
sical from a human perspective but are predictable given their probabilistic
nature. This has critical implications for high-consequence environments such
as military applications where decisions cannot be reversed and may affect lives
and material assets definitively. Through detailed analysis of contemporary
AT’s working mechanisms—particularly how knowledge is acquired through
statistical pattern recognition rather than causal reasoning—this paper demon-
strates why Al systems inherit biases, cannot distinguish plausibility from
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factual correctness, and exhibit confident behaviour even when wrong. Writ-
ten to provide guidance for non-technical stakeholders, specifically but not
exclusively in the military domain, it posits that for effective deployment of Al
in high-consequence scenarios, processes need to be implemented that make
sure all human stakeholders are aware of these facts, develop adequate scepti-
cism of the AI system, and remain actively involved in the decision-making.
For military applications specifically, this understanding reveals that effective
human-AT collaboration requires more than oversight: it demands co-learning
frameworks that maintain meaningful human control through bidirectional
information flow, and behavioural and functional awareness on the human side.
We give an outlook to decentralized, co-learned Al system tailored to specific
teams in dedicated co-learning labs to mitigate power concentration risks while
preserving essential human capacities, including moral judgment to exercise
mercy.

Key words: artificial intelligence, military decision-making, human-Al
collaboration, co-learning, meaningful human control, strategic resilience

1 Introduction

Modern AI has earned a reputation of yielding results comparable to human
level performance for a wide array of tasks (Stadelmann et all [2019} [Stadel]
, e.g., visual recognition (IZigulié et a1.|, |2024[), text and video
comprehension (Tang et al., [2025), decision support based on heterogeneous
data analysis (Huang et al., [2025), and first steps towards autonomous multi-
step acting (Sager et al.| 2025b)). Indeed, for many benchmarks, AT results even
surpass human performance, in line with many anecdotal examples
. At the same time, similarly real experiences exhibit uncanny
‘stupid errors’ of Al systems that do not exhibit common sense, making one
question bold claims of ‘understanding’, ‘reasoning’, or, generally, ‘fitness for
purpose’ of any practical sort of these models (Brooks, [2017; Marcus|, 2018
[von der Malsburg et all 2022} [Neururer et al, 2024} [Kambhampatil, [2024
Kambhampati et al 2025} [Narayanan and Kapoor], [2025} [Kumar et al., 2025}
Silver and Sutton) 2025).

This has important ramifications in high-consequence environments such
as certain military applications where decisions cannot be taken back and may
affect lives and material assets in a definitive way: how shall human operators
deal with such fluctuation in order fulfillment by their AI systems? After all, Al
has been suggested (and, in current conflicts that usually speed up innovation
and adoption: is used) as an important component in aspects ranging from
the military decision-making process (MDMP) to lethal autonomous weapon
systems (LAWS). For example, Meerveld et al.| (2023) express the hope that the
use of Al could help in every step of the MDMP with automation and support
that mitigates human decision-making biases, overcomes human inadequacy to
extract knowledge from high volumes of data, and leads to higher efficiency and
quality. They also point out specific challenges, like Al systems themselves being
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not free of biases, or dangers in providing too much autonomy to Al systems, the
latter calling for human-Al collaboration as the standard application scenario.
Indeed, specific challenges of human-AI collaboration exist (e.g., ensuring
reasonable human agency (Waefler et al., [2025)), bias (Gliige et al., [2020) and
other risks associated with AT (Stadelmannl [2025a) need careful mitigation, and
how AT interacts with our humanity (Segessenmann et al.| 2025) will hopefully
be a major theme of future thought. But will AI’s use in high-consequence
scenarios like the military (civilian uses are also included, e.g., in safety-critical
network operations (Roost et al., 2020; [Mussi et al., [2025])) be automatically
to the advantage of respective organizations once such challenges—those that
are applicable for a task at hand—are handled well?

In this paper, we argue from the point of view that a basic understanding
of the foundational working mechanisms of this technology is necessary for
everyone involved to know the ramifications of its inner workings on the
task at hand—ramifications that manifest themselves for example in the
‘stupid errors’ indicated above (which are to be expected once the methods are
comprehended). The following sections hence will provide this understanding
(Sec. [2)), derive consequences for military and other high-consequential use cases
(Sec. |3), and formulate recommendations (Sec. E[) These recommendations
align with the literature on Meaningful Human Control (MHC), which argues
that ‘meaningful’ control is not satisfied by nominal human presence or a formal
veto. What matters is whether socio-technical systems remain appropriately
responsive to human reasons and support responsibility attribution (Santoni de
Sio and Van den Hovenl, 2018} [Mecacci and Santoni de Siol [2020} [Veluwenkampl,
12022). Rather than re-litigating the MHC debate, this paper translates the
stochastic properties of contemporary machine learning (ML) into practical
design, training, and governance implications that bear directly on when
oversight is genuinely meaningful.

2 The nature of AI

Artificial intelligence has been defined as the simulation of intelligent behaviour
with a computer (Merriam-Webster] [2021} [Fuchs, 2024} [Stadelmann| [2025b)) (cp.
the opening hypothesis in [McCarthy et al., [1955). For this, the field of A,
founded in the 1950s, does not offer a unified theory or methodology—there is
no one way to “build AI” (the phrase itself is misleading), nor any known path
towards anything resembling ‘artificial general intelligence’ (AGI). Rather, AI
holds a toolbox full of different methods that are each appropriate to simulate
one or several specific behaviours (cp. the definitive Al textbook by
land Norvig| (2022)).

2.1 Symbolic Al: Logic and reasoning

An important part of the Al toolbox are so-called ‘symbolic’ methods: they
manipulate abstract symbols (think: variables as in math which stand for some
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semantic object) using formal logic to implement rigorous reasoning processes.
That is, given a knowledge base of ‘facts’ and ‘rules’, those can be used to
infer any logically deducible fact that follows from that knowledge. Respective
systems like CYC (Lenat, 1995) were particularly strong in the 1980’s and
1990’s, fuelled the ‘expert systems’ hype around Al at that time, and have
been (and are) used advantageously in high-consequence scenarios since then
(Nilsson, [2009)). For example, the AT system used for logistics planning during
Operation Desert Storm has been said to have “paid back all of DARPA’s 30
years of investment in Al in a matter of a few months” (Hedberg] |2002]).

