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ABSTRACT
Speaker clustering is the task of grouping a set of speech ut-
terances into speaker-specific classes. The basic techniques
for solving this task are similar to those used for speaker
verification and identification. The hypothesis of this paper
is that the techniques originally developed for speaker veri-
fication and identification are not sufficiently discriminative
for speaker clustering. However, the processing chain for
speaker clustering is quite large – there are many potential
areas for improvement. The question is: where should im-
provements be made to improve the final result? To answer
this question, this paper takes a biomimetic approach based
on a study with human participants acting as an automatic
speaker clustering system. Our findings are twofold: it is
the stage of modeling that has the highest potential, and in-
formation with respect to the temporal succession of frames
is crucially missing. Experimental results with our imple-
mentation of a speaker clustering system incorporating our
findings and applying it on TIMIT data show the validity of
our approach.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing; I.5.4 [Pattern Recognition]: Applications—Signal
processing, Waveform analysis

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Speaker identification, Speaker clustering, Speaker diariza-
tion, GMM, MFCC, Temporal context, One-class SVM

1. INTRODUCTION
Recognizing voices automatically is useful for several ap-

plications. For example, it supports biometric authentica-
tion [64]. It helps making speech recognition robust [20].
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It enables search engines to index spoken documents and
thus improves retrieval performance [31]. These three ex-
amples refer to different subproblems of speaker recognition,
namely: speaker verification [49], speaker identification [8]
and speaker clustering [28] (or, when regarding the com-
plete process including speech detection and segmentation:
speaker diarization [46]).

Speaker verification is the most simple clustering task
among these problems: the question is whether a given ut-
terance can be assigned to a given model (identity) – a bi-
nary choice. Speaker identification is a (1 : n+1) choice: the
question is which (if any) of the given models can the given
utterance be paired with? Finally, speaker clustering is a
(m : n) problem in which all utterances are equally impor-
tant and each utterance may be grouped together with any
other utterance – or stay alone. Both the number of clus-
ters (speakers) and the actual cluster memberships must be
determined automatically.

The speaker verification and identification tasks have been
studied extensively in the literature. Using Mel Frequency
Cepstral Coefficients (MFCCs) [12] as parametric speech
features and Gaussian Mixture Models (GMMs) [49] (with
more recent modifications [48]) as speaker models has be-
come the quasi-standard, although other methods have been
proposed [16]. This is due to quite satisfactory results with
just moderate demands for the data: the utterances should
be relatively noise-free (telephone speech works) and long
enough (minimum 10 seconds, better more than 30 seconds
per utterance) [62]. The canonical example is the experi-
ment in Reynolds’ classic paper on GMMs [47]: The 630
speakers of the TIMIT database [19] are split into a training
set (8 sentences per speaker concatenated to one utterance)
and a separate test set (2 sentences per speaker form one
utterance). Each sentence is approximately 3 seconds long.
The utterances are transformed to MFCC feature vectors.
For the 630 training utterances, GMMs with 32 mixtures are
built a priori, then an identification experiment is run for the
630 test utterances. It yields a satisfactory 0.5% closed set
identification error.

Speaker clustering has also been studied extensively for
more than a decade [24]. The basic techniques used for
speaker clustering are largely along the lines of the previ-
ously discussed verification/identification techniques: MFCC
features are modeled by GMMs [28][60]. Upon this, a step-
by-step scheme using agglomerative hierarchical clustering
is usually built using some metric (often the Generalized
Likelihood Ratio (GLR)) and a termination criterion (fre-
quently based on the Bayesian Information Criterion (BIC))
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[34]. Evaluations typically concentrate on data sets built
from broadcast news/shows and meeting recordings, where
diarization error rates ranging from 8% to 24% are reported
[28][34][45]. These results are confirmed by more recent
approaches that otherwise deviate from the standard me-
thodical scheme (e.g. by using genetic algorithms instead
of agglomerative clustering [61] or Support Vector Machines
(SVMs) instead of GMMs [17]).

From the definition of the task of speaker clustering it
is evident that speaker clustering has a much higher com-
plexity than the other two tasks. This fact certainly affects
the anticipated outcome in terms of higher expected error
rates and/or applicability only to less complex data. Both
implications can be observed in the literature:

1. Error rates for clustering and identification are signif-
icantly apart from each other, as indicated above.

2. Data sets for clustering have a considerably smaller
speaker population size: for example, in the approaches
surveyed by Kotti et al. [28], the number of speakers
(with several segments each) per run ranges from 2 to
89, with an average of 28 speakers (and a standard de-
viation of 31) as compared to 630 in the speaker iden-
tification example above. As pointed out by Reynolds
[49], a smaller number of speakers eases the task con-
siderably.

3. Several authors notice that the current clustering or
diarization systems are not very robust to data varia-
tion and thus are poorly portable [46][23][66]. This is
in contrast to the wide applicability of speaker verifi-
cation and identification techniques [42][6].

In this paper, we present an experiment to determine what
impact the change in a experimental setting (i.e., from iden-
tification to clustering) has on the results. We used the ba-
sic settings of Reynolds’ identification experiment on TIMIT
[47] and re-ran it with our own implementation of the com-
plete speaker identification chain. It yielded 0.0% closed set
identification error (we attribute the difference to Reynolds’
original results to subtle varieties in the implementations
of the signal processing and model initialization parts). We
then changed the experimental setting from an identification
scenario to clustering (i.e., each of the 1260 utterances can
now be grouped with any other utterance; before, there was
prior knowledge that 630 utterances are distinct speakers
and each of the remaining 630 utterances has to be grouped
with an utterance of the first group). Our speaker cluster-
ing software uses the same framework as the identification
module and implements a state-of-the-art system compara-
ble to the one described by Han et al. [23] (of course without
the “selective clustering” part that would nearly reduce our
clustering experiment to the identification task for optimal
parameter settings).

