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Abstract Deep learning (DL) methods have gained considerable attention since 2014. In this             
chapter we briefly review the state of the art in DL and then give several examples of                 
applications from diverse areas of application. We will focus on convolutional neural            
networks (CNNs), which have since the seminal work of Krizhevsky et al. (2012)             
revolutionized image classification and even started surpassing human performance on          
some benchmark data sets (Ciresan et al., 2012a, He et al., 2015a). While deep neural               
networks have become popular primarily for image classification tasks, they can also be             
successfully applied to other areas and problems with some local structure in the data. We               
will first present a classical application of CNNs on image-like data, in particular, phenotype              
classification of cells based on their morphology, and then extend the task to clustering              
voices based on their spectrograms. Next, we will describe DL applications to semantic             
segmentation of newspaper pages into their corresponding articles based on clues in the             
pixels, and outlier detection in a predictive maintenance setting. We conclude by giving             
advice on how to work with DL having limited resources (e.g., training data).  

1. Introduction to deep learning 
Deep neural networks have been greatly influencing the world of pattern recognition for             
several decades (Schmidhuber, 2014). The disruptive nature of the approach became           
obvious to a wider audience since Krizhevsky et al. (2012)’s exploit on the ImageNet task.               
Since then the corresponding gain in perceptual performance has often been such that error              
rates could be halved or even improved by an order of magnitude with respect to the                
previous state of the art on open benchmark datasets (LeCun et al., 2015). In this chapter,                
we show how deep learning (DL) methods can be applied not only to classical computer               
visions tasks from research, but to a wide variety of tasks in industry beyond classification. 
 
While it is easy for humans to recognize someone’s speech or classify objects in an image,                
problems like these had previously posed a serious challenge for computers for a long time.               
In the traditional pattern recognition paradigm, researchers tended to manually design           
informative features, on which classification algorithms were applied. In computer vision,           
these were, among others, Haar features or Gabor filters (Szeliski, 2010). In speech             
recognition, one used, for example, Mel frequency cepstrum coefficients (Zheng et al.,            
2001), while in NLP, there were n-gram features or mutual information between the words              
(Bouma, 2009). These features were burdensome to engineer manually and it was unclear             
which ones were the most informative for the task at hand.  
 
DL revolutionized the field by offering end-to-end learning, starting at almost raw data input              
without the need for kernel or feature engineering and allowing a hierarchy of neural network               
layers to learn the necessary features on its own. In the following paragraphs we provide a                
brief overview of these developments. 
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Figure 1. A feed-forward neural network with features and label probabilities  ., ... , xx1   N  , ... , pp1   K   

1.1 Fully connected neural networks for classification 
The simplest architecture, from which the development in the field of neural networks             
started, is a fully connected feed-forward neural network (Rosenblatt, 1957). It can be             
considered as a directed acyclic graph where the information flows from left to right (see               
Figure 1). A neuron is made up of a circle (summing up the inputs), followed by a square                  
(depicting a nonlinear activation function that serves as a threshold). Inspired by a biological              
brain, each neuron in a layer of neurons (vector ) ​receives an input from all the   (x)  zl

j        (x)  zl        1

neurons from the previous layer with a weight matrix . The weighted sum of inputs for     zl−1     W        
the neuron is then passed through a nonlinear activation function inside the neuron that          f      
acts as a trainable threshold: if receives a high value, the neuron is activated and passes      f            
the transformed signal to the neurons in the next layer on the right. In general, the output of                  
all neurons of a layer can be recursively described ​with the weight matrices     l          , , ..  W l−1 W l−2 .
and bias vectors  as:, , ..  b 
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The network can possess many hidden, interconnected layers. For classification into classes            

, its last (output) layer will have as many nodes as there are classes to distinguish, , .., K  1 2 .                  
in the data ( in this case). To obtain probabilities for each class , the raw   K        (y | x)  P k     k    
aggregated inputs (scores) must be standardized by their sum over all classes to produce              
values between 0 and 1, which is usually done with the softmax function (Bishop, 2006,               
p.115): 
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where are the learned weights of layer which are elements of the matrix wjk  l        l        .  W l

Historically, sigmoid and hyperbolic tangent were used as  (x) 1 )  f = ( + e−x −1    (x) tanh(x)  f =      
activation functions; now it is recommended to use a Rectified Linear Unit (ReLU)             

which significantly speeds up training because of improved gradient flow(x) max(0, )  f =  x            
(Krizhevsky et al., 2012).  
 

1 Vector arrows are usually not drawn in the DL literature.  
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To train the neural network (i.e., find the optimal weights), a loss (discrepancy between the               
true and predicted classes) is computed once the signal is propagated to the last layer and                
the class probabilities are calculated. Then the weights are adjusted to minimize the loss              
function, which is usually done with a maximum likelihood approach: The weights are             
optimized by stochastic gradient descent (SGD) (Goodfellow et al., 2016) and the required             
gradients are efficiently calculated making use of the chain rule. For example, to calculate              
the gradient of the loss at the layer  one can use the gradient at the layer :l − 2 l − 1   

 ∂zl−2
∂Loss = ∂f

∂Loss ∂f
∂zl−1 ∂zl−2

∂zl−1  
The gradient thus propagates ‘back’ from the loss to previous layers. Therefore, this             
procedure is also called backpropagation in the context of neural networks (Rumelhart et al.,              
1988); a gentle introduction is provided by Nielsen (2015). Training usually runs on GPUs for               
computational reasons (speed-up of an order of magnitude as compared to CPUs), and the              
training data is split into so-called mini-batches, which fit into the GPU memory and on which                
SGD is run. Nowadays, more advanced variants of SGD like ADAM (Kingma & Ba, 2014)               
and ADADELTA (Zeiler, 2012) are usually employed instead of the standard SGD and             
should be preferred. 