Symbolic methods remain important (e.g., today’s navigation systems
calculate their wayfinding based on symbolic AT algorithms like A* (Hart et al.,
1968))). Yet, they generally suffer from the complexity of the real world: there
is a gap between what can be perceived from (potentially error-contaminated)
measurements and the clean and abstracted world of logical descriptions (that
even the “person-century effort” to build CYC could not bridge despite useful
niche applications). Hence, the focus of Al research & development shifted to
methods that operate below the ‘symbol’ level, directly on data, and are able
to adapt to it. There is hope that both methodologies can one day be united,
but currently, so-called ‘neuro-symbolic’ Al is still in its infancy (Bhuyan et al.,
2024]).

2.2 Subsymbolic Al: Statistical machine learning

Since the mid-1990s, the predominant part of the AI toolbox is ML, used
wherever the intended behaviour cannot be described by a set of rules (logic).
ML’s most successful methods are essentially function approximation (Jordan
and Mitchell, 2015)): a mapping is sought from data Z to some outcome ¥, which
is to be performed by some function f(z) =y (vector notation is commonly
dropped). Inputs are usually high-dimensional numeric representations of real-
world data: imagine, for example, z to be the concatenation of all the pixel
values (each one integer for a greyscale value or 3 integers to encode colour
as red-green-blue) of an image, and y a flag indicating the presence of some
object in the image (1 for “yes”, 0 for “no”) (Krizhevsky et al., |2012). Or z
to be a concatenation of so called ‘word embeddings’ representing a question
in natural language, and y being a word embedding for the likely next word
(supposedly starting the answer) (Radford et al.| 2019). Or z consisting of
two concatenated structured database entries describing situations (weather,
geolocation, other properties; all properly numericized and concatenated), and
y being a measure of similarity of the two situations (Kaya and Bilgel [2019)).

Evidently, ML is a versatile paradigm: many ‘intelligent behaviours’ can
be stated as mapping from an input to some output. Methodically, a human
ML engineer provides a suitable ‘function template’ (i.e., a function category
that can easily represent the mapping; for example, a straight line cannot
represent the dotted curve from Fig. [I] but a polynomial could) as well as
a ‘learning algorithm’ that tunes the function template’s parameters to a set
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Fig. 1 In blue, dotted: a plot of a parable y = z?2 as a toy example of some real-world event

which’s outcomes (y) shall be predicted by AI. A symbolic ATl model can be thought of as
having access to this true equation, from which it is able to perfectly reproduce each y for any
given z. In green, solid: a curve fitted through the 11 orange training data points, resembling
the result of training a subsymbolic ML model y = f;(x) on {z1,z2,...,211} (counting

training instances from left to right) to find optimal parameters 6 through minimizing the
prediction error for the known training samples. As real-world data, the training points may
contain small measurement errors as visible in the figure (i.e., they do not lie perfectly on
the blue, dotted parable); this and other reasons lead to a suboptimal fit (correspondence
between the true and the learned model/curve). Consider the red, circled areas: (1) when
training data is correct and the used function template for adaptation through training suits
the real underlying function, model and true function coincide well. (2) Small measurement
errors in the data lead to a suboptimal but likely tolerable fit. (3) In regions with low training
data density, no training signal provides guidance for fitting in this area. This leads to larger
deviations from the true function; a function with a higher capacity to adapt (like a deep
neural network, which can model arbitrarily wiggly functions) could likely zig-zag around
wildly between the two far-apart training points xg and xg .

of given {z,y} pairs called ‘training data’. In recent years, ‘neural networks’,
which existed since the field’s inception, rose to unprecedented prominence,
becoming the function template of choice for tasks involving perception and
cognition (Schmidhuber] 2015; |[LeCun et al. |2015). Basically all Al systems
that have made the news since 2012 are based on them. This success stems from
‘deep’ neural networks (which consist of several consecutive layers of neurons)
that give the function a high capacity to adapt to the training examples: they
are general function approximators (Hornik et al., [1989). Still, the suitability
for a given task depends on clever choices of their internal ‘architecture’ and
‘hyperparameters’ (see [Segessenmann et al.| (2025)) for an in-depth explanation
for non-technical readers).

What principles underly this way of ‘learning’ and are important to under-
stand in order to develop intuition for the nature of ML’s results? ‘Statistical’

learning, as it has been called (Vapnikl[1999)), approximates an unknown, under-
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lying function based on a finite, noisy set of samples. The goal is to interpolate
between these given training instances to generalize to novel, previously unseen
instances (a process called ‘inductive learning’). Therefor, some parameterizable
continuous function is fitted to the training data by systematically adjusting
the parameters of that function to minimize a measure of dissimilarity between
the predicted and known outcomes (§ and y, respectively). For neural networks
(and many other ML approaches), this optimization process resembles the
statistical principle of ‘maximum likelihood’ estimation: the resulting function
yields the most likely result, given all the evidence present in the training data
(Prince} 2023). For classification tasks (i.e., category prediction), it factually
implements f(z) = p(y|z), the conditional probability of the outcome y given
the data z. For other tasks like regression (the prediction of continuous nu-
meric values), the model outputs point estimates that represent the most likely
values given the training data distribution. In any case, what has been learned
(implicitly or explicitly) is the probability density of outputs given the inputs.

This means that the resulting function (also called ‘model’ in Al and ML)
has to be seen as a probabilistic function: it predicts a result with a certain
likelihood, i.e., involves a measure of uncertainty in the prediction. As Fig.
[ illustrates, this uncertainty might be low in parts of the domain of z with
a dense sampling of training data points (and given that (a) the model has
been trained on enough data; (b) the chosen function template is suitable for
the kind of data and underlying function; and (c) any new instances follow
the same underlying distribution as the training data). But it might also be
extraordinarily high in areas of the input that are far away from any seen
example. As the model implements a continuous mapping, it will still predict
a ¢, not knowing that it doesn’t know. Also for the developer it is hard to
tell in advance how accurate the model will be: generally, ML is an empirical
science and there is no way of knowing theoretically how well a specific model
will do on a task. Rather, the performance is measured experimentally on a
‘test set’ (a hold-out portion of the original training data), and the result is
extrapolated to unseen data under the assumption that these will resemble the
training data’s distribution.