The system scored a misclassification rate of 99.84% with
respect to utterances, which effectively shows that the task
is too complex for the used techniques. In contrast to the
identification task before, efforts were made to find opti-
mal parameter settings for the values that did not corre-
spond to settings in Reynolds’ experiment and thus should
not be altered for the sake of comparability. For 16 kHz
data (Reynolds used 8 kHz), we used: MFCCs 1–19 (coef-
ficient 0 discarded) extracted from 20 ms long frames every
10 ms using a 512 point Fast-Fourier Transform (FFT) on

the Hamming-windowed, pre-emphasized (α = 0.97) signal
and a mel filterbank of 24 triangular filters ranging from 0
to 7600 Hz. GMMs with 32 mixtures and diagonal covari-
ances were initialized via a maximum of 10 iterations of k-
means seeded by the deterministic Var-Part method [56] and
trained with a maximum of 15 Expectation-Maximization
(EM) steps (or until the increase in likelihood dropped be-
low 100, whatever happened first) having a variance limit of
0.01. Individual models were compared using the distance
measure described by Beigi et al. [5] (in conjunction with
the Euclidean distance between single mixtures). Cluster-
ing was performed based on these distances using complete
linkage and stopped by the Information Change Rate (ICR)
measure tuned to the optimal threshold using ground truth
data. The choice of the metric, linkage method and termina-
tion criterion was motivated by comprehensive experiments
comparing most of all reasonable options and choosing the
best for this task on a subset of the data.

The encountered complexity is distinct (in fact: addi-
tive) in nature to what is described by Morris et al. [39] to
make identifying voices on TIMIT data a challenge: the pure
quantity of speakers seems to exhaust the expressive power
of the clustering system in the presence of an increased num-
ber of degrees of freedom. This view is supported by the fact
that the same clustering experiment performs relatively well
(12.50% misclassification rate) for a reduced subset of only
the first 40 speakers out of the original 630 and even perfect
for 20 speakers and less.

The hypothesis of this paper is: the techniques originally
developed for speaker verification and identification are not
suitable for speaker clustering, taking into account the es-
calated difficulty of the latter task. However, the processing
chain for speaker clustering is quite large – there are many
potential areas for improvement. The question is: where
should improvements be made to improve the final result?

In this paper, first we show which part of the processing
chain bears how much potential for further improvement.
This part of the answer implies that improving other parts
of the chain will probably not show the full potential of that
improvement: an improvement at the beginning of the pat-
tern recognition process is probably not able to propagate
until its end if it is succeeded by an even greater source
of failure. Second, we state explicitly what this improve-
ment has to look like qualitatively. Third, we present an
implementation of a speaker clustering system that exper-
imentally supports our thesis by improving existing results
on a TIMIT benchmark test. Our approach is based on an
analysis of the operating mode and capability of the best
speaker clustering automaton available: the human being,
according to the principle of biomimetics [4].

The paper is organized as follows. The design of a speaker
grouping study with human participants is described in Sec-
tion 2. The evaluation and interpretation of the results of
the study follows in Section 3. Section 4 presents a technical
implementation of our findings in a speaker clustering sys-
tems along with corresponding results. Section 5 concludes
the paper and outlines areas for future research.

2. ANALYZING THE PROCESS
This section reports on the motivation, design, technical

background and results of a study that puts humans in the
role of a speaker clustering software: participants are asked
to group together utterances based on their inferred speaker
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identity within variants of the same data set. These variants
are the internal representations of the original speech signal
at different levels of the pattern recognition process in an
actual speaker clustering software made audible again.

2.1 Motivation
The poor results of the speaker clustering experiment on

the full TIMIT database raise the question what kind of in-
formation is actually missing in the applied methods. The
feature extraction method at the beginning of the pattern
recognition chain lossily compresses the information included
in the original signal [7], and the later speaker modeling (i.e.,
classifier training) stage basically does the same. The basic
idea of our approach is to use the qualitative judgment of
humans based on their experience as listeners to determine
the lacking information in the different pattern recognition
stages. This requires to represent the acoustic signal at these
stages such that the participants can listen to it, i.e., resyn-
thesis. From the evoked sensation, the level of discernabil-
ity present in the data is determined: signals sounding very
similar might also be difficult to distinguish by a computer.
This is measured by asking our participants to perform a
speaker clustering experiment that is evaluated in the same
way a software system would be evaluated.

The rationale is: we already have demonstrated above
that the clustering software succeeds for a reduced TIMIT
data set of less than 40 speakers. If humans find a reasonable
clustering for the original speech signal but cannot distin-
guish the data as used by the computer – showing that the
computer essentially does not have some information that
was still present in the original signal – there is some un-
used potential. This potential lies in the information that
was removed in the course of processing.

Several arguments support our approach: Humans may
not be trained to analyze synthetic speech features, but in
contrast to machine learning techniques that need well-posed
learning problems [37] as well as an appropriate training
data basis – human learning is generalizing well and adaptive
[21]. Information is best (i.e., very quickly and reasonably
accurately) grasped with our auditory system as a guide in
an otherwise unstructured search in a large hypothesis space
[13]. A similar view has been advertised by Aucouturier in
the field of music information retrieval [2].

2.2 Design
The primary goal of our study is to show which stage of

the processing chain of speaker clustering bears how much
potential for improvement (then, what can and has to be
improved). The two stages of feature extraction and model-
ing are the most promising candidates, since there the main
information reduction takes place. Further candidate stages
are signal (pre-)processing (which we add to feature extrac-
tion), segmentation (into e.g. silence/speech/noise, which
are complete pattern recognition processes in themselves and
therefore are likely to benefit from this study rather than
contribute to it) and clustering (which is not considered here
for reasons explained later in Section 3). To accomplish our
goal, we apply the biomimetic approach of observing human
behavior. To obtain relevant results, we have created a fea-
sible data set along with a test philosophy and have acquired
a reasonable group of participants.