1.2 Convolutional Neural Networks (CNNs) 
While fully connected networks possess significant flexibility, they have many parameters           
and tend to significantly overfit the data while not capturing any local structures such as the                
2D correlations of pixels in images. CNNs were introduced in order to resolve these issues.  
 
The first neural networks with convolutional filters date back to the work of Fukushima              
(1980). They were made trainable end-to-end via backpropagation by LeCun et al. (LeCun et              
al., 1998a), yet their applicability was limited at that time due to scarce computing capacities               
and the shortage of large labeled datasets. The revival came in 2012 with the works of                
Ciresan et al. (2012a) and Krizhevsky et al. (2012), who independently presented            
significantly deeper nets trained on modern graphics cards (GPUs). This GPU training            
enabled increased depth by exploiting the cheap hardware originally developed for 3D            
games, using its massively parallel matrix computation capabilities. It was thus possible to             
solve the problems of the traditional approach and completely outperform it in numerous             
pattern recognition challenges. Currently, deep CNNs have error rates as low as humans (or              
sometimes even better (Nielsen, 2017)) in many tasks, including image classification (He et             
al., 2015a), geolocation (Weyand et al., 2016), speech recognition (Xiong et al., 2016), lip              
reading (Chung et al., 2016), as well as the games of GO (Silver et al., 2016) and poker                  
(Moravcik et al., 2017).  
 
The intuition behind CNNs goes back to the physiological experiments of Hubel and Wiesel              
(1959) on the response of visual neurons in a cat’s brain to various oriented stimuli. The                
main idea of CNNs is to design a neural network that can easily exploit local structure in its                  
input in hierarchically organized layers to extract subsequently more abstract features:           
convolutional kernels (resembling the filters of classical image processing ) are slid over the             2

2 In digital image processing, to apply a filter (or kernel) to a specific region of an image, centered 
around a specific pixel, means to take the weighted sum of pixels in the center pixel’s neighborhood. 
The size of the neighborhood is determined by the filter size (e.g., ​3x3​ pixels), whereas the weights 
are determined by the filter designer. Numerous classical filters for all kinds of image processing tasks 
are known. For example, to smoothen an image, one applies a filter with each of the ​N​ weights 
equaling ​1/N​, so the filter response is an average over the filter’s spatial area. The filters “filter 1” and 
“filter 2” in Figure 2. show vertical and horizontal edge detectors, respectively (when white pixels 
stand for a weight of ​-1​ and blue pixels for a weight of ​1​, or vice versa). In CNNs, the filter weights are 
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complete input and the dot product of the input with the kernel at each location is computed.                 
Thereby, each possible kernel location shares the same weights, which massively saves            
parameters in this layer, which in turn can be “invested” back into additional layers.              
Convolutional layers usually alternate with some sort of sub sampling (originally: pooling)            
layers and thus allow the CNN to abstract local structure to global insights. 
 

 

Figure 2. Convolutional filters (top) slide over the images, creating feature maps, which are then down-sampled 
to aggregate the most important information about the image structure. 

 
The convolutional operation makes sense because it processes information locally and           
converts it to a feature map (which is the output of a specific filter, evaluated at every pixel of                   
the current layer, resembling the filtered image) that indicates the presence or absence of              
the very feature the convolutional filter describes using its learned coefficients. A learned             
feature could be, for example, an edge, a simple shape, or a combination of these in the                 
later layers. The feature map can then be compressed by means of a down-sampling              

learned, while the size and number of filters are chosen hyperparameters. This means that each 
convolutional layer in a CNN can learn any classical image transformation (see 
https://en.wikipedia.org/wiki/Digital_image_processing​), one per filter (you see the number of filters by 
counting the number of feature maps in the next layer, cp. Figure 2). 

 

https://en.wikipedia.org/wiki/Digital_image_processing
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operation (e.g., max pooling ) to create a global big picture of the input contents out of the                 3

local features (see Figure 2). In CNNs, several blocks of convolution and down-sampling are              
thus stacked in the network with various input sizes to achieve sufficient generality and to               
capture enough detail, so that every block is responsible for some image property. As a               
result, a hierarchical representation of object properties is built by the convolutional layers.             
Finally, a fully-connected output layer produces class probabilities.  
 
To cope with varying input image sizes and to produce richer outputs than just class labels                
(e.g., full images again), the fully convolutional network (FCN) has been proposed (Long et              
al., 2014), which implements all layers (also down-sampling and fully connected ones) using             
convolutions only (see Section 4).  
 
Overall, a CNN still contains a lot more free/trainable parameters (usually in the order of               
hundreds of millions) than observations used for training, so that with a “wrong” training              
procedure it is easy to overfit the data. There are a number of possible solutions which are                 
now application standards. First, traditional CNNs are not intrinsically invariant to           
transformations like object rotations, flips, lighting etc. In order to enrich the training data, it is                
common to do image augmentation prior to training that reflects the input’s nature (i.e. apply               
transformations like rotation, translation and random scaling to the data and adding natural             
“noise”, using the transformed images for training as well). Second, a regularization            
technique called dropout (Srivastava et al., 2014) was introduced to significantly reduce            
overfitting, which consists of randomly deactivating each neuron in a layer usually with a              
probability of  at training..5  0  
 
Wrong weight initialization in a network can pose a serious problem as well. With an               
inappropriate initialization, some of the neurons may soon come into an over- or             
under-saturated regime, and, depending on the activation function, the gradients will be            
close to zero. This in turn means that there would be almost no update of the weights during                  
backpropagation, and parts of the network will die out. To avoid this and other problems,               
including overfitting, the batch normalization technique (batchnorm) has been proposed          
(Ioffe & Szegedy, 2015). It consists of standardizing a mini-batch ​at each layer of the               
network with its mean and standard deviation after each training iteration in order to keep a                
stable input distribution to each neuron, thus facilitating gradient flow. Moreover, batchnorm            
also allows to learn the shift and scale normalization parameters to undo the standardization              
when needed. Batchnorm alleviates the dependence on initialization, allows faster learning           
rates and training times and acts as a regularizer due to a more even sampling in the                 
parameter space. 
 