A couple of properties of this type of ‘learning’ are notable: first, only
the function template’s parameters are ‘learned’ (i.e., fitted to the data); the
‘architecture’ (choice of specific function template), hyperparameters (specific
detailed choices in the configuration of the function template and learning
setup), and learning algorithm is not part of automatic adaptation. They need to
be found by a separate process (typically manual selection by a human, though
automation is possible (Tuggener et all [2019)) based on prior knowledge of the
problem domain. This knowledge and the algorithmic choices based on them
become a necessary part of the model as its ‘inductive bias’—a predetermined
idea where and how to look for the patterns the model seeks to pick up (as
Mitchell (1997)) points out, any (also human) learning without this bias is futile).
Second, as the model picks up all its knowledge only from the fed training data
(Stadelmann et al., 2022), what is not in the data will not be in the model
(e.g., things humans infer using their ‘common sense’), and what was in the
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data will also be present in the model (e.g., human biases (Glige et al., [2020]),
for example through biased judgments present in the {z,y} pairs). Third, a
ML model usually does not learn continually: while there is a subfield of ML
called ‘continual learning’, there are still numerous open challenges to solve
(Purushwalkam et al.l [2022; [Verwimp et al., [2024)). Hence, the vast majority of
deployed ML-based systems, for example all widely known GenAlI systems like
large language models (LLMs), do not learn continually (Kontogianni et al.l
2024) (actually, we are not aware of any that does). Rather, they are iteratively
trained on the training data until the model’s fit is sufficiently good. Then, the
parameters are fixed and the model is deployed on its task without any further
learning: training and ‘inference’ are completely disjunct phases in the ML life
cycle.

2.3 Artificial vs. human intelligence: Different means, different errors

From the nature of ML outlined above, it becomes evident why models based on
neural networks are currently Al’s best attempt to deal with the uncertainties
and the messiness of real-world data. This is true for image and video analysis,
text analysis and generation, geospatial data analysis, analysis of satellite and
other sensor data, etc. If such a model is trained well enough to find acceptance
into any application, it likely works very well on average and for typical inputs.
At the same time, because of the statistical nature of the model (that has not
learned about truth and facts, but statistical plausibility), a result might be
wrong in any given case.

Various approaches exist to quantify and manage this uncertainty, includ-
ing Bayesian neural networks (Wang and Yeung, 2020]), ensemble methods
(Tuggener et al.| [2024), and calibrated confidence scoring (Tian et al.l 2023]).
Active learning frameworks can identify when models encounter unfamiliar
inputs (Nguyen et al.,[2022), while human-in-the-loop systems maintain human
oversight at critical decision points (Zanzotto, [2019). However, these techniques
often require significant computational overhead, specialized expertise to im-
plement correctly, are often not part of commercial / existing systems, and
still cannot eliminate the fundamental issue: ML models remain probabilistic
approximators that can fail confidently in unexpected ways.

To grasp the impact of the fundamental likelihood to err, consider the
following example of a ML model for visual inspection (Stadelmann et al.|
2018): having a reasonable accuracy of, say, 95% on a per-image basis, the use
case may involve inspecting larger items that are fed subsequently as individual
image patches into the classifier—sometimes up to 30 patches. This makes the
performance of the model on a per-item basis look rather underwhelming: the
potentially acceptable 5% chance of being wrong per patch (image) accumulates
to a 1 — (0.95%°) = 78.5% chance of misclassification per item. Put differently:
it is to be expected that every use of that Al system for visual inspection
makes a wrong overall prediction.
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To gauge the ramifications of the statistical nature of predictions further,
consider the following example of using a LLM (Stadelmannl 2025¢)): a so-called
‘reasoning’ model has been asked the question “The surgeon, who is the boy’s
father, says ‘I can’t operate on this boy, he is my son!” Who is the surgeon to the
boy?” The answer is straight-forward from the question’s text, yet the model
replies “The surgeon is the boy’s mother,” which is obviously wrong. But to
the model, this makes actually sense, as it goes on to tell: “the riddle plays on
the assumption that a surgeon is male.” Indeed, variations of the question exist
abundantly on the web as tests for our own human biases, typically associating
males with the role of a surgeon. The model has seen all these during its
training (LLMs are trained on almost all text openly accessible on the internet)
and learned the utter statistical implausibility of answering anything male to a
question that looks remotely like the one above. Consequently, the model gives
a plainly wrong answer—but one that is totally plausible for any Al system
built according to the principles of contemporary ML (which are the best ones
we currently have; other forms of ML are conceivable, but not yet mature
(Sager et al.l [2025al)).

This makes it evident that AI (using any of its methods, including ML)
works decidedly different than human intelligence (as is already implied by
the definition above, stating that intelligent behaviour is simulated rather
than intelligence implemented). While on average possibly better than the
mean of human outcomes given a specific task, from the different modes of
operation under the hood follows that the remaining errors will also be different:
AT systems will commit different errors and exhibit different failure patterns
than humans. For example, while humans are ill-equipped to sift through
high volumes of heterogeneous data because of sheer information overload, Al
systems will also overlook and misinterpret things because of their suboptimal
(statistical, not causal/common-sensical) understanding of the world.

The different nature of artificial and human intelligence can be finally
illustrated with an analogy of a musician and a DJ: while a DJ simulates
certain aspects of creating music very well, their method of music creation
through remixing and replaying musicians’ original recordings by design is not
general. There are many aspects of music beyond the method of turntables
and remixing, e.g., certain genres, playing techniques, and settings for musical
performances. For example, a DJ cannot produce what cannot be reached by
mixing exisiting recordings, hence new musical genres like the Grunge of the
1980s or New Metal in the 1990s would never emanate from them. Similarly, Al
does not simulate the way intelligent human behaviour is produced, but certain
carefully designed aspects of human behavioural outcomes, with a very specific
method of cleverly interpolating between pre-recorded behaviour samples. This
makes respective models good at certain things (for which they have been
designed and tested) and bad for almost any others.
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3 Discussion

Summarily, almost all relevant contemporary Al systems are based on ML
models that are high dimensional probability density functions, which output
the most likely predictions given the input data, leading to likely errors that
have decidedly different error patterns than human experts. We will discuss
ensuing general implications for any high-consequence use of Al in Sec. [3.1}
from which we derive the need for and foundations of meaningful human-AT
collaboration in Sec. [3.2H3.3] before outlining the necessity for strategic resilience
with respect to novel security issues in Sec.

3.1 General implications

While the field of AI has developed various mitigation strategies for issues
stemming from the discrepancy between being a probability density function
and being perceived as humanlike as outlined above, these approaches ad-
dress symptoms rather than the underlying statistical nature of ML. This has
important ramifications for any operator (and their organization) relying on
respective results (predictions):

Al results are not ‘neutral’. Models have picked up human biases via the
training data and are ignorant of anything not represented in the data or
not representable or inferable by the chosen model.