The data set is based on a subset of the TIMIT data men-
tioned in Section 1 with a meaningful but manageable size.

It contains 7 speakers, hence 14 utterances, with 3 male and
4 female voices from the same dialect region. We took the
first 7 speakers in lexicographical ordering of the file names:
FAKS0, FDAC1, FELC0, FJEM0, MDAB0, MJSW0 and
MREB0 from TEST/DR1. The data set (and additional
material for reproducing the study) is publicly available at
http://www.informatik.uni-marburg.de/~stadelmann/

download/sg_experiment.zip. Reynolds’ procedure is used
to concatenate the 10 sentences to 2 utterances per speaker
(see Section 1). This material is the input to our speaker
clustering system, scoring perfectly with 0.0% error. As
side products, the system outputs altered versions of the
input data (equal to it in length), namely resynthesized fea-
tures and resynthesized models (the technical details of this
process are presented in the next subsection). This yields
“dataset 1” (resynthesized speaker models, sounding similar
to “bubbling/boiling liquid”), “dataset 2” (resynthesized fea-
ture vectors, sounding like a “robot voice”) and “dataset 3”
(original speech, sounding “normal”) for the human speaker
grouping study.

According to our test plan, the three data sets are pre-
sented to the participants in the order described above. The
task is the same for each data set: within 30 minutes or less
(to set an upper bound on the time for participation), a
participant is supposed to group the 14 utterances by the
inferred speaker identity. This is done by drawing lines be-
tween the utterances in question on the assessment sheet,
where their file names (i.e., numbers) are arranged on a cir-
cle. The participants are told to“engage”with the sound and
“not to focus on maybe unfamiliar patterns that all record-
ings of a run have in common, but on the more subtle differ-
ences, like the ones used when, for example, distinguishing
two low-pitched male voices. The decision to group record-
ings together must be taken solely based on the acoustical
similarity of the voices”. By hearing the more unfamiliar
sounds first, it is ensured that no participant is tempted to
transfer findings from an earlier data set to a later one. To
further minimize such effects, the arrangement of the utter-
ances on the assessment sheet’s circle is permuted randomly
between runs. Together with the actual grouping, the par-
ticipants are asked to describe “in 1–3 short sentences how
[they] tried to solve the task and how [they judged their]
own result”. The freedom offered by this formulation is in-
tentional so that driving the participants in any direction
by asking specific questions on used features, methods or
experienced difficulties is prohibited. These instructions are
given to the participants together with the data.

Our group of participants consists mainly of students and
university staff ranging in age from 21 to 64 years (mean:
30.7, standard deviation: 8.98). Overall, 20 people partici-
pated, 6 of them being female and 14 male, giving a repre-
sentative sample in size and composition. Each participant
is told to read the instructions and act accordingly. This ef-
fectively eliminates prior knowledge on the design and goal
of the study. The comprehensibility and sufficiency of the
instructions and the feasibility of the task has been approved
in a pretest.

2.3 Technical Background
Although we report on a study with human participants,

a technical challenge to deal with is the reconversion of fea-
tures and models to speech. The design of the corresponding
tools is presented in this subsection.
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Table 1: Comparison of human and random clustering using statistical measures
means dataset time [m] #clusters #correct #connections FAKS0 FDAC1 FELC0 FJEM0 MDAB0 MJSW0 MREB0

human µ(σ) 1 22.95 (7.44) 6.05 (2.39) 3.0 (1.72) 8.05 (2.52) 0.25 0.4 0.55 0.45 0.4 0.25 0.7

random µ(σ) 1 - 6.49 (1.48) 1.04 (1.05) 7.51 (1.48) 0.14 0.15 0.15 0.15 0.14 0.14 0.14

human wins? 1 - no 0.0005 0.1 0.1 0.001 0.0005 0.0005 0.0005 0.1 0.0005

human µ(σ) 2 17.33 (7.71) 6.35 (1.31) 3.3 (1.92) 7.75 (1.41) 0.25 0.6 0.7 0.35 0.4 0.4 0.6

random µ(σ) 2 - 6.77 (1.23) 0.85 (0.91) 7.23 (1.23) 0.12 0.12 0.13 0.13 0.13 0.12 0.11

human wins? 2 - no 0.0005 0.1 0.05 0.0005 0.0005 0.005 0.0005 0.0005 0.0005

human µ(σ) 3 8.95 (5.19) 7.2 (0.77) 6.55 (1.05) 6.75 (0.72) 0.85 1.0 0.95 0.85 0.95 0.95 1.0

random µ(σ) 3 - 7.37 (0.57) 0.51 (0.72) 6.63 (0.57) 0.07 0.08 0.08 0.08 0.07 0.07 0.07

human wins? 3 - no 0.0005 no 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

At the beginning, the concrete realization of “features”
and “models” must be defined. MFCCs are used as features
and GMMs as representatives of speaker models, based on
the reasoning explained in Section 1: MFCCs are by far
the most popular features, and GMMs with diagonal co-
variances are very often used as models. Preliminary lis-
tening experiments among different types of models did not
reveal substantial audible differences for the resynthesized
voices. Tested modeling techniques include the multivariate
full-covariance Gaussian model, GMM with diagonal- and
full covariances, and a left-to-right Hidden Markov Model
(HMM) with 5 states and 5 mixtures per state. Further-
more, this study’s aim is to refer to the experiment con-
ducted by Reynolds [47], in which GMMs modeling MFCCs
were used.

The primary requirement on the resynthesized voices is
to make audible what is contained in the models and fea-
ture vectors. Thus, no effort is made to make the result
more intelligible or natural beyond what this data originally
contains and conveys.