To summarize, the use of GPUs in conjunction with the abundance of large (annotated)              
datasets made CNNs applicable to a wide range of problems. This was only possible in               
combination with the algorithmic improvements outlined earlier (i.e., ReLU activation,          
batchnorm initialization of the weights, ADAM or ADADELTA optimizer, dropout          

3 Max-pooling describes the process of moving a kernel of e.g. 2x2 pixels over an image-like 
representation (a layer in the neural network); for each location, only the maximum pixel value is 
carried over to the next layer, thus resulting in down-sampling the original 2x2 pixels (to keep the 
example from above)  information to just 1x1. The size of the kernel as well as its step size (stride) 
typically are hyperparameters of the neural network architecture. However, in some modern designs, 
the architecture offers down-sampling at various degrees after each convolutional step, with the 
possibility to learn during training for the task at hand which of several alternative paths through the 
network should be followed at which layer. Thus, it offers to “learn” the degree of downsampling to a 
certain extent (Szegedy et al., 2014)(He et al, 2015b). 
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regularization, and data augmentation) – compare (Szegedy et al., 2014). All these            
improvements are now implemented in modern software frameworks used for          
production-ready deep learning, such as TensorFlow or Torch , or included in high-level            

4 5

libraries on top of these frameworks like Keras or TFLearn . These frameworks also offer a               
6 7

collection of pre-trained networks available for many image recognition tasks. They can be             
adapted to similar tasks using transfer learning (Pan and Yang, 2010), eliminating the need              
for time-consuming training from scratch, which could still take 1-2 weeks for any real-world              
task even on modern hardware. 

1.3 Non-obvious use cases 
In the following sections, we describe various applications of deep neural networks. We             
focus on non-classical tasks, given that the performance of CNNs on image classification             
tasks is well known. Table 1 gives an overview of the selected tasks with a focus on the                  
properties of every use case. Moreover, the table describes in which section of this chapter               
the use case is described in more detail. Table 2 summarizes the special challenge of each                
task and the main deviation from the classical image classification approach. 
 

Sec. Application Type of final task Training data Results 

2 Cell phenotype 
classification for 
drug discovery 

classification 
(supervised) 

ca. 40k images having 5 color 
channels 

outperforms state of the art 
(better than LDA and SVM) 

3 Media 
segmentation 
according to voice  

clustering 
(unsupervised) 

spectrograms of raw audio 
(ca. 25s on average for each 
of 100 speakers) 

outperforms state of the art 
(better than hand-coded 
features and statistical 
models) 

4 Newspaper 
segmentation into 
articles 

semantic 
segmentation 
(supervised) 

ca. 430 scans of newspaper 
pages (+ additional input from 
OCR) + 5k partially labeled 
pages (+OCR) 

outperforms state of the art 
(better than classification 
CNN) 

5 Predictive 
maintenance of 
rotating machinery 

anomaly / outlier 
detection 
(unsupervised) 

spectrograms of ca. 1k raw 
vibration signal measurements 

on par with state of the art 
(SVM, PCA, statistical 
models) 

Table 1: Overview of task properties for each of the following use cases. 
 

Sec. Non-obvious because? Solved by? 

2 introductory case, but 5 color channels instead 
of the usual 1 to 3 

straightforward extension of standard model using 
data augmentation on training data 

3 audio instead of image as input; final goal is a 
clustering 

input is converted to a spectrogram to be treated as 
an image; output is a learnt representation to be 
clustered offline by another method  

4 output is a cutting mask (outline of the text 
columns & images that make up an article on a 
page) 

output is an image of the same size as the input: 
pixels of same color indicate areas belonging to the 
same article 

5 training data has only one class, model shall using an autoencoder architecture for the network 

4 ​https://www.tensorflow.org/ 
5 ​http://torch.ch/ 
6 ​https://keras.io/ 
7 ​http://tflearn.org/ 
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indicate if new data deviates from it (instead of 
segregating it from a well-specified 2​nd​ class) 

and interpreting the reconstruction error as the 
degree of novelty in the test signal 

Table 2: What makes the following tasks special and how can this be handled using deep learning? 
 
We start with an application of CNNs to fluorescence microscopy images, an application             
which up to now requires much tedious and time consuming work from highly trained experts               
in biology and image analysis. We then continue to speaker clustering, where pre-trained             
CNNs are used to extract learned feature vectors per speech utterance for subsequent             
hierarchical clustering. This is followed by an application in which a fully convolutional             
network segments the pixels of a scanned newspaper page into sets of semantically             
belonging articles. Finally, the use of DL for predictive maintenance is illustrated before we              
conclude by giving an outlook on how to generally apply deep nets in contexts with usually                
very limited training data and computational resources. 

2. Learning to classify: Single cell phenotype      
classification using CNNs 

 
High content screening (HCS) is an essential part of the drug discovery pipeline used in the                
pharmaceutical industry. Screening involves the application of many thousands of drug           
candidates (compounds) to living cells with the aim to investigate the cell response. This              
response manifests itself in the change of the phenotype. Examples for those phenotypes             
are: dead cells, dying cells (apoptosis), dividing cells (mitosis), and cells expressing certain             
proteins.  
 
In simple settings an applicable approach for classification is to extract predefined features             
for each cell (e.g. diameter, area, circumference of the nucleus or the cell, the intensity of                
different fluorescent stains in the nucleus or the cell or other organelles) and use them as an                 
input for classification (see Figure 3, upper right panel). Such pre-defined features can be              
extracted by a specialized software such as CellProfiler . However, more challenging cases            

8

require a tailored image analysis procedure to extract appropriate features, which needs to             
be done from scratch for each experiment, requiring both in-depth knowledge of cell biology              
and advanced knowledge of image processing.  
 