Al results tend to regurgitate the past. Applied in the straight-forward way,
they reproduce the most likely pattern found in the training data. This can
lead to an impoverishment of strategic decisions (Stigler} [1997) and have
effects worth of consideration when competing (or conflicting) parties rely
on basically similar AI decision support (think of the same advisor working
for all parties).

Al results have a certain likelihood of failure; being error-free is not part of
the methodology. That predictions are statistically plausible does not pre-
vent them from still possibly being wrong.

It is not known to a model if its current output is right or wrong, and it is dif-
ficult to predict the correctness technically. Anyway, any result will be
reported with optimistic confidence by an Al system. Results must hence
be verified by a human capable of doing so independently.

Human errors and Al errors are very different such that Al systems’ errors
might seem very stupid (and hence unexpected) from a human point of
view. This stems from the completely different mechanisms by which these
results are achieved, even when based on the same data.

On the systemic level, it is noteworthy that Al systems are powerful tools
wielded (ultimately) by individual humans. This leads to higher concentrations
of power in these individuals. In high consequence settings that are characterized
by stressfulness and life and death decisions (e.g., military use on the battlefield),
misuse of such power must be prevented. Although this is not new with respect
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to military staff, Al systems shift the distribution of power in unexpected ways.
For example, significant power could fall into the hands of software vendors and
model providers (through dependencies) or training data engineers (through
changing model behaviour by biasing/poisoning training data), etc.

The next sections will indicate directions for mitigation regarding these
implications with increasing focus on uses of Al in military contexts.

3.2 The case for ML literacy, co-learning, and decentralized systems

AT results, which are typically meant to make analyses more precise, e.g. in
a military setting with respect to intelligence (in the sense of ‘knowledge
gathering’) and targeting (King), 2024)), are attained differently from human
precision and error-prone as pointed out above. Any human stakeholder must
be firmly aware of this fact and the underlying reasons to develop healthy
‘scepticism’ regarding AI’s predictions and recommendations. Here, our assertion
that a “basic understanding of the foundational working mechanisms of this
technology is necessary for everyone involved” (cp. Sec. [1] and [Tigard| (2025))
plays out: with it, one expects the above implications in working with such a
system.

For example, one is not surprised that a high-confidence recommendation
by a purely ML-based situational awareness system can turn out sub-optimal,
because it fuses information channels in a shallower way a human would
Liu et al.| (2025), namely based on low-level statistical signals rather than
underlying meaning or causation. An operator with said basic understanding
of ML would hence often check some of those signals that a human typically
looks for and compare these results with the system’s to gain further practical
understanding for the kind of situations where judgment coincides. The basic
understanding thus provides a generalizable layer of initial, realistic expectations
that can further be adapted to specific cases through additional study or lived
experience. It constrains and guides this adaptation and thus does much more
than accelerating the process of arriving at realistic expectations—it ensures
them, by changing the human’s internal estimates of what are likely ML outputs
based on an understanding of their causes. The following hypothetical examples
illustrate this further:

Target prioritization under pattern saturation: An Al system designed to
assist with target prioritization ranks objects or locations based on patterns
learned from prior conflicts. The system may assign high confidence to a particu-
lar site because its features closely match historical training examples associated
with hostile activity. From the model’s perspective, the recommendation is
statistically well supported. A human operator familiar with recent changes on
the ground may recognize that the same pattern now reflects a civilian logistics
function that emerged after the training data was collected, and chose to revisit
the ML system’s assessment of it, knowing that the system’s output may not
be erroneous in a technical sense: it correctly identifies a familiar pattern.
Yet it is operationally misleading because statistical similarity is mistaken for
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present relevance. This illustrates how ML systems can produce confident but
contextually incorrect recommendations, and why oversight requires judgment
(based on understanding) rather than simple verification.

Anomaly detection and quiet failure: In anomaly-detection applications, an
Al system may flag only what deviates sharply from learned norms. Gradual
changes, such as slow shifts in movement patterns or communication behavior,
may remain unremarkable to the system while raising concern for experienced
analysts. The system does not miss the signal. It never learned to treat slow
drift as meaningful. Here, the limitation arises not from lack of data, but
from the statistical framing of relevance itself. This type of quiet failure is
particularly challenging for both automated detection and human oversight. It
can be anticipated, however, if analysist using the AI system understand its
working mechanism.

Hence, the typical mode of operation in the abovementioned and other
high-consequence application scenarios is to build human-AT ‘teams’El with
the final responsibility with the human (in terms of Davidovic (2025): for
the prupose of safety, with meaningful human control and judgment as the
type of engagement, analysing the whole process). But scepticism (or human
oversight) alone is not enough: psychological research has shown
that humans need to have meaningful agency in any collaboration,
otherwise they cannot help but become bored, reverting to mere mechanical
approval without exercising supervision. A remedy is offered by the concept
of co-learning currently being developed in a European research projectEl for
human-AlT collaboration in the high-consequence scenario of operating critical
network infrastructures (Mussi et all 2025). Co-learning maintains a setup
in which with every interaction both the human and the machine learn from
each other via bidirectional information flow: Not only do the humans provide
training feedback to a (continually learning (Wang et al.| [2024)) ML system,
but the AI system at the same time provides explainable insights to the human
(Dwivedi et al.l 2023)) that help them understand and scrutinize decisions better.
El This happens within a long-term, iterative process of co-adaptation through

1 As with many of the terms used to describe Al systems (e.g., ‘intelligence’, ‘learning’,
‘thinking’), the line for undue antropomorphisation is crossed with ‘teaming’ (Seeber et al.
2020; [National Academies of Sciences, Iingineering, and Medicine, [2021} [Gunkel and Wales
2021)). We adopt it here as an established technical term when we connect to the relevant
literature or want to emphasize that the AI tool in this collaboration acts as a very ‘ac-
tive appliance’ (Shneiderman) [2022); otherwise, we prefer the umbrella term ‘human-AI
collaboration:” Although duely criticized for the very same reasons ,
broadly accepted better alternatives are lacking beyond ‘human-Al interaction,” which does
not convey the ‘active appliance’ aspect and is thus deemed insufficient here: you can also
interact, for example, with a hammer, but we are concerned with a different kind of—a
different quality or level of—interaction here.

2 https://aidrealnet.eu/.