Next, the inversion process from a model back to an au-
dio file is described. A GMM is a statistical model that
represents a probability distribution. Feature vectors fol-
lowing the distribution can be obtained via sampling from
the GMM. This is a two-stage process: First, a mixture com-
ponent im is chosen at random according to the distribution
determined by the mixture weights. This is accomplished by
generating a uniformly distributed random number r in [0, 1]
and then summing up the mixture weights until the sum ex-
ceeds r; the mixture index im of the last added weight (of
course, weights are ordered in the same way each time) sub-
scripts the chosen mixture component. Second, a normal
deviate is drawn from mixture component im via the po-
lar (Box-Muller) method [26]. Because the GMM was built
from MFCC feature vectors, the resulting random vector is
also a valid MFCC vector.

Converting MFCCs back to a waveform includes the fol-
lowing steps: the effects of the preemphasis filter and the
mel filterbank need to be canceled out, preferably in the
cepstral domain (there it reduces to subtracting these two
filters’ cepstra). The circumsized cepstrum is then filled
up with zeros and transformed back to the log filterbank
domain by the inverse DCT, where the log() operation is
remedied and the filterbank is reversed via an overlap-and-
add method. This yields a standard magnitude spectrum
after taking the square root of each component. It lacks
most of the pitch information that is removed by the heavy
cepstral smoothing during feature extraction. The technical
details of the presented steps can be found in other publi-
cations [35][36][54]. The magnitude spectrum’s counterpart,
the phase spectrum, to start the inversion to the time do-

main via the Inverse Fast Fourier Transform (IFFT) is still
missing. It was discarded during feature extraction and has
to be estimated from the information present in the over-
lapping of frames. For this purpose, the iterative method
introduced by Griffin and Lim [22] is used and the process
is stopped when the average absolute difference (error) be-
tween two successive iterations of the magnitude spectrum
is less than 4% of the average magnitude in the current spec-
trum (or 100 iterations are reached, whatever happens first).

This technical setting represents an extension of the ap-
proach taken by Demuynck et al. [13]. The novelty of our ap-
proach is that the modeling stage is also taken into account
and that it is applied to the domain of speaker recognition,
shifting the focus to speaker-related features.

2.4 Results
This subsection presents the results of the human speaker

grouping study. Both quantitative and qualitative results
will be discussed. We start with the quantitative outcomes
showing how “well” the participants did the job.

Table 1 contains some statistical measures: mean and
standard deviation of the time (in minutes) used to solve
the task, the number of clusters created, the number of
correctly drawn connections between utterances (considered
transitively) and the number of connections drawn overall
(without considering transitivity). Furthermore, the proba-
bility for the two segments of each of the 7 speakers to be
joined (also considering transitivity) is presented in the re-
maining columns. These are stated for human annotations
and “random”1 clustering for all three data sets. A third
line per data set shows the result of a one-sided t-test (H0:
human figure equals random figure; H1: human figure is
better than random) in terms of the minimal α-level pos-
sible to reject the null hypothesis (or “no” if it cannot be
rejected). The t-value is computed using a pooled variance
due to the small sample size of 20 on the side of the human
annotations. The results can be summarized as follows:

a Human performance improves from run to run as in-
1
It is important to know whether the human results deviate from

pure human guessing. But what is a guessed result on a clustering
task, where both the number of clusters as well as the affiliations to
clusters must be guessed and both choices interdepend? We observe
that a human will never choose cluster sizes and numbers totally at
random, but will follow some intuition like “there will be more than
one and less than the maximally possible number of clusters” and
“there must be clusters having a ’reasonable’ number of members”.
Therefore, we take the distributions of numbers and sizes as created
by the participants for each data set and draw the guessed numbers
and sizes of clusters at random from them. The members of the
created empty clusters are then picked at random (i.e., uniformly
distributed) from the set of still unassigned utterances. In this Monte
Carlo way, we simulate 10000 independent random clustering runs
per data set and present their outcome, getting results that are less
purely random but more like human guessing.

188



Table 2: Performance of human and random clustering in terms of different figures of merit
means dataset reco preco MR acp asp purity γ IBBN DER

human µ(σ) 1 0.52 (0.11) 0.57 (0.16) 0.48 (0.11) 0.57 (0.16) 0.71 (0.12) 0.63 (0.09) 16.4 (8.37) 4.13 (1.78) 0.33 (0.1)

random µ(σ) 1 0.41 (0.1) 0.44 (0.13) 0.59 (0.1) 0.51 (0.1) 0.57 (0.07) 0.53 (0.06) 18.3 (6.52) 3.42 (1.25) 0.35 (0.1)

human wins? 1 0.0005 0.0005 0.0005 0.005 0.0005 0.0005 0.1 0.01 no

human µ(σ) 2 0.62 (0.19) 0.63 (0.19) 0.38 (0.19) 0.64 (0.18) 0.74 (0.14) 0.68 (0.15) 12.7 (7.18) 5.39 (2.5) 0.28 (0.14)

random µ(σ) 2 0.42 (0.1) 0.44 (0.12) 0.58 ( 0.1) 0.52 (0.09) 0.56 (0.07) 0.54 (0.06) 16.4 (4.48) 3.63 (1.1) 0.34 (0.1)

human wins? 2 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.005

human µ(σ) 3 0.96 (0.08) 0.98 (0.05) 0.04 (0.08) 0.98 (0.05) 0.96 ( 0.08) 0.97 ( 0.06) 0.9 (1.8) 10.1 (0.88) 0.02 (0.05)

random µ(σ) 3 0.42 (0.1) 0.45 ( 0.11) 0.58 (0.1) 0.56 (0.06) 0.54 (0.05) 0.55 (0.05) 12.74 (1.67) 4.19 (0.76) 0.32 (0.1)

human wins? 3 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

dicated by more correct connections using less time as
well as cluster and connection numbers approaching
the real values (7/7) with less variability.

b Nevertheless, individual speakers differ in how well
their voices could be recognized – FELC0 and MREB0
have a consistently higher probability of being grouped
correctly by humans among all data sets, whereas there
is a consistently lower probability for FAKS0.

c Human results deviate positively (i.e., are better) from
the random outcomes with a confidence of at least
99.5% in terms of the number of correct connections
drawn and also in the probability of grouping together
the correct utterances for almost all speakers on all
three data sets.
Due to the fact that the random cluster sizes and num-
bers of clusters were drawn from the discrete distribu-
tion per data set created by the human participants,
those figures do not deviate significantly; the small de-
viation is because the distributions are not Gaussian
but somehow skewed and multimodal, so that with
increased sample size in the random case (10000 as
compared to 20) it becomes obvious that mean and
standard deviation are inappropriate measures to de-
scribe these distributions.