Deep learning, on the other hand, does not rely on those predefined or hand-crafted              
features, and employs only labeled data, a task which is feasible for a biologist without a                
profound competence in image processing. Hence, deep learning has the potential to            
radically change the workflow in HCS. The envisioned CNN approach allows to learn the              
features and the classification model in one training procedure (see Figure 3, lower right              
panel). 

2.1 Baseline approach 
We use part of the image set BBBC022v1 (Gustafsdottir et al., 2013) (the “Cell Painting”               
assay), available from the Broad Bioimage Benchmark Collection (Ljosa et al., 2012). We             
analyze the images of human cells treated with 75 compounds – each compound resulting in               
one of 3 phenotypes (named A,B,C). In addition, we add the phenotype D of the cell without                 
treatment (mock class). In total, we have the following number of detected cells, which were               

8 ​http://cellprofiler.org/ 
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imaged in 21 different wells on 18 different plates: 40,783 (mock class), 1,988 (cluster A),               
9,765 (cluster B), and 414 (cluster C). 
  
Approximately 20% of the data is put aside for testing, containing the following number of               
examples per class: 8,217 (mock class), 403 (cluster A), 1,888 (cluster B), and 82 (cluster C)                
cells from 10 different wells on 5 different plates. The remaining 80% of the data is used to                  
train and tune different classifiers comprising a CNN based on the raw image data as well as                 
the three baseline approaches often used in HCS (Dürr et al., 2007): Fisher linear              
discriminant analysis (LDA), Random Forest (RF), and support vector machine (SVM),           
based on CellProfiler features. Before the input into CNNs, 5 images of size 72x72 are               
cropped for each cell from the original images. The bounding box is constructed to be               
quadratic so that the entire cell is within the box.  
  
For the baseline workflows, each of the extracted features is normalized to have zero mean               
by a z-transformation. We then use the following implementations and parameterizations for            
classification: a SVM with a linear kernel (the penalty parameter C of the SVM is optimized                
using a 10 fold cross-validation on the training set); a RF with the default value of 500 trees;                  
and LDA. All algorithms have been implemented in Python using the scikit-learn library . 

9

 
Figure 3. Overview of the used analysis scheme. The baseline approach (upper part) needs handcrafted 

features, which are extracted using CellProfiler prior to classification using e.g.the SVM. In the CNN approach 
(lower part), the features are learned automatically. 

 
2.2 CNN analysis 
As the only preprocessing step for CNN, we normalize the values per pixel. The architecture               
of the CNN is inspired by the second-best entry of the 2014 ImageNet competition              
(Simonyan & Zisserman, 2015). All convolutional filters (C) have the size of (3,3) and a stride                
of 1 pixel and use ReLU activations; no padding is applied at the boundaries. Two               
convolutional layers are followed by a (2,2) max-pooling layer, forming a stack. Our network              
consists of 3 such stacks, which have 32, 64, and 128 kernels each. These stacks are                
followed by 3 fully connected layers with 200, 200, and 50 nodes respectively, and a final                
softmax layer for the 4 classes. The network has about 1.2 million learnable weights. For               

9 ​http://scikit-learn.org/stable/ 
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learning the weights of the network, we split the data available for training into two parts: one                 
part is used for fitting the weights (training set), the other 20% are used for validation                
(validation set). Note that the test set described above is only used for the evaluation of the                 
trained CNN. 
  
To prevent overfitting, we use dropout for the hidden layers, setting a fraction of of all              .3  p = 0    
nodes randomly to zero in the training phase. We further used data augmentation to              
artificially enlarge the training set by applying the following random transformations on each             
image after each epoch (one epoch comprises a full pass through the training set): a random                
rotation uniformly chosen in the range of 0 to 360 degrees; a random translation up to 5                 
pixels in each direction (uniformly chosen); and a scaling with a scaling factor uniformly              
chosen in the range 0.9 to 1.1. 
  
The network is implemented using the nolearn extension of the Lasagne python library . All              

10

runs have been done on an off-the-shelf PC with a ​NVIDIA​ GeForce GPU. 

2.3 Results and discussion 
The training of the CNN took on average 135 seconds per epoch when using augmentation               
of the training data; without augmentation an epoch took just 70 seconds. The network was               
trained for 512 epochs (18 hours). Without augmentation, we were overfitting already after             
about 20 epochs, meaning the training loss continued to decrease, but the validation loss on               
the validation set (which was not used for parameter optimization) began to deteriorate.             
When using the data augmentation strategy as described above we avoided overfitting even             
after 512 epochs. Averaged over the last 100 epochs, the validation accuracy is (0.9313              
mean, 0.0079 std). 
  
We applied the learned network to the test set consisting of 10590 cell images. In contrast to                 
the long training phase, the prediction of the probabilities for the 4 classes only takes               
approximately 6.9 seconds for all images. The overall accuracy on the test set is 93.4%. The                
confusion matrix is shown in Table 2 together with the best baseline approach (LDA). 
 

 
Table 2: Results of baseline and CNN approach on the test set. 

  
In this HCS study the CNN trained with raw images yields the best classification accuracy               
when compared to three state-of-the-art image analysis approaches with the traditional           
pipeline of image feature extraction followed by training a classifier based on those features.              
Besides the better performance of the CNN-based approach, it has additional benefits such             
as saving time and costs during the image analysis step and providing high robustness and               
broad application range. 
10 ​http://lasagne.readthedocs.io 

 

http://lasagne.readthedocs.io/


 
Preprint from Braschler, Stadelmann, Stockinger (Eds.): ​“Applied Data Science - Lessons Learned for the 
Data-Driven Business”​, Springer , 2018 (to appear) . 