3 Explainability through Al systems is a philosophically hotly debated topic: do technical
artifacts even possess what it takes to explain (O’Haral 2020} Mattioli et al.||2024)? Certainly
they do not, in the human sense, and yet the term is helpful as an umbrella for methods such
as Grad-CAM for visual inputs (Selvaraju et al., |2017)), which help humans gain intuition
into the ‘why’ behind respective results, helping with their interpretation.
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interaction that leads to co-learning. The support of such human learning and
active involvement in the decision-making process keeps the human interested,
engaged, and maintains their sense of agency.

Also the power concentration issues identified above raise fundamental
questions about military Al architecture. Rather than prescriptive solutions,
we offer a speculative framework that illustrates how the principles of co-
learning and decentralized systems might address these challenges—questions
that merit serious research attention in future work (cp. Sec. [4)): Consider
combat situations where individual combatants may be augmented by Al
systems that provide extended situational awareness (through perception based
on additional sensors) and recommendations (based on fast and comprehensive
data analysis). Here, power issues become important: Centrally controlled
systems would be prone to overriding the individual’s meaningful human
agency and could lead to a remote-controlled human army not too different
from a robotic one. A potential—speculative—solution might be the following
one: Every (group of) combatants receives their own individual, decentralized
AT assistant (Zhu et al.| 2024), able to co-learn (cp. (van den Bosch et al.,
2019)).

3.2.1 Illustrative examples for co-learning systems in military practice

How could such a scenario play out, e.g., on the level of a fireteam and mitigate
some of the ramifications highlighted above? First, a setup would be chosen
in which each individual AI system must not be overridable by a central
unit (ensuring compliance with the chain of command could be achieved by
subjecting it directly to the human team leader). Second, each individual AI
system would be fine-tuned to its team by being trained together in exercise
and real scenarios, so that the resulting human-AI unit would ‘know’ and
complement each other’s specific weaknesses (because it has co-learned and
thus co-adapted to each other). This makes this AT system, without implying
any anthropomorphizationﬁ of personal value to the human team members
and worthless for other combatants (e.g., hostile forces). Thus, heightened
risks of power misuse are met with checks and balances through what in a
human-human collaboration would be called a joint ‘team spirit:” For example,
AT recommendations on ethics would be more likely to be followed by a human
team if a consequence of not complying could be to lose the digital comrade
(that might chose to disintegrate if ignored too often). This way, common

4 As Sec. showed, Al systems ‘know’ (etc.) in a very different sense than humans do. Why
then this anthropomorphism? Apart from hype and fallacy (Placani, |2024]), finding helpful
language in the context of AI, which is deliberately designed to mimick human behaviour
at the surface, is difficult: it necessitates balancing the painting of useful word pictures for
naturally human behavioural contexts while not making the technology appear more than it
is. Within the scientific fields of AI/ML, the shared implicit understanding is that most of
these terms are used as technical terms with figurative meaning. This leads to problems in
interdisciplinary or public dialogue where this practice is not known or shared. Therefore,
we caution readers to understand terms figuratively that are commonly used in a human
context but appear here in relation to Al systems.



The stochastic nature of ML and its implications for high-consequence Al 13

human coping mechanisms with stress and differing opinions by social means
would translate to the AI part of the collaboration.

A second scenario shall serve to illustrate how the postulated co-adaptation
benefits the involved humans and the overall quality of the result: the ’Recover’
task within a Personnel Recovery (PR) operation (cp.[Holewijnl (2011)), especially
Fig. 3 there). It comprises the complex and complicated task of identifying
with high confidence, on the ground under immense time pressure and adverse
circumstances, an isolated member of one’s own forces, e.g., within a Combat
Search & Rescue mission: The decision is to be taken whether the target
is taken up (because the person can be identified with certainty, and the
situation is reasonably safe) or left behind (because there are doubts on the
person’s identity or whether the situation constitutes an ambush). Whether the
decision is ultimately taken by the commander on the ground or in the Tactical
Operation Center, Al systems can contribute important cues with respect to
situational awareness (assessing safety, cp. [U.S. Department of Defense| (2008]))
and biometrics (adding to identity recognition of persons that may be wounded
or disfigured) by means of their pattern recognition powers, i.e., the Al system’s
recommendation reflects statistical aggregation across prior examples. But the
human may hesitate because of causal and situational reasoning about how the
present case departs from those examples. The difference is not one of speed
or accuracy alone, but of mode of judgment, and the resulting error risks are
different in kind.

How can this judgment be honed and the AI system’s cues (that could be
incorrect at any time, either due to error or because certain input modalities
were not taken into account, like smell) be duely incorporated? We argue: By
joint experience gained in co-learning labs (see below and Sec. will the
AT system have (machine-) learned, for example, what specific foci of attention
‘Sgt. Snuffy’, who leads the operation on the ground, has. Hence, the system
will use this training to provide her with a tailored priorization of inputs
targeted at complementing this specific human’s judgment in the most efficient
way that does not lead to cognitive overload. Through the same joint training,
Sgt. Snuffy has learned in what kind of situations the AI recommendations
are reliable and what environmental cues are indicative of the system missing
something or appearing too confident. As decisions need to be taken in split
seconds, this fine tuning of tool and human to their specific cooperation can
lead to vital advantages while not making such an AI system (as a technical
equipment item) less controllable or safe for the organization deploying it.

How did the fine tuning take place? Sgt. Snuffy and her team exercised
several training PR missions in a co-learning lab (think of a Urban Warfare
Training Center with additional focus on AI), having the respective Al system
as part of their eugipment. Using it in training gave rise to the mentioned
experience for the humans, while the lab environment captured multi-sensory
data (e.g., from fixed and helmet cameras, radio, tracking systems installed
in the facility, etc.) that have later been used to perform ‘fine tuning’ on the
ML models underlying the AT system (cp. (Koedijk et al., 2026) and how ML
models are fine-tuned for a different purpose by Ruiz and Sell| (2024])).
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3.3 Behavioral and functional foundations of meaningful human control

Building on the co-learning framework discussed above, sustaining MHC in high-
consequence environments through co-learning requires that human operators
cultivate awareness of both behavioral and functional factors. This emphasis
is aligned with the MHC literature, which argues that ‘meaningful’ control
depends on whether the overall human—Al arrangement remains appropriately
responsive to human reasons and supports responsibility attribution in practice
(Chengeta, 2016; Ekelhof, 2019; Mecacci and Santoni de Siol [2020; Santoni de|
|Sio and Van den Hovenl [2018)).