Table 2 evaluates the achievements of human and random
annotators in terms of several figures of merit, as defined in
the survey by Kotti et al. [28] (except for overall recall and
precision): overall recall reco and overall precision preco are
extensions of the usual recall and precision measures of the
information retrieval community used for the task of cluster-
ing; they give the ratio of utterances being in the correct or
a fitting cluster, respectively, where a fitting cluster is one
where the utterances’ speaker is in the majority, whereas
the correct cluster is the biggest one of this speaker. The
misclassification rate MR gives the likelihood of an utter-
ance not getting assigned to the correct cluster. Average
cluster purity acp is the likelihood of the utterances in one
cluster really belonging together, whereas average speaker
purity asp is the likelihood of utterances being assigned to
speaker x really being spoken by x; the purity is the geo-
metric mean of both. The Rand index γ is an unnormalized
number decreasing with the number of correctly clustered
utterances, whereas the BBN metric IBBN increases (un-
normalized, too) with the number of big, pure clusters. The
diarization error rate DER finally depicts the ratio of sam-
ples assigned to the wrong speaker, including speaker error
time, missed speaker time, and false alarm speaker time (but
due to the fact that we only evaluate clustering, the latter
two sources of error are eliminated here).

There are several possibilities of selecting entities for com-
puting figures of merit: audio samples would be the most
accurate way, then segments (as created by silence detec-
tion, which would reduce to sentences here) or utterances
(i.e., entire files consisting of concatenated sentences in our
database). We have chosen utterances because they re-
flect most naturally what a human considers to be a good
achievement; sample- or segment-level computation would
introduce biases towards (or against) the longer segments,
whereas this way each utterance is weighted equally. Several
observations are noteworthy:

d Confirming the statistical results above, the human fig-
ures of merit get consistently and strictly monotoni-
cally better across runs.

e There are three important exceptions to the fact that
all other human results are with at least 99.5% con-
fidence better than random: for γ, IBBN and DER
on dataset 1, there is considerably less or no basis to
deduce that they deviate from pure guessing; all three
measures have in common (in contrary to the other
ones) that they evaluate clustering in total.

f Average human performance on dataset 3 (the natural,
“easy” one) is not perfect, but almost perfect.

g The biggest increase in performance seems to be be-
tween run (dataset) 2 and 3 (the latter is nearly per-
fect), which is on average 4.72 (with a standard devia-
tion of 1.46) times greater than the gain between run
1 and 2 (the former is nearly guessing). But careful
analysis reveals: the standard deviation for all mea-
sures in run 2 is considerably higher than for run 1
(and, less important, run 3). Looking inside the indi-
vidual participant’s results (not shown here for space
reasons) shows that there are two groups of partici-
pants that are distinct: the major group (17 from 20
persons) gives results as indicated by Table 2; but two
subjects score perfectly, another one has made only
one wrong connection. These three participants have
in common that they nearly exhausted the given time
limit (median of 30 minutes), in contrast to everyone
in the first group (median of 14 minutes).

h In run 1, the top 3 participants (there is no clear di-
vision of the subjects into groups) in terms of Rand
index also use considerably more time (median of 30
minutes) than the rest (median of 20 minutes).

i There is no correlation of a participant’s individual
properties (sex, age or time taken to complete a task)
with scoring considerably better or worse in any other
run.
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The qualitative results exhibit “how” the participants ac-
complished each task. They are assembled from the free
text fields for each run on the assessment sheet. Due to
the nature of free text, phrasing among the participants dif-
fers (and many have not commented on all of the indirect
inquiries). Nevertheless, the results are very homogeneous,
as confirmed by several oral inquiries consulting randomly
selected participants. Table 3 reports on the features used
by the participants on the different data sets. The popu-
larity values display how often respective features are men-
tioned by the participants after summarizing similar refer-
ences. Some broader categories include more detailed fea-
tures besides and beyond the pure meaning of their names
after summarization: rhythm/velocity includes concentrat-
ing on frequency changes as well as the accentuation and use
of pauses; pitch includes separating“high” from“low”voices,
which extends the psychoacoustical notion of pitch [38] to
a broader view of main spectral components; timbre/sound
includes articulation, accent, speaking style and intonation.
The following findings are noticeable:

j With the data set’s number, the usage of features that
allow a vivid perception of the voice increases. It basi-
cally starts on dataset 2 with the mentioning of imagin-
ing the speaker behind the voice and the use of gender
detection (although other participants state that this
is impossible on this data set) and is used on dataset
3, where participants even clustered based on inferred
attractive appearance of female speakers.

k An appeal to the normal human speech perception
mode (i.e., holistic hearing) that is distinct in nature
from perceiving other sounds being judged based on
simple patterns and features as described by Moore
[38] is only made for dataset 3.

l The features used for dataset 1 mostly confused the
participants: rhythm/velocity as well as timbre/sound
do not convey speaker-related information in dataset 1
because any inter-frame relationships are purely ran-
dom by design.

m Regarding the methodology, the participants broadly
adopt a systematic way of pairwise comparison of voices
by adding them up to clusters until a certain threshold
of dissimilarity is reached. The process then restarts
with the next free utterance.

n In some cases, a multi-pass scheme that first skims a
whole data set and then clusters utterances based on
a process of elimination can be observed.

o For dataset 3, a hierarchical scheme that first presorts
utterances by gender (a cue described as most helpful
by several participants) before building groups can be
observed.

p Some participants do not use any systematic strategy
on dataset 3 but just “do it naturally”.