3. Learning to cluster: Extracting relevant     
features for speaker diarization 

Speaker diarization is the task of segmenting an audio recording of a meeting, a lecture, a                
political debate or some broadcast media by speaker identity to answer the question ​“who              
spoke when” ​(Beigi, 2011). No prior knowledge about the number or specific identities of              
participating speakers is assumed. If we assume a pre-segmentation into speaker-specific           
segments by some other process, but still need to answer the question of which segments               
belong to the same speaker and how many speakers exist, the task is called ​speaker               
clustering​. Typical business use cases arise as a preprocessing step to general media             
indexing (in order to make it searchable), specifically in media monitoring (e.g., who has              
been covered on radio), meeting summarization (e.g., to search by panelist) or the             
evaluation of qualitative interviews in psychological research. 
 
Speaker clustering is typically approached by first extracting base audio features like            
Mel-frequency cepstrum coefficients (MFCC) for the whole audio stream (Ganchev et al.,            
2005), followed by a segment-wise modeling (e.g., using adapted Gaussian mixture models            
(Reynolds et al., 2000)) to create higher-level speaker-specific features per segment (e.g.,            
i-vectors ​(Dehak et al., 2011)). These higher-level features of each segment are then subject              
to a clustering process. Typically, agglomerative hierarchical clustering is used ​(Kotti et al.,             
2008).  
 
In general, clustering is viewed as the prototypical example of an unsupervised learning             
task, using algorithms like k-means ​(MacQueen, 1967) or DBSCAN ​(Ester et al., 1996) as              
alternatives to hierarchical clustering. As with supervised learning schemes, these          
algorithms have their inductive biases ​(Mitchell, 1980). They will find structure in the data if               
and only if (a) that structure is reflected in the extracted features, and (b) the structure fits                 
what the algorithm is biased to look for. K-means, for example, will find structure expressed               
in the mutual distances between data points and hypothesized cluster centers, while            
DBSCAN finds clusters only if they are reflected in the density structure of the data set. 
 
In general, clustering is also close in spirit to the task of classification: while a classifier                
groups the test data into any of a pre-defined number of classes, a clustering algorithm               
basically has the same goal of grouping test data together – just that the number and identity                 
of classes/clusters is not predefined. Given the success of deep neural networks in             
classification on the one hand, and their general ability to extract meaningful and             
task-specific features from almost raw data on the other hand (Razavian et al., 2014), it               
seems compelling to bring these properties to bear on the task of speaker clustering.  

3.1 Supervised learning for improved unsupervised speaker clustering 
The typical deep learning approach to clustering uses the neural network as a data-driven              
feature extractor to transform the input into so-called embeddings (Mikolov et al., 2013)             
(Romanov & Rumshisky, 2017). Each embedding is then used as the new representation of              
the input vector and fed into a subsequent clustering process using one of the              
abovementioned classic algorithms. The embedding is found for a respective input by            
extracting the activations of one of the upper layers of the neural network, which has               
previously been trained for a related or “surrogate” task. 
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For this setup to be successful for speaker clustering, it is important that the learned               
embeddings (or high-level features) incorporate the following ideas: 

● Contain prosodic information: Stadelmann and Freisleben (2009) highlighted the         
importance of the evolution of a sound using short segments of ca. 120 ms in length                
for human-level recognition performance (i.e., temporal information matters instead of          
a pure bag-of-frames approach (Aucouturier et al., 2007)). 

● Be voice-specific: When the surrogate task to train the feature-extracting network is            
speaker identification using a discriminative model, chances are that the extracted           
features are better suited to distinguish the specific set of speakers used during             
training from each other (rather than modeling what makes any voice unique, which             
is what is needed for clustering). 

 

 
Figure 4: Architecture of the CNN used to extract speaker embeddings (Lukic et al., 2017). 

 
We use spectrograms as input and built up a CNN architecture inspired by Dielemann and               11

Schrauwen (2014) to extract embeddings based on these two principles, and evaluated it on              
the well-known TIMIT speech corpus. The architecture is shown in Figure 4; Lukic et al.               
(2016-2017) give all details. The rationale behind this setup is twofold: First, we address the               
temporal aspect mentioned above (“​prosodic information​”) by using convolutional networks:          
the convolutional layers are able to extract time-dependent aspects of a voice through 2D              
convolutional kernels that operate on the spectrograms and thus operate on the time axis.              
Second, the loss function of Hsu and Kira (2015) ensures that the embeddings explicitly              
focus on being similar for identical speakers (“be voice-specific”), and dissimilar for different             
speakers (irrespective of the concrete speaker identity). This ensures a proper closeness of             
the surrogate supervised training task to the final task of clustering (i.e., grouping voices by               
closeness of their embeddings). 
 
3.2 Results 
We took the first speakers in lexicographic ordering from the TIMIT test set for the    n             
clustering experiment. We divided the 10 sentences per speaker into two utterances by             
taking the first 8 sentences (lexicographically ordered by filename) for utterance one, and the              
last two for the second utterance. Utterance one is approximately 20 seconds long on              
average, while utterance two is ca. 5 seconds long. Using the architecture and experimental              
setup described in greater detail in (Lukic et al., 2017), we have been able to cluster up to                  

speakers with a reasonable misclassification (MR) rate of % . The best0n = 8          3.75  1    12

reported previous results worked only for up to 40 speakers with an MR of %, which is on              5     
par with our approach. Ca. 14% MR are a starting point for unsupervised media indexing               

11 A spectrogram is a 2D image representing a time-frequency decomposition of an audio signal: the 
x-axis represents time, the y-axis represents frequency, and the color encodes energy (compare the 
leftmost part of Figure 4, showing 3 seconds of voiced speech).  
12 MR counts the share of utterances that are grouped into the wrong cluster. Wrong can mean two 
things: utterances of different speakers are either joined into the same cluster, or utterances of one 
speaker are distributed over several (pure) clusters instead of combined to a single one.  
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tasks, but should be improved in the future. The main message in this result is that now                 
automatic indexing becomes feasible because it can cope with practically relevant speaker            
set sizes. 
 