Behavioral awareness involves understanding how stress, time pressure, and
cognitive bias influence human judgment when interacting with probabilistic
systems. Decades of research in behavioral decision science demonstrate that
even experts, individually and in groups (Barr and Mintz| 2022, 2018), are prone
to overconfidence, anchoring, and inconsistent evaluations under uncertainty
(Kahneman and Tversky, |1979; Kahneman et al., 2021; Dror, 2020). High
workload and time pressure further degrade attention and vigilance, changing
how operators notice, interpret, and respond to automated cues (Endsley]
. These conditions also intensify well-documented patterns of automation
misuse, including complacency and automation bias, in which users defer to an
aid even when it is wrong or context-mismatched (Parasuraman and Manzey),
[2010; [Parasuraman and Riley}, [1997; Merritt and Ilgen| 2008). Because reliance
is not static, behavioral awareness must include trust calibration: The capacity
to maintain appropriately proportional reliance as performance, context, and
incentives shift (Lee and See), 2004]).

Functional awareness complements this behavioral awareness: Operators
must grasp how machine-learning systems represent uncertainty, how their
reliability changes with context, and where their confidence diverges from causal
truth (Lyons et al., 2021} |Gao et al., [2023)). Transparency and explainability
are critical to functional awareness as they enable operators to interpret how
AT systems reason under uncertainty and challenge their recommendations

appropriately (Miller} [2019).

In high-consequence domains, ‘accuracy in testing’ is not sufficient as a
proxy for trustworthiness in deployment: Dataset shift, underspecification, and
out-of-distribution conditions can produce brittle or unstable behavior that
is not visible in routine validation (Ovadia et al., 2019; D’Amour et al 2022;
[Hendrycks and Gimpel, [2017). Functional awareness therefore includes (a)
understanding calibration limits and what probabilistic confidence does (and
does not) mean 2017), and (b) understanding why interpretability
and explanation are not merely transparency virtues but practical tools for
contestation, error detection, and bounded reliance (Rudin| 2019; [Doshi-Velez
. When operators appreciate both their own cognitive dynamics
and the variability and boundary conditions of Al performance, human—AI
collaboration can evolve from passive oversight into an adaptive process of
mutual calibration.
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This functional awareness is central to this article’s core claim: Because con-
temporary ML is stochastic and context-sensitive, meaningful human oversight
depends on operators understanding how uncertainty is represented. When
reliability shifts across contexts, and where system confidence can be overrep-
resented, reliance must be a matter of judgment based on clear understanding
of the boundaries within which the system can perform with accuracy and
predictability. How can this be implemented?

3.3.1 Towards implementing MHC via co-learning

Co-learning scenarios should aim to build reciprocal situational awareness: A
two-way understanding in which humans learn how AI performance varies across
operational conditions, and Al systems (through design, training, interface,
and feedback loops) are shaped to anticipate predictable human vulnerabilities
and restrictions under stress, ambiguity, and tempo. This concept builds on
established work on situation awareness and human—automation interaction,
while emphasizing co-adaptation rather than one-directional ‘user training’
alone (Endsley, [1995; Parasuraman and Rileyl} [1997; |Parasuraman and Manzeyl,
2010).

Returning to the concept of co-learning labs from Sec. they can now
more generally be understood as real-world training and evaluation environ-
ments in which operational situations (including high-tempo decision contexts)
are simulated through enactment, enabling teams to practice with Al-enabled
decision support while generating structured evidence about where human
and machine reliabilities intersect, diverge, or degrade: As noted, machines
excel at rapid pattern detection and probabilistic reasoning, yet lack causal
comprehension and moral sensitivity. Humans bring contextual judgment and
ethical evaluation but are vulnerable to fatigue, stress, framing effects, and
diffusion of responsibility. Hence, training environments that expose where
human and machine reliability cross and interact need to be established that
can foster the kind of co-adaptive awareness needed for safe deployment.

These environments are not simply ‘training ranges.” They are governance-
relevant infrastructures that (a) reveal predictable failure modes (behavioral
and functional), (b) support the refinement of interfaces, escalation protocols,
and contestation pathways, and (c) produce auditable learning artifacts that can
feed test-and-evaluation, doctrine, and accountability. In this sense, co-learning
supports MHC by operationalizing the conditions under which oversight is ac-
tually meaningful: it strengthens the operator’s capacity to contest, recalibrate,
and redirect reliance, and it strengthens the system’s design alignment with
human reasons, responsibility practices, and institutional review.

The co-learning framework advocated for here is not intended to replace
established concepts such as calibrated trust (Lee and See) |2004). Rather, the
two operate at different analytical levels. Calibrated trust refers to a state of
appropriate proportional reliance on an automated system at a given time, based
on perceived competence, predictability, and context. Co-learning, by contrast,
describes an iterative process through which such calibration is developed and
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maintained over time. By repeatedly exposing human operators to system
behavior across varying conditions—including uncertainty, degradation, and
failure, co-learning environments support the ongoing adjustment of reliance as
system performance and operational contexts evolve. In this sense, co-learning
functions as a practical mechanism for sustaining calibrated trust in settings
where static training or one-time validation is insufficient.

The behavioral-functional approach outlined above clarifies why MHC can-
not be secured by procedural oversight alone. It requires disciplined operator
judgment and system-level literacy about how probabilistic models behave
at and beyond their domain limits. Then, co-learning labs provide a practi-
cal bridge between these requirements by turning abstract commitments to
control into trained competencies, validated boundaries, and institutionally
usable evidence of when and why reliance is warranted: research on human-
autonomy teaming highlights that robust collaboration depends on dynamic
trust, transparency, and shared (or, in the case of Al: appropriately aligned)
mental models that allow both sides to anticipate one another’s limitations
(Lyons et al 2021; |O’Neill et al, 2022). Co-learning can be the mechanism for
strengthening the conditions of MHC (i.e., sustained engagement, calibrated
reliance, and contestability) given well-documented risks of complacency and
automation bias in human—automation interaction (Parasuraman and Riley,
1997; |Parasuraman and Manzeyl, [2010; |[Lee and See, [2004)).