The findings from the self-assessment of participants are
summarized as follows:

q The quantitative results from above are largely con-
firmed – judgments are between“impossible”and“very
unsure” on dataset 1 and do not vary much for dataset

Table 3: Popularity of human-used features
feature #dataset 1 #dataset 2 #dataset 3

rhythm/velocity 7 11 8
pitch 7 11 7

timbre/sound 3 6 14
perceived gender 0 2 13

perceived age 0 0 5
visual imagination 0 1 3

volume 2 1 0
nasalization 0 1 0

holistic judgment 0 0 1

2, where the range is from “very unsure” to “mediocre”
with an emphasis on the first one. For dataset 3, the
self-assessment is “quite correct” and predominantly
“sure”.

r The self-assessment for the second data set partly con-
tradicts the measured clustering performance in that
even the participants of the group of well-doing sub-
jects do not regard themselves as being able of cluster-
ing the data.

3. HARNESSING THE RESULTS
The aim of this paper is to identify speaker clustering

stages that need to be improved and the order in which
these improvements have to take place such that a maximum
performance gain is obtained. The findings of Section 2 are
now evaluated with respect to this aim.

3.1 Interpretation
First, our results of Section 2.4 confirm the choices made

earlier in this paper as well as the popularity of common
techniques:

a The results 2.4.i and the homogeneity of the qualita-
tive results indicate that the choice of the set of par-
ticipants is appropriate.

b The results 2.4.m to 2.4.p indicate that humans apply,
in the absence of the subconscious speech mode used
when everything is familiar, a way of accomplishing the
task of grouping that resembles the algorithm in an
automatic hierarchical clustering system: evaluating
pairwise distances, grouping the closest clusters until
a termination criterion is met, guided by any avail-
able additional information like sex. This justifies the
omission of the clustering stage in the list of potential
stages for improvement.

c Several results give evidence that the used MFCC fea-
tures capture speaker-specific information quite well:
2.4.c and 2.4.e show that humans clearly perform bet-
ter than guessing on dataset 2, and 2.4.g and 2.4.h
suggest that achieving even better results on unfamil-
iar data might be a concentration issue rather than
a matter of missing cues in the features. Moreover,
Rose reports on experiments showing that human per-
formance normally nearly doubles when exposed to fa-
miliar voices as opposed to unfamiliar ones [50, p. 103].
We argue that this performance loss in the presence of
unfamiliarity is even more present when the sound it-
self is unusual.
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d As indicated by 2.4.c, modeling is effective in the sense
that GMMs even contain human-exploitable speaker-
related information (although the main statement of
2.4.e needs further treatment below).

e The last two remarks allow us to conclude that humans
are capable of analyzing this kind of sounds in prin-
ciple, which supports our biomimetic approach. Fur-
ther justification comes from Furui [20] who points out
that breakthroughs will rather come from a better un-
derstanding of speech and the way it is produced and
perceived rather than from mere improvements in sta-
tistical pattern recognition; and from Wu et al. [65]
who also use the opportunity of learning from human
speech processing abilities.

Second, there is evidence for a specific answer to our open-
ing question. From 2.4.a, 2.4.d and 2.4.q it is clear that it
is appropriate to view the pattern recognition chain as a
process of information compression – exploitable as well as
useless information with respect to speaker identity is abol-
ished in each step. 2.4.g introduces our main argument by
showing where the most useful information disappears: it is
in the modeling stage. At first glance, 2.4.g seems to contra-
dict this finding, but even though the figures of merit deviate
more among dataset 2 and 3 than between dataset 1 and 2,
there is a fundamental difference between both transitions.
From dataset 3 to 2, average human performance drops from
nearly perfect to below what is considered acceptable for a
clustering system; but there is still this group of three can-
didates scoring nearly perfectly also on the audible features.
On dataset 1, however, the complete clustering performance
for all participants tends towards guessing (2.4.e) and no
one considers himself able of accomplishing the task in con-
trast to dataset 2 (2.4.q). The fundamental difference is this:
what is difficult on the audible features becomes impossible
on the audible models. This does not contradict the con-
clusion that exploitable information is found in the models;
individual voices can still be recognized quite well even on
dataset 1 (2.4.b) – but the task of clustering dataset 1 as a
whole becomes impossible.

What is it that produces this frontier between the feature
extraction and modeling stage? 2.4.j suggests that partici-
pants find no features within audible models that help mak-
ing the “voices” vivid. Table 3 shows what these features
are: the timbre or sound of a voice, as well as the rhythm
and velocity of the stream of speech (the latter ones have
also been used by participants on dataset 1, but in a wrong
way, see 2.4.l). These features have in common that they
are essentially supra-frame based – they are not grasped in
a single instant of time, but the sensation needs an evolu-
tion of frames to emerge. What is crucially missing in the
modeling stage is an account for time.

Another point for optimization lies in the feature extrac-
tion stage: Participants found the preclassification of utter-
ances by perceived gender most helpful (2.4.o), and gender
is strongly correlated with the pitch of a voice. A sensation
of pitch, though, is largely eliminated by design in MFCCs.

To summarize, we find that our features include what it
takes to identify a voice (at least for a human analyst; no
proposition is made that to be useful for machines, it might
not be necessary to make certain parts of the vectors’ con-
tent more explicit). But they would benefit from providing
further cues for gender detection, i.e., pitch (or its acous-

tic correlate, F0). But this improvement must be succeeded
by an enhancement of the applied models to incorporate an
account for the temporal succession of frames without mod-
eling speech instead of a voice. This is the area with the
highest potential for improvement.