 
Figure 5: A t-SNE visualization of the embeddings of several speech segments from 5 TIMIT speakers. 

 
Figure 5 allows for a qualitative assessment of the embeddings of speakers. The used           n = 5     
t-SNE visualization method performs nonlinear dimension reduction from the dimensionality          
of the embedding vectors into 2D (van der Maaten & Hinton, 2008) while preserving the               
original similarity structure as much as possible. We observe that overall the embeddings of              
any speaker group together nicely.  
 
We conclude that for the task of speaker clustering, the sequence-learning capabilities of the              
CNN architecture together with the Kullback-Leibler divergence-related loss function enable          
the extraction of voice-specific features for subsequent clustering. The involved learning task            
seems to be quite non-trivial: only by using batchnorm and 30,000 epochs of training using               
ADADELTA (Zeiler, 2012) we were able to produce useful results. A next step would be to                
embed the clustering in a truly end-to-end optimizable process that includes the actual             
clustering. 

4. Learning to segment: FCNs for semantic      
segmentation of newspaper pages 

Newspapers are provided and consumed to a large extent in printed form. Large archives of               
such papers do exist, containing a historically important cultural heritage. In order to analyze              
or search them, they need to be available in a suitable digital form. Since newspapers               
consist of articles that can be considered as independent units, one usually wants to access               
these semantically meaningful units directly instead of whole pages. Therefore, digitization of            
newspapers not only needs optical character recognition (OCR) (Mori et al., 1999), but also              
semantic segmentation (Long et al., 2014). The term semantic segmentation means to “cut”             
a page into connected components (headers, text, images) that together constitute a            
semantic unit we call an article. In the use case of media monitoring, today's products and                
services are very costly because this segmentation work has to be done manually. This also               
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means that no real-time monitoring is possible, and neither is the processing of larger              
archives feasible using manual work. 
 
In this case study, we improve a straightforward application of a classification CNN by a               
much better suited network architecture to achieve practically useful segmentation results of            
newspaper pages into sets of semantically connected articles. Both approaches are based            
on CNN architectures and provide segmentation masks which can be used to extract the              
articles from the corresponding newspaper pages. A segmentation mask is a binary image             
with black pixels standing for articles and white pixels for borders. In order to extract articles                
using the segmentation mask, we apply a post-processing step to get the coordinates of the               
(black) article areas matching the original scans. 
 
Our dataset consists of 507 high resolution scans (i.e., images) of newspaper pages from              
the papers with highest circulation among Swiss newspapers, ranging from classical weekly            
newspapers to boulevard media. It is accompanied by manually created segmentation           
masks as ground truth. We transform the original scans of the newspaper pages to simplified               
representations to be used as input for our CNNs. This is done by replacing illustrations with                
gray areas and by blackening lines of texts (after OCR). In the end, our data set contains                 
507 pictures with two channels each (plus ground truth segmentation mask, see Figure 6):              
the original scan, and the abovementioned transformation. We use approximately 85% of the             
dataset for training and hold out the remaining 15% for testing. In addition to this fully                
labelled dataset, we have ca. 5’500 partially labelled pages (i.e., each page contains also              
unsegmented articles). 

 
Figure 6. Example of our dataset showing an original scan of a newspaper page (left), the transformed 

representation (middle) and the manually created segmentation mask (right). 

4.1 CNN-based pixel classification vs. one-pass FCNs  
A straightforward first approach is based on the work of Ciresan et al. (2012b): we use a                 
CNN-based pixel classification network (PCN) to classify a newspaper page pixel by pixel             
using subsequent applications of the CNN to every pixel. The class of each pixel (article or                
border) is predicted from pixel values in a 25x25 pixels square window centered on it. The                
network is trained by using only the transformed images, for which we adjust the resolution               
so that all of them have a height of 100 pixels without changing the aspect ratio. Classifying                 
such an image with e.g. 100x75 pixels results in 7,500 windows. We therefore used ca. 3.5                
million windows in training. Figure 7 shows the architecture of the PCN with 7 layers and                
approximately 250,000 weights to be learned. 
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Figure 7. Architecture of the PCN that segments newspaper pages by classifying each pixel of an input image 

(article or border) using 25x25 pixel windows centered on each pixel to be classified. 
 
The fully convolutional neural network used in our second approach is built with three logical               
parts (cp. Meier et al. (2017) and Figure 8). Initially, feature extraction is done the same way                 
as with a standard CNN. This is followed by a network performing an upscaling, resulting in                
a segmentation mask as output. Finally, a very small refinement network adjusts the edges              
of the article regions (black) to be rectangular, since this is one of the typical characteristics                
of newspaper pages. We train this network architecture in two steps: first, we run a               
pre-training with the bigger partially labelled dataset. For this case, the unlabelled parts are              
replaced by white areas. Second, we use the fully labelled data to finalize the model. For                
both training steps we insert the original scans together with the transformations as separate              
channels. Both channels are scaled down to a resolution of 256x256 pixels (keeping the              
aspect ratio by adding white background where necessary). 
 

 
Figure 8. Architecture of the FCN, consisting of three logical parts. First the feature extraction with a standard 
CNN (up to the center of the figure), second the segmentation (done by upscaling convolutions), and third a 

refinement network to ensure typical properties of newspaper articles (last block in “Architecture”). 