Humans remain the central decision-makers, exercising authority most ef-
fectively when they understand their own cognitive limits and the probabilistic
nature of Al reasoning. In this sense, co-learning can support calibrated agency,
enabling mutual adaptation while preserving the moral and operational account-
ability of human operators. Training environments that reveal where human
and machine reliability intersect provide a plausible path to cultivating the co-
adaptive awareness required for safe deployment. A behavioral-functional design
provides a foundation for responsible co-learning and for ensuring that human
judgment remains active, informed, and accountable even within stochastic,
high-tempo decision systems.

3.3.2 The limits of human oversight

Human oversight is often treated as an inherent safeguard, yet the human-au-
tomation literature shows that oversight can be protective or counterproductive
depending on operational and cognitive conditions. Oversight is most likely to
help when operators can independently evaluate the system’s output, when
the task tempo permits verification, and when interfaces support situation
awareness and informed contestation rather than passive acceptance (Endsley,
1995; [Lee and Seel |2004). In these conditions, human judgment functions as a
meaningful check on probabilistic outputs, particularly under uncertainty or
domain shift.

However, oversight can harm when cognitive workload, time pressure, or
organizational incentives push operators toward shallow review, producing
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‘rubber-stamping’ rather than genuine evaluation. Under high perceived au-
tomation reliability, users tend to drift into complacency and automation bias,
deferring to system outputs even when they are incorrect or context-mismatched
(Parasuraman and Rileyl |1997; [Parasuraman and Manzey, [2010; Merritt and
Tlgen, 2008). This risk is compounded when operators lack functional awareness
about what model confidence signals mean, or when the human role becomes
supervisory monitoring in low-engagement conditions that predict vigilance
decrements (Endsley|, 1995, Parasuraman and Manzeyl, [2010). In short, ‘human
in the loop’ or ‘human on the loop’ is not a sufficient condition for meaningful
control if the loop is cognitively thin or institutionally pressured.

These findings imply that the value of oversight is conditional and pre-
dictable. Factors that tend to improve oversight include time and workload
margins, clear contestation pathways, feedback that enables calibration, and
interface design that supports active verification (Lee and See, 2004)).

3.4 Strategic resilience to mitigate hybrid security threats

ML’s proneness to bias, confusing of plausibility with factuality, and signalling
a high degree of self-confidence even when producing incorrect results also
open up new possibilities for attack and disruption. These become strategically
relevant for military use in light of hybrid threats (Kambouris, [2024)): For
example, Al systems intended as aids in the MDMP can be deliberately thrown
off balance by manipulating data streams. The hybridization of conflict, in
which conventional operations are interwoven with cyberattacks, disinformation,
and bioterrorist scenarios, makes Al a double-edged sword in military use: It is
both an efficiency enhancer and a target for attack. For effective preventive
threat prevention, Badali¢| (2024) hence emphasizes that threats must be
addressed ex ante before they become effective in combat, which can in part
be addressed by meaningful human oversight.

Jonsson and Kaihko| (2025) expand the view of conflict arenas beyond
the battlefield with their approach to non-military warfare. The challenges
are particularly acute where open-source intelligence (OSINT) data is used
for training and mission evaluation by AI: Open sources are heterogeneous,
manipulable, and often express aggressive narratives. When Al systems that
operate on the principle of statistical plausibility learn from OSINT data, this
can distort the situation assessment in lieu of supposed operational effectiveness
(cf. |Ziehr and Merkt| [2024)). Again, meaningful human oversight is the required
counter measure.

Marquis| (1997)) shows that asymmetric actors are particularly successful
in exploiting the weaknesses of superior systems. [Freudenberg| (2010)’s theory
of irregular warfare makes it clear that asymmetric warfare operates through
methods such as deception, infiltration, or overstretching of enemy forces.
Applied to the above analysis of Al error modes, this means that irregular
opponents can deliberately provoke the inherent susceptibility to bias of prob-
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abilistic models—for example, through ‘poisoned’” OSINT data or simulated
patterns—in order to gain disproportionate influence over operational decisions.

To counter these threats systemically, strategic resilience is required, which
can be located on three levels (Souchon) 2020): at the micro level among
soldiers, analysts, and Al assistance systems; at the meso level among military
organizations and networks; and at the macro level among the state, society,
and the international order. Resilience means more than just resistance: it
encompasses the ability to address threats ex ante preventively, ex nunc at
the moment of action, and ex post in the sense of organizational learning.
Constellation analysis (Ohlhorst and Schon, [2015]) is a suitable methodological
tool for this purpose, as it reveals the interactions between actors, means, goals,
and dynamics and, in conjunction with the hybrid methods of asymmetric
warfare described by Freudenberg, shows where Al systems are vulnerable and
how their integration into military constellations can be designed responsibly
(cf. Merkt et al., |2025).

4 Conclusions

The non-negligible likelihood of Al errors in any one situation necessitates
the implementation of processes to ensure human operators participating in
human-AT collaboration understand the failure modes of their tools and are
properly integrated in decision-making. Co-learning schemes can help herewith
and at the same time train respective Al systems to compensate for specific
errors and limitations of ‘their’ human users. Furthermore, Al is not only
a tool, but also a potential target for attacks in asymmetric conflicts. Only
when meaningful human oversight and judgment, decentralized architectures,
and resilient organizational setups work together can probabilistic systems be
prevented from becoming targets and catalysts for strategic misjudgments in
highly consequential situations.

4.1 Limitations and future work

This article has argued that meaningful oversight based on behavioural and
functional (including ML) awareness is necessary for high-consequence Al
deployment, but it does not claim that oversight is uniformly beneficial across
contexts (see Sec. [3.3.2). The effectiveness of oversight is conditional and de-
pends on operational constraints, human cognitive capacity, and task properties.
The following limitations also address directions for future work:

Human capacity constraints: Human oversight can degrade under bandwidth
limits, cognitive load, and information volume. In high-tempo settings, moni-
toring roles can predict vigilance decrements and ‘rubber-stamping,’ especially
when verification is effortful and accountability is diffuse. Thus, future work
should model oversight as a scarce resource and specify minimum conditions
for substantive review (for example, time-to-verify margins, workload thresh-
olds, and interface support for contestation). At the same time, succeeding to
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implement co-learning frameworks is expected to mitigate a larger proportion
of this issue through the improved bi-directional information flow between
human and A, mediated by mutual adaptation.

Expertise differentiation: Oversight competence is likely heterogeneous.
Domain expertise and what we term functional awareness (ability to interpret
uncertainty, calibration limits, and domain shift) may shape error detection, but
the distribution and magnitude of these effects are not established here. Future
research should distinguish (a) domain expertise (operational knowledge), (b)
system literacy (knowing what confidence does and does not mean), and (c)
procedural expertise (ability to execute verification and escalation under time
pressure), and test which combinations predict reliable contestation of Al
outputs.