3.2 Discussion
There are several promising approaches for finding bet-

ter features, e.g. by Pachet and Roy [40], Thiruvaran et al.
[59] or Prasanna et al. [41]. But until modeling is capable
of capturing the fundamental relationships among individ-
ual vectors, these approaches will not yield what might be
expected. This is also true for examples of accompanying
MFCCs with pitch (or better: F0) as done by Lu and Zhang
[29], whose results are not better than those of comparable
approaches [28]. Nevertheless, F0 is an important feature
also for forensic phoneticians, from whom striving for a bet-
ter understanding of speech instead of improving technical
solutions can most likely be expected – it is the most often
mentioned single feature in Rose’ book [50, pp. 41, 161/162,
246, 249/250]. However, apart from spectral (cepstral) fea-
tures, all other features mentioned there have one thing in
common: they exploit the temporal coherence of speech.
Those features are: temporal factors (p. 113), breath pat-
terns (p. 113), speaking tempo (p. 115), syllable grouping
(p. 133), speech rate (p. 169) and hesitation (p.172).

Lindblom et al. use the temporal context of spectral frames
to improve the extraction of formant center frequencies and
conclude that the“temporal fine structure of the signal plays
a very significant role [. . . ] in speech perception” [30]. In
a current attempt to identify future traits of research in
biometrics, Schouten et al. put the demand for context in-
clusion on top of their list of 19 urgent topics [52]. The
need for and the realization of the integration of temporal
context has also recently been discovered by Aucouturier [2]
and Joder et al. [25], respectively, for the field of music in-
formation retrieval. It follows that there is a widespread
awareness of the importance of time-based information for
audio processing.

The easiest way of modeling time dependencies is by ac-
companying feature vectors with their temporal derivatives
of first and second order (δ and δδ features). Malegaonkar
et al. show that this has some potential [32], but the positive
effect is not consistently observable [27]. Another approach
lies in the area of prosody modeling for speaker recognition:
approaches there try to capture intonation, stress, rhythm
and velocity of speech by modeling the trajectories of F0

and/or short time energy over the duration of syllable-like
units (50–100 ms according to Rose [50, p. 167]). Adami
gives a good overview [1] and presents his approach of model-
ing the joint distribution of pitch- and energy-gestures along
with their durations via bigrams. A gesture lasts until ei-
ther the pitch- or energy-contour changes direction and is
quantized into one of 5 states encoding the joint pattern
of rise and descent of the two features. Mary and Yegna-
narayana presegment the speech by detecting vowel onset
points (VOP) before extracting mean-, peak- and change
in F0, peak-distance to VOP, amplitude- and duration-tilt
and finally change in log-energy per segment as features for
prosodic behavior and modeling them via auto-associative
neural nets [33]. Further systems come, for example, from
Reynolds et al. [44][43], Ferrer et al. [18] and Soenmez et al.
[55]. They all have in common that the prosodic features
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and models complement conventional (cepstrum-based) sys-
tems and improve the final result; that they are robust to
noise and other variations; and that they need much data
for training and testing in the region of several minutes.

Modeling prosodic speaker-dependent information heads
into the right direction, but does not cover completely what
is claimed by our study. First, not all of the features men-
tioned by the participants fall into the category of prosody:
timbre and sound, for example, account for more than what
is covered by energy- and pitch contours; they emerge with
time, but likely with the time evolution of gross spectral
shapes instead of just amplitude and fundamental frequency.
Second, the features used by our participants could readily
be evaluated with small amounts of training and test data
(some participants reported to have used only the first 5–
10 seconds to judge an utterance), whereas current prosodic
systems suffer from the need for vast data consumption, as
pointed out by Chen et al. [10]. Rose seems to bridge this
gap with the following suggestion: the quality of a voice
is best viewed in contrast to (or deviation from) an ideal-
ized neutral vocal apparatus configuration [50, p. 279] and
the analysis might better focus on individual outstanding
events rather than on global averages [50, p. 73]. A hu-
man listener with general knowledge of how speech sounds
can find those outstanding speaker-specific sounds in a short
utterance and reliably recognizes the voice based on them.
Current prosodic systems do not possess this general know-
ledge and hence cannot find the few interesting parts of the
signal, eventually needing more data for compensation.

4. IMPLEMENTATION AND RESULTS
Several ways are imaginable to implement the exploitation

of time- and pitch information in the spirit of our results.
In this section, we present an implementation of a speaker
clustering system incorporating this kind of information.

Our “time model” replaces the GMM in our diarization
framework presented in Section 1; everything else is left un-
changed. The following new processing steps are incorpo-
rated in the time model:

• Speaking rate normalization

• Transformation of basic features to trajectories

• Estimation of the support of the trajectory’s distribu-
tion in time and frequency

• Comparison of different trajectory models

The central idea is trajectory modeling: feature vectors of
one utterance are not independent of each other, but belong
to their temporal context. This context can be grasped by
concatenating several subsequent single frames to a “context
vector”. It depends on the viewpoint whether this can be
considered as improving the features instead of the model-
ing – in our implementation, the modeling stage receives a
set of feature vectors in their original order that is then ex-
ploited further, hence we speak of improving the modeling
stage. Previous approaches to trajectory modeling include
the work of Chengalvarayan and Deng [11], Saul and Rahim
[51], Vlachos et al. [63] or Chandra Sekhar et al. [53]. We
deviate from their approaches in the way we create, model
and/or compare trajectories.

We take the ordered sequence of 19-dimensional MFCC
feature vectors representing a single utterance as described

in Section 1, enriched with the F0 contour extracted via the
RAPT algorithm [57], as our basic features and input to our
time model. Each dimension is normalized to the range [0..1]
using the min/max values found on all the TIMIT data.

Then, the speaking rate is normalized so that the same
sound uttered in different tempi results in the same sequence
of feature vectors. We perform this by first clustering the
frames into 2T

3
clusters via k-means, where T is the num-

ber of feature vectors in the utterance under consideration
(this way, speaking rate normalization works adaptive). The
factor of 66% has been found optimal in informal listening
experiments. Each vector is then replaced with its centroid,
and a sequence of identical centroids in the feature set is cut
to length one, thus reliably shortening stretched sounds.