4.2 Results 
For the evaluation of the PCN and FCN we chose the diarization error rate (DER) known                
from speaker diarization (Kotti et al., 2008). The DER is a combination of the three error                
types possible when grouping elements into an unknown number of clusters: confusion error             
(CE) measures parts of predicted articles that are wrongly assigned; miss error (ME)             
measures parts of articles that are not included in the predicted segmentations; false alarm              
error (FE) counts parts of predicted articles that do not overlap with any labelled article from                
the ground truth. 
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The FCN has a DER score of 0.1378, thereby outperforming the still respectable PCN              
(0.2976 DER) by more than 50%. This result shows the impact of a suitable network               
architecture for the task at hand. While both architectures have comparable runtimes during             
prediction (roughly 3.7 seconds per page, largely impacted by similar post-processing), the            
FCN can process images that are approximately 18 times bigger considering that two             
images are inserted at the same time. On the other hand, while we used around 6,000                
pages to train the FCN, we trained the PCN with only 507 pages. We conclude that both                 
approaches can be useful depending on the amount of labelled data that is available. For the                
given use case, the industrial partner provided the additional 5k partially labeled training             
images in order to use the FCN approach in practice. 

5. Learning to detect outliers: Predictive      
maintenance with unsupervised deep learning 
The condition of critical and costly mechanical equipment is increasingly monitored by            
observing the vibrations of the machinery under surveillance. In order to detect faults before              
they damage the whole machinery, traditional methods such as envelope analysis have            
been used for decades (Randall & Antoni, 2011). However, these methods require            
knowledge of the machinery’s exact geometry and a skilled human operator. An alternative             
data-driven approach is to automatically detect changes in the signal. This is known as              
novelty detection and there are plenty of classical methods. For a review, see (Pimentel et               
al., 2014). 
  
While almost every possible combination of features and classifiers has been tried            
previously for condition monitoring, the respective literature lacks comparability in terms of            
data and metrics used as well as given details for reproducibility (Stadelmann et al., 2016).               
In this case study, we compare several classical novelty detection methods against DL             
based approaches on a standard bearing data set (Lee et al., 2007), which consist of               

 measurements of vibration signals in run-to-failure tests. 984  ntrain + ntest =    
 
As a first step, we use a Fourier transformation to extract features per           00  p = 1    13

measurement to obtain a data matrix . The details of the feature extraction      ∈R  X (n +n ) × ptrain test        
and the data set can be found in (Fernandez et al., 2013). In the following discussion, we                 
assume that the fault starts to be detectable at frame number 532. This is in line with                 
findings from other researchers (Fernandez et al., 2013) and is also observable from Figure              
10, which shows the  data matrix (spectrogram).  
 

 
Figure 10. The 100 extracted features (columns) for the 984 time points (rows) for the example data set. The 

vertical dashed line indicates the first change of the data (frame number 532) as visible by eye. 
 
The output of all methods is a real valued vector of size , reflecting the deviation from            ntest      
the normal state learned during the training: the so-called ​novelty signal​. All methods are              

13 FFT features: energies of 100 equally spaced frequency subbands, computed over the whole length 
of the signal (10 seconds). 
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trained on the first rows, where we assume that no fault has occurred. Before    00ntrain = 2            
training and testing, we apply a robust z-transformation for each feature using the median              
and the median absolute deviation (MAD) calculated on the training data.  

5.1 Classical approaches 
We use the following classical methods as baseline:  

● One-class SVM (Schölkopf & Smola, 2002) with the variable parameter , which can           η    
be understood as an upper bound of the fraction of outliers.  

● Gaussian mixture model (GMM) with a number of mixtures (Reynolds &        ncomponents     
Rose, 1995). 

● A simple but robust baseline approach is done in the spirit of the Mahalanobis              
distance. To reduce the noise, we first transform our data into a -dimensional            ncomp  
subspace using PCA with whitening. In that subspace, we calculate the squared            
Mahalanobis-distance (Bersimis, 2007) to determine the outliers.  

● The last classical method in our evaluation uses a PCA learned on the training data,               
to transform the test data into a -dimensional subspace. After that, the data     X test   ncomp       
is transformed back into the original space yielding . We use the -based        X testˆ     L2  
reconstruction error as the novelty signal. This corresponds to an autoencoder           
without nonlinearities and with tied weights. 
 

Figure 11 shows the results of the classical methods described above. 

  
Figure 11. Novelty signal for the classical methods. The used parameters are  for the SVM, =160.1 η =  ncomponents  
for GMM and =50 for the PCA-based methods. To focus on the sudden change of the novelty signal at 532,ncomp  

the maximum of the y-axis has been limited to 500 (maximum signal is in the order of 1E10).  
 

All methods show an amplitude increase in the novelty signal at frame number 532, where               
we assume that the fault is detectable. The ​pca_auto method shows the strongest increase              
in the signal and is used later for the comparison with the deep learning based methods. 

5.2 Deep learning based methods 
After using the classical methods to establish a baseline, we now consider deep             
autoencoders. All methods are trained for 50 epochs with a batch size of 20. We start with a                  
simple fully connected autoencoder using sigmoids as activations. A detailed description of            
a fully connected autoencoder can be found e.g. in (Goodfellow et al., 2016). We              
investigated different numbers of hidden layers and determined that for 5 hidden layers there              
is the best compromise between steepness of the novelty signal after the fault and the noise                
before it (see ​fc_auto ​ in Figure 12).  
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In addition to the ​fc_autoencoder ​, we also include a recurrent version, in which the              
neurons are replaced by Long Short-Term Memory cells (LSTMs) (Hochreiter and           
Schmidhuber, 1997). We found that an architecture with 3 hidden layers consisting of 10, 4,               
and 10 nodes, respectively, performed best. These results are displayed in Figure 12. The              
behavior is similar to the standard autoencoder and suggests that the temporal ordering of              
frames is unimportant here.  
 