Ezxpertise transmission: The co-learning laboratories proposed in this article
assume that at least some oversight-relevant skills can be trained, but the ped-
agogical limits are not yet well characterized. Training may improve calibration
and contestation, yet it may also induce overconfidence or brittle heuristics. A
priority research agenda is therefore to evaluate training regimes experimentally,
with outcomes that include calibration, detection of out-of-distribution failure,
and appropriate override behavior under stress and time pressure.

Failure modes of oversight: Moreover, human involvement can worsen
outcomes when deliberation introduces harmful delays; when cognitive biases
dominate under uncertainty; when users over-ride correct Al outputs due to
misplaced confidence; or when the human lacks the domain basis to evaluate the
recommendation. These risks reinforce a central point of this article: ‘human-
in-the-loop’ is not a sufficient condition for meaningful control. Oversight must
be designed so that review is feasible, contestation pathways are clear, and the
human role remains cognitively substantive rather than formal. Co-learning
labs are proposed as one mechanism for identifying these boundary conditions
in practice and for generating auditable evidence about where reliance should
be bounded, deferred, or escalated.

In addition to these human factors, open questions on the ML side need
to be addressed thoroughly in the future to realize co-learning enabled MHC
in high-consequence scenarios: how to transform any practical ML system
used in the respective high-consequence context into one that is continously
learning, overcoming memory issues and catasrophic forgetting, and outputting
meaningful confidence estimates? How to enable the information flow from Al
system to human necessary for human adaptation via XAI, especially for data
modalities other than vision? What ML algorithms are appropriate for the
machine part of co-learning, and how to evaluate the joint learning progress?
Finally: What aspects of psychology need to be incorporated to which degree
to facilitate the human learning?
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4.2 Recommendations

Because Al processing routinely exceeds human review capacity, meaningful
verification must rely on selective validation strategies that target anomalies,
boundary conditions, and irreversible decisions, rather than comprehensive
replication of machine analysis. The following principles are offered as practical
orientation precisely because oversight is conditional; they are meant to guide
governance toward contexts where oversight is feasible and meaningful, and
away from procedural ‘human presence’ that does not improve outcomes.

To keep the discussion actionable, the technical realities outlined in this arti-
cle can be translated into practical high-level guiding principles for responsible
innovation, forming the acronym ‘GUARD’:

Governance. Assign clear decision authority and responsibility across the Al
lifecycle, including who may deploy, modify, pause, or override the system,
and under what conditions.

Uphold Human Dignity. Ensure that high-stakes decisions remain responsive
to human reasons and do not reduce persons to data points; where conse-
quences are severe, preserve the ability to pause, reconsider, or defer.

Anticipate Error. Treat mistakes and misfit as expected under uncertainty and
shifting conditions; build practices that help users recognize when outputs
may be unreliable and require additional scrutiny; teach basic ML literacy
to all stakeholders.

Retain Human Agency. Structure human involvement as active judgment rather
than passive monitoring, including meaningful opportunities to question,
contest, and redirect reliance on the system; create, with high priority,
co-learning labs to train this.

Document Accountability. Maintain traceable records sufficient to reconstruct
how the system’s output was used and how human judgment was exercised,
supporting audit, learning, and responsibility attribution.

Tab. [T operationalizes GUARD. Absent these safeguards, reliance is more
likely to drift from proportional, context-sensitive use toward routine and
procedural acceptance. These principles provide a practical orientation for
embedding Al decision support in ways that keep oversight meaningful, while
leaving the operational specification of thresholds and procedures for future
research and evaluation.

Not least, designing, developing, and deploying Al systems (e.g., the specula-
tive ones of Sec. [3.2.1)) according to these principles of decentralized, co-learned
AT systems, specifically in military contexts, would ensure a proper place for
the often unwanted but ultimately important human trait of having mercy.
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GUARD principle

Oversight requirement

Implementation conditions

Governance

Clarify decision authority
and responsibility across
the AI lifecycle (deploy-
ment, modification, sus-
pension, override), includ-
ing conditions under which
each applies.

Make authority legible: specify
who authorizes use, who can
pause/suspend, who can override,
and who is responsible for review
when operating conditions shift or
uncertainty rises (cp. (Diakopou
los et al., |2017)).

Uphold Human Dig-
nity

Ensure high-stakes deci-
sions remain responsive to
human reasons and do not
reduce persons to data
points; where consequences
are severe, preserve the abil-
ity to pause, reconsider, or
defer.

Require a brief human-reasons
statement for high-consequence
outputs (one sentence explaining
the human-relevant grounds be-
yond the model’s output) and pre-
serve a protected pause/deferral
pathway where consequences are
irreversible or contested.

Anticipate Error

Treat mistakes and misfit
as expected under uncer-
tainty and shifting condi-
tions; build practices that
help users recognize when
outputs may be unreli-
able and require additional
scrutiny.

Teach basic ML literacy to all
stakeholders; couple outputs to
uncertainty awareness: require an
uncertainty /confidence representa-
tion (where available), and include
a short “conditions changed?”
check (e.g., missing data, degraded
inputs, novelty, time pressure)
that triggers heightened verifica-
tion, second review, or deferral.

Retain
Agency

Human

Structure human involve-
ment as active judgment
rather than passive moni-
toring, including meaning-
ful opportunities to ques-
tion, contest, and redirect
reliance on the system.

Create, with high priority,
learning labs to train this; pre-
serve contestability by design: for
designated high-consequence out-
puts, require an active verifica-
tion move (cross-check, alterna-
tive hypothesis check, or second
reviewer) so reliance is not reduced
to rubber-stamping under tempo
or perceived system authority.

co-

Document Account-
ability

Maintain traceable records
sufficient to reconstruct
how the system’s output
was used and how human
judgment was exercised in
order to support auditing,
learning, and responsibility
attribution.

Maintain a minimal standard of
process preservation to include
output consulted (and uncertainty
representation, if present) and a
brief rationale noting salient con-
straints (time pressure, missing in-
puts, uncertainty); this can be au-
tomated in co-learning lab envi-
ronments.

Table 1 Operationalizing GUARD. The oversight requirements resemble the short descrip-
tion above. The implementation conditions give further insight towards operationalization.
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