Then, 13 subsequent vectors are concatenated to form one
context vector. This corresponds to a syllable length of 130
ms and is found to best capture speaker specific sounds in
informal listening experiments over a range of 32–496 ms
(in intervals of 16 ms). Our context vector step is one orig-
inal frame, i.e., 10 ms. This way, two subsequent trajec-
tories share 23

24
identical speech samples (one frame differ-

ence, and frames have 50% overlap), such that the time-
/frequency-information is spread into different corners of the
260-dimensional context vector space. This makes it more
probable for a differently aligned context vector in the test
phase to be recognized. Experiments showed that the re-
maining 5 ms possible displacement leads to very similar
context vectors on otherwise identical data.

The set of context vectors of one utterance is then fed into
a one-class SVM [58] training step. Using only positive ex-
amples to identify the 100·(1−ν)% densest data points, it can
(in contrast to a GMM) handle very high dimensional data.
We used the implementation available in LibSVM [9] in con-
junction with the RBF kernel. For all the speaker models,
a common outlier factor of ν = 0.4825 has been found ef-
fective; for the γ parameter of the SVM, we adopt a grid
search optimization framework for each training set/model
separately, using 5-fold cross validation in 25 logarithmically
spaced steps between the minimum and maximum pairwise
distances of all trajectories in the set. This individual pa-
rameter search is mainly responsible for the increased run-
time, but appears to be crucial for the result.

After having built a time model for each utterance, the
clustering procedure is applied using the Cross Likelihood
Ratio (CLR) [28] as the metric between two models. CLR
works considerably better in pretests than the Contrast Mea-
sure dc presented by Desobry et al. [15][14], a direct mea-
sure between model parameters, and better than GLR as
well. The likelihood of a set of MFCC+F0 to a time model
is computed as follows: feature vectors are transformed to
context vectors using the methodology described above, and
fed into the one-class SVM model. The ratio of positively
classified trajectories is the desired likelihood.

This is a novel approach to voice modeling for the purpose
of recognition. The processing steps inside the model as well
as the various parameter settings originate from sound con-
siderations but only preliminary experiments, leaving room
for improvement. We have applied our time model to the
clustering task on the reduced TIMIT data set with 40 speak-
ers and 80 utterances that was used as an example when
the baseline GMM approach starts to fail. Comparisons are
made with the baseline MFCC/GMM approach presented in
Section 1 and with several common approaches for time and
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Table 4: Results
approach runtime [m] reco preco MR DER
baseline 2.70 0.875 0.9875 0.125 0.04527

baseline+δ 4.95 0.35 0.35 0.65 0.5833
baseline+δ+δδ 7.98 0.5 0.9875 0.5 0.1731
baseline+F0 2.15 0.7375 0.9 0.2625 0.1551

baseline+δ+F0 4.98 0.5125 0.5125 0.4875 0.4084
baseline+δ+δδ+F0 7.97 0.2875 0.2875 0.7125 0.6176

time model 523.13 0.9375 0.975 0.0625 0.01962

pitch exploitation, namely enhancing the MFCC vectors by
δ, δδ and F0 columns. All experiments have been carried out
on a computer with 2 GB RAM and a Core2Duo processor
at 2.4 GHz running our C++ based implementation under
Fedora 10 Linux. Results are presented in Table 4.

First, the standard baseline system itself scores better
than the enhanced baseline systems, which is in line with our
previous reasoning, the results presented by Kotti et al. [28],
and partly due to the curse of dimensionality letting GMMs
perform poorly on higher-dimensional inputs [17]. Overall,
our time model approach yields 56.66% and 50.00% relative
DER and misclassification rate improvement over the stan-
dard baseline, respectively. These results indicate that time
coherence exploitation (combined with pitch) as suggested
by our study improves the performance of current speaker
clustering systems.

5. CONCLUSIONS
The work presented in this paper is based on the obser-

vation that speaker clustering (diarization) approaches work
considerably less satisfactory than approaches for the related
tasks of speaker verification and identification. Therefore,
we have presented a study to answer the following two ques-
tions by means of observing human behavior in a speaker
clustering task: (a) where in the processing chain of speaker
clustering has an improvement to take place to maximally
improve the final outcome? (b) How does this improvement
look like qualitatively?

The interpretation of our results has shown that it is the
stage of modeling that bears the highest potential: the inclu-
sion of temporal context information among feature vectors
is what is crucially missing there. Furthermore, the inclusion
of pitch information into feature vectors (in order to enable
systems to better exploit gender information) is found to
be a subordinate improvement – it will only have an effect
when the major problem within modeling has been solved.

These results have lead to an implementation of a speaker
clustering system that demonstrates the validity of our ap-
proach by outperforming common MFCC/GMM-based ap-
proaches on the reduced TIMIT benchmark with a relative
improvement of 56.66% DER and 50.00% misclassification
rate, respectively.

Two things should be noted about our approach: on the
one hand, its design allows improvements in speaker clus-
tering systems – time coherence e.g. clearly is a currently
unexploited source of important information, and MFCCs
modeled by GMMs will certainly not score above some glass
ceiling in the spirit of Aucouturier and Pachet [3]. On the
other hand, the biomimetic approach is not the only possible
way to determine areas of improvement - other approaches
may certainly be discovered.

There are several questions for future work: is the time
succession of frames best grasped by concatenating several

frames together? What are good conditions and parameter
settings for the one-class SVM model and how can they be
found? How can, according to Rose [50, p. 73], the out-
standing trajectories of a speaker be found and technically
exploited? How can the increased runtime of the time model
approach be improved? Finally, how can the entire temporal
context be considered, just as in the popular forensic pho-
netic method of analyzing spectrograms in a Gestalt-based
manner [50, p. 116]?
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