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1. Hierarchical Clustering (cost based)
 Bottom-up: agglomerative

(Linkage algorithms (single, complete, Ward, average, maxoid, medoid,…)

 Top-Down: divisive
(Single linkage clustering using a minimum spanning tree =MST)

2. Partitional Clustering: 
 K-means and its variants

3. Metrics to evaluate Clustering
4. Density based Clustering: DBSCAN

5. Model based clustering: 
Gaussian Mixture Models (GMM)
 See next lecture (21.5.2019)

Agenda
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Clustering = Finding groups in data

Problem: given 𝑛𝑛 data points, separate them into 𝐾𝐾 clusters
𝑛𝑛: number of data points

𝐾𝐾: number of clusters (𝐾𝐾 ≪ 𝑛𝑛)

Δ: a partition, Δ = 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝐾𝐾
ℒ Δ : loss of Δ to be minmized

Hard clustering: each data point is assigned a unique cluster: Δ

Soft clustering: each data point 𝑖𝑖 is assigned a probability that it is in 
cluster 𝑘𝑘: 𝛾𝛾 = 𝛾𝛾𝑘𝑘𝑘𝑘 𝑘𝑘=1:𝐾𝐾

𝛾𝛾𝑘𝑘𝑘𝑘: The degree of membership of data point 𝑖𝑖 to cluster 𝑘𝑘 with ∑𝑘𝑘 𝛾𝛾𝑘𝑘𝑘𝑘 = 1 for all 𝑖𝑖

Usually associated with a probabilistic model: cost ℒ 𝛾𝛾 = −likelihood

What is clustering?
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How would you cluster these animals?
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From: Clustering Genes of Common Evolutionary History
Mol Biol Evol. 2016;33(6):1590-1605. doi:10.1093/molbev/msw038
https://academic.oup.com/mbe/article/33/6/1590/2579727
https://github.com/kgori/treeCl
http://etetoolkit.org/

Phylogenetic trees inferred from the three clusters found in the yeast 
analysis with treeCl

Example: 
Clustering Genes of Common Evolutionary History

mailto:christoph.wuersch@ntb.ch
https://academic.oup.com/mbe/article/33/6/1590/2579727
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Clustering is related to vector quantization
 Dicitionary of vectors (the cluster centers)

 Each original value represented using a dictionary index

 Each center claims a nearby region (Voronoi region)

Example: Image compression (color)

Example: Text compression: Xerox
David Kriesel: Traue keinem Scan, den du nicht selbst gefälscht hast
https://www.youtube.com/watch?v=7FeqF1-Z1g0

Clustering and Data Compression
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Hierarchical clustering

Evolution:

http://www.onezoom.org/life.html
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Classification versus Clustering

Classification Clustering
Cost ℒ Δ Expected error Many! (probabilistic or not)
Type Supervised Unsupervised
Generalization Performance on new

data is what matters
Performance on current
data is what matters

K Known Unknown
Goal Prediction Exploration
Stage of field Mature Young (growing)
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Parametric clustering: 𝑲𝑲 known

Non-parmetric: 𝑲𝑲 determined by algorithm (e.g Dirichlet
process, information bottleneck)

Hierarchcal Clustering (HCA) seeks to build a hierarchy of clusters. 
Strategies for hierarchical clustering generally fall into two types:

Agglomerative: This is a bottom-up approach: each observation 
starts in its own cluster, and pairs of clusters are merged as one 
moves up the hierarchy.

Divisive: This is a top-down approach: all observations start in one 
cluster, and splits are performed recursively as one moves down the 
hierarchy.

Taxonomy of Clustering I
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In Hierarchical clustering, clusters have a tree like structure or a parent child 
relationship. Here, the two most similar clusters are combined together and continue to 
combine until all objects are in the same cluster.

K- means is a collection of objects which are “similar” between them and are “dissimilar” 
to the objects belonging to other clusters. It is a division of objects into clusters such that 
each object is in exactly one cluster, not several.

Taxonomy of Clustering II
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Partitional Clustering

Original Points A Partitional  Clustering
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Hierarchical Clustering

p4
p1

p3

p2
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p4p1 p2 p3

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering Non-traditional Dendrogram

Traditional Dendrogram
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Exclusive versus non-exclusive
In non-exclusive clusterings, points may belong to multiple 
clusters.
Can represent multiple classes or ‘border’ points

Fuzzy versus non-fuzzy
In fuzzy clustering, a point belongs to every cluster with some 
weight between 0 and 1
Weights must sum to 1
Probabilistic clustering has similar characteristics

Partial versus complete
In some cases, we only want to cluster some of the data

Heterogeneous versus homogeneous
Clusters of widely different sizes, shapes, and densities

Other Distinctions Between Sets of Clusters

mailto:christoph.wuersch@ntb.ch
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Similarity and metrices

Linkage criteria

Basic agglomerative linkage algorithm

Example of a divisive linkage algorithm
(single linkage MST)

1. Hierarchical Clustering

mailto:christoph.wuersch@ntb.ch
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In order to decide which clusters should be combined (for 
agglomerative), or where a cluster should be split (for divisive), a 
measure of dissimilarity between sets of observations is required.