The final two autoencoders introduce means for additional regularization. The first one, the             
denoising autoencoder, does this by injecting additional noise, see (Vincent et al., 2010) for              
details. The best performance was observed with 10 nodes in the hidden layer. The second               
one is the variational autoencoder (VAE) (Kingma and Welling, 2013). Its optimal            
architecture turned out empirically to have 32 nodes in the hidden layer and a 4-dimensional               
latent space, which is shown in Figure 12, labeled as ​vae_32_4 ​. Note that, in principle, the                
VAE can also be extended to generate novel data.  
 

 
 

Figure 12: Novelty signal for the deep learning based methods and the best classical approach (​pca_auto​). All 
methods show a steep ascent after the fault is detectable at frame number 532. To better illustrate the signal 

before the fault, we limited the range of the normalized novelty signal to [0, 10].  
 
In conclusion, all methods (classical and DL) show a similar novelty signal and detect the               
fault at time frame 532. However, the DL based methods give a weaker novelty signal in a                 
region where there is no fault. Here, the best classical method (​pca_auto ​) shows a              
stronger signal at times before the fault occurred. We conclude that the given task is too                
simple to profit from the more capable models - DL is not needed on this specific data set. 

6. Lessons Learned  
Deep learning approaches have proven useful not only in academic computer vision            
settings, but also in various scenarios inspired by real business use cases: We have              
improved the state of the art in high content screening, speaker clustering, and automatic              
article segmentation, while showing at least comparable results for condition monitoring.           
Overall, the authors have verified the practicability of DL applications on at least 10              
substantial research projects in collaboration with industry during the last four years.            
Contrary to public opinion, Szegedy et al. (2014) note that ​“most of this progress is not just                 
the result of more powerful hardware, larger datasets and bigger models, but mainly a              
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consequence of new ideas, algorithms and improved network architectures”​. This is           
according to our experience worth considering. 

6.1 Working with limited resources 
Our biggest take-home message is the importance of working well with limited resources.             
Having a good set of data for training and evaluation (i.e., available at the start of the project,                  
ideally large , in a good shape for further processing, resembling the true distribution of the               14

problem to be solved) is the starting point: it doesn’t pay off to “negotiate” minimum numbers                
of needed data with business owners. Rather, “the more the better” is key. If the most one                 
can get is still little, the following tricks may apply: 

● Using available pre-trained networks that have been trained for a “close enough” task             
(like e.g. the VGG-16 network for any image classification task) to do transfer             

15

learning. 
● Use trainable architectures like Inception (Szegedy et al., 2014) or Resnet (He at al.,              

2015b) that adapt their complexity to the available data and may even be             
compressible (Han et al., 2015). 

● Do sensible data augmentation (see Section 2): provide the training procedure with            
variants of your original data that (a) you can create randomly on the fly and that (b)                 
resemble distortions / alterations relevant and realistic in practice. 

● Often there is enough unlabeled data, but labeling is costly. In that case one can try                
to employ semi-supervised learning methods, which are currently being actively          
developed (Kingma et al., 2014). Another possibility is to use high-level features            
created by a first network to do a clustering or t-SNE embedding similar to Figure 5                
(see Section 3). This allows to label lots of data after a short inspection.  

 
Sometimes, data is not the limiting factor, but hardware is (at least for applying the trained                
model later). While compressed networks help to speed up network application considerably,            
it should be noted that while neural network training of practically relevant size may take               
weeks on dedicated hardware (i.e., latest generation of GPU workstations), the application            
might be doable in real time even on embedded devices like a raspberry pi (see also                

16

Section 4). And as Section 5 has shown, DL approaches might not always outperform simple               
baseline approaches; so it always pays off to compare against classical methods (at least to               
establish a benchmark, see Section 2).  

6.2 Other advice 
Additional advice can be summarized as follows: 

● Having a good start on a new use case often depends on (a) starting from an easy,                 
well understood baseline model closely resembling a published architecture and task          

, and (b) to slowly increase the complexity of the architecture. As a rule of thumb, if                 
17

a human can see/hear/... the solution to a pattern recognition problem in the training              
data, it can be extracted using machine learning algorithms (Domingos, 2012). 

● If it is not a standard problem, ensure to provide a loss function which really               
describes the problem that is going to be solved (see section 3).  

14 Personal rule of thumb of one of the authors (T.S.): I feel comfortable with a small to medium 
four-digit number of instances per class in a classification setting. 
15 ​http://www.robots.ox.ac.uk/~vgg/research/very_deep/ 
16 ​https://www.martinloeser.eu/deutsch/forschung/pivision/ 
17 Find a collection of models per task e.g. here: ​https://github.com/sbrugman/deep-learning-papers 
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● Latest algorithmic developments in neural nets like dropout or batchnorm, ADAM /            
ADADELTA and ReLU are “always on” in our projects if applicable as they             18

considerably ease training to the point that makes applications possible that just do             
not work without them (see Section 3). 

● It is common that a first instance of a DL model does not work on a completely new                  
task and data set. Then, debugging is key, ranging in methodology from checking for              
the application of best practices , hand-calculating the training equations for toy           

19

examples (to find implementations problems e.g. in the loss function ), visualizing           
20

the pre-processed data (to see if data loading might be buggy) or learned weights              
21

and inspecting loss values (does it learn at all ?) as well as misclassified training              
22

examples (to get intuition into what goes wrong (Ng, 2018)). 
● The speed of new advances in DL is breathtaking at the moment. While new              

developments are published daily on arXiv , news aggregators like reddit or Data            
23 24

Machina and explanation-focused journals like Distill help to stay up-to-date. For a            25 26

real project, it is important to check the current state of the art at least back to the                  
latest major DL conferences NIPS , ICML and ICLR and the trends discussed            

27 28 29

there in tutorials and keynotes: paradigms are still evolving, and new applications are             
shown daily.  

 
General best practices for DL applications are also summarized by Ng (2016), Hinton et al.               
(2012) and LeCun et al. (1998b). 
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