In most methods of hierarchical clustering, this is achieved by use of 
an appropriate metric (a measure of distance between pairs of 
observations), and a linkage criterion which specifies the dissimilarity 
of sets as a function of the pairwise distances of observations in the 
sets.

We start with N datapoints that initially form N clusters. The two 
clusters with the smallest linkage are fused together to form N-1 
clusters. This is repeated until there is only one single cluster.

1.1 Hierarchical Clustering

mailto:christoph.wuersch@ntb.ch
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A metric 𝑑𝑑(𝑥𝑥, 𝑦𝑦) is a generalized distance measure
that follows the following axioms

1. Non-negativity: 𝑑𝑑 𝑥𝑥,𝑦𝑦 ≥ 0
2. Coincidence: 𝑑𝑑 𝑥𝑥,𝑦𝑦 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
3. Symmetry: 𝑑𝑑 𝑥𝑥,𝑦𝑦 = 𝑑𝑑 𝑦𝑦, 𝑥𝑥
4. Triangle inequality: 𝑑𝑑 𝑥𝑥,𝑦𝑦 + 𝑑𝑑 𝑦𝑦, 𝑧𝑧 ≥ 𝑑𝑑 𝑥𝑥, 𝑧𝑧

1.2 Similarity: defined by a metric

𝐿𝐿𝑝𝑝 metric: 𝑑𝑑𝑝𝑝 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 𝑝𝑝 = 𝑝𝑝 ∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝑝𝑝

𝐿𝐿∞ metric: 𝑥𝑥 ∞ = max
𝑖𝑖

𝑥𝑥𝑖𝑖

𝐿𝐿1 metric: 𝑑𝑑1 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 1 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖
(taxicab distance, Manhattan distance)

mailto:christoph.wuersch@ntb.ch
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The linkage criterion determines together with a metric 𝒅𝒅(𝒙𝒙,𝒚𝒚) when 
two clusters A and B should be merged together in hierarchical 
clustering (fusion criterium).

1.4 Linkage Criteria = Fusion Criteria

Names Formula
Maximum or complete-linkage
clustering
Minimum or single-linkage
clustering

Mean or average linkage clustering, 
or UPGMA

Centroid linkage clustering, or 
UPGMC where 𝑐𝑐𝑠𝑠 and 𝑐𝑐𝑡𝑡 are the centroids of

clusters s and t, respectively.

mailto:christoph.wuersch@ntb.ch
https://en.wikipedia.org/wiki/Complete-linkage_clustering
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Single-Linkage

Complete Linkage

Average-Linkage

1.4 Linkage Criteria
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Ward Linkage
 increase of variance when fusing A and B

Centroid-Linkage

1.4 Linkage Criteria
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Example: Given a distance matrix 𝒅𝒅𝒊𝒊𝒊𝒊

Single-Linkage Complete-Linkage Average-Linkage

Lance-Williams formula: allows to calculate fusioning based on distance matrix only.
https://arxiv.org/abs/cs/0608049v2

mailto:christoph.wuersch@ntb.ch
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Input:
Distance matrix D between data points (size 𝑛𝑛 × 𝑛𝑛)

function dist to compute a distance between clusters (usually takes D 
as input)

Initialization: Clustering 𝒞𝒞(0) = {𝐶𝐶1
0 ,𝐶𝐶2

0 ,…, 𝐶𝐶𝑛𝑛
0 } = {𝑖𝑖}

 Each data point is its own cluster at the beginning.

While the current number of clusters is > 1:
 find the two clusters which have the smallest distance (linkage) to each other

 merge them to one cluster

Output: Resulting dendrogram: The dendrogram is a tree that 
represents the hierarchical division of the data set O into ever smaller 
subsets. 

1.6 Basic form of an agglomerative linkage
algorithm (bottom-up)

mailto:christoph.wuersch@ntb.ch
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1.7 Hierarchy Dendrogram

# Import dendrogram and ward clustering from SciPy
from scipy.cluster.hierarchy import dendrogram, ward 
X, y = make_blobs(random_state=0, n_samples=12)
#Perform ward clustering on the data in array X. The function ward in SciPy
returns an array with the #distances bridged in agglomerative clustering
linkage_array = ward(X)
# draw a dendrogram
dendrogram(linkage_array)

mailto:christoph.wuersch@ntb.ch
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Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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Single linkage tends to generate long “chains”

Complete linkage tends to produce more “compact” clusters

Linkage algorithms are very vulnerable to outliers
one cannot “undo” a bad link

Single linkage can also be described using the minimal spanning 
tree of data points (e.g., cutting the longest edge of an MST gives the 
first two single linkage clusters)

Advantage of hierarchical clustering: do not need to decide on “the 
right” number of clusters

There exist many more ways of generating different trees from a given
distance matrix.

1.8 Comments

sklearn.cluster.AgglomerativeClustering

mailto:christoph.wuersch@ntb.ch
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
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Input: Data 𝒟𝒟 = 𝑥𝑥𝑖𝑖 𝑖𝑖=1:𝑁𝑁, number of clusters 𝐾𝐾

1. Construct the Minimum Spanning Tree (MST) of 𝒟𝒟

2. Delete the largest 𝐾𝐾 − 1 edges

Cost: ℒ Δ = min
𝑘𝑘,𝑘𝑘′

𝑑𝑑(𝐶𝐶𝑘𝑘 ,𝐶𝐶𝑘𝑘′)

𝑑𝑑 𝐴𝐴,𝐵𝐵 = min
𝑥𝑥∈𝐴𝐴,𝑦𝑦∈𝐵𝐵

‖𝑥𝑥 − 𝑦𝑦‖

Sensitive to outliers

Cost can be evaluated in polynomial time 𝑂𝑂 𝑛𝑛2

1.9 Divisive Clustering: 
Single Linkage Algorithm based on MST
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A minimum spanning tree (MST) 
is a subset of the edges of a 
connected, edge-weighted 
undirected graph that connects 
all the vertices together, without 
any cycles and with the 
minimum possible total edge 
weight. That is, it is a spanning 
tree whose sum of edge weights 
is as small as possible.

1.10 Minimum Spanning Tree (MST)

A planar graph and its minimum spanning tree. Each 
edge is labeled with its weight, which here is roughly 
proportional to its length.

mailto:christoph.wuersch@ntb.ch
https://en.wikipedia.org/wiki/Planar_graph
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2.1 K-means clustering in a nutshell
2.2 K-means algorithm (peseudocode)
2.3 K-means cost function
2.4. K-Means Algorithm for a given K: Details
2.5: Picking the Initial Centers (initialization)
2.6 Implementation in scikit-learn
2.7 More variants of K-means
2.8 K-medoid | K-maxoid clustering
2.9 Heuristics for improving the result
2.10 How do we choose K?

2. K-means
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The standard algorithm: non-probabilistic EM

Properties
• Problems: Very sensitive to choice of 𝑘𝑘; even with correct 𝑘𝑘 it may converge to wrong local minimum

• Variants: 𝑘𝑘-medoids (centroid to be member of data set), 𝑘𝑘-maxoids (for extremes rather than means)

1. 𝑘𝑘 initial "means" (in 
this case 𝑘𝑘 = 3) are 
randomly generated 
within the data domain 
(shown in color).

2. 𝑘𝑘 clusters are created by 
associating every observation 
with the nearest mean. The 
partitions here represent the 
Voronoi diagram generated 
by the means.

3. The centroid of 
each of the 𝑘𝑘 clusters 
becomes the new 
mean.

4. Steps 2 and 3 are 
repeated until 
convergence has been 
reached.

…

successive 
rounds

Source: https://en.wikipedia.org/wiki/K-means_clustering

2.1. K-means clustering in a nutshell

mailto:christoph.wuersch@ntb.ch
https://en.wikipedia.org/wiki/K-means_clustering
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Input: Data 𝒟𝒟 = 𝑥𝑥𝑖𝑖 𝑖𝑖=1:𝑁𝑁, number of clusters 𝐾𝐾

Initialize: centers 𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝐾𝐾 ∈ ℝ𝑑𝑑 at random

Iterate until convergence:

1. for 𝑖𝑖 = 1:𝑛𝑛

𝑘𝑘 𝑖𝑖 = argmink‖𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘‖
(assign points to cluster new clustering)

2. for k = 1:𝐾𝐾

𝜇𝜇𝑘𝑘 = 1
|𝐶𝐶𝑘𝑘|

∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 (recalculate centers)

Convergence: if Δ does not change after iteration m, it will never
change after that.

2.2. K-means algorithm (peseudocode)
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«least-squares» cost, also called distortion (within cluster inertia W)

The distortion can also be expressed as sum of (squared) 
intracluster distances

2.3. K-means: cost function

mailto:christoph.wuersch@ntb.ch
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2.4. K-Means Algorithm for a given K: 
Details

centers  pick k initial Centers

while (centers are changing) {
// Compute the assignments 
asg  [(x, nearest(centers, x)) for x in data]

What do we mean by “nearest”? 
A: Squared Euclidean distance

mailto:christoph.wuersch@ntb.ch
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2.4. K-Means Algorithm: Details

centers  pick k initial Centers

while (centers are changing) {
// Compute the assignments 
asg  [(x, nearest(centers, x)) for x in data]

// Compute the new centers 
for j in range(K):

centers[j] = 
mean([x for (x, c) in asg if c == j])

}

mailto:christoph.wuersch@ntb.ch
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2.4. K-Means Algorithm: Details

centers  pick k initial Centers

while (centers are changing) {
// Compute the assignments 
asg  [(x, nearest(centers, x)) for x in data]

// Compute the new centers 
for j in range(k):

centers[j] = 
mean([x for (x, c) in asg if c == j])

}

Guaranteed to converge!  
To a local optimum. 

… to what? Depends on Initial 
Centers

mailto:christoph.wuersch@ntb.ch
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Simple Strategy: select k data points at random

What could go wrong?

2.5: Picking the Initial Centers

Could get “unlucky” 
• Slow convergence
• Stuck in bad local 

optimum

Effect of initialization: https://www.youtube.com/watch?v=9nKfViAfajY

mailto:christoph.wuersch@ntb.ch
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Random initialization:
Most common: randomly choose some data points as starting centers.
Draw starting points randomly from ℝ𝑑𝑑.
Initialize the centers using the solution of an even simpler clustering 
algorithm.
Ideally have prior knowledge, for example that certain points are in 
different clusters.

Common problem for all those methods: empty clusters (centers to which 
no data point is assigned). Then best solution: restart...

2.5 Initialization
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2.6 Implementation in scikit-learn

from sklearn.datasets import make_blobs
# create blobs
data = make_blobs(n_samples=200, n_features=2, centers=4,
cluster_std=1.6, random_state=50)
# create np array for data points
points = data[0]

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=4)
# fit kmeans object to data
kmeans.fit(points)
# print location of clusters learned by kmeans object
print(kmeans.cluster_centers_)
# save new clusters for chart
y_km = kmeans.fit_predict(points)

mailto:christoph.wuersch@ntb.ch
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

a. Inertia W makes the assumption that clusters are convex and isotropic, which is not 
always the case. It responds poorly to elongated clusters, or manifolds with irregular 
shapes.

b. Inertia W is not a normalized metric: we just know that lower values are better and zero 
is optimal. But in very high-dimensional spaces, Euclidean distances tend to become 
inflated (this is an instance of the so-called “curse of dimensionality”). Running a 
dimensionality reduction algorithm such as PCA prior to k-means clustering can alleviate 
this problem and speed up the computations.

mailto:christoph.wuersch@ntb.ch
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K-median: here the centers are always data points. Can be used if we 
only have distances, but no coordinates of data points.

weighted K-means: introduce weights for the individual data points

kernel-K-means: the kernelized version of K-means (note that all 
boundaries between clusters are linear)

soft K-means: no hard assignments, but “soft” assignments (often 
interpreted as “probability” of belonging to a certain cluster)

K-means is a simplified version of an EM-algorithm fitting a 
Gaussian mixture model.

2.7 More variants of K-means
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The medoid (maxoid) 𝑚𝑚 of 𝒳𝒳 coincides with the data point 𝑥𝑥𝑗𝑗 ∈ 𝒳𝒳 that is 
closest (farthest) to the mean 𝜇𝜇. The point 𝑥𝑥𝑗𝑗 ∈ 𝒳𝒳 with the smallest (largest) 
average distance to all other points in X is closest to the sample mean 𝜇𝜇.

contrary to the 𝜇𝜇𝑘𝑘 in K-means, the 𝑚𝑚𝑘𝑘 in K-medoids (maxoids) are guaranteed 
to coincide with data points so that K-medoids (maxoids) clustering 
exclusively relies on distances between data points. 

all distances evaluated during K-medoids (maxoids) clustering can therefore 
be precomputed and stored in a distance matrix 𝑫𝑫 where

2.8 K-medoid | K-maxoid clustering

Maxoid:

Medoid:
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Restart many times with different initializations.

Swap individual points between clusters.

Remove a cluster center, and introduce a completely new center
instead.

Merge clusters, and additionally introduce a completely new cluster
center.

Split a cluster in two pieces (preferably, one which has a very bad 
objective function). Then reduce the number of clusters again, for 
example by randomly removing one.

2.9 Heuristics for improving the result
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Basic Elbow Method 

Try range of K values and plot average distance to centers

Silhouette (graphical method, popular in stats)

Cross-Validation (better)
Repeatedly split the data into training and 
validation datasets
Cluster the training dataset
Measure avg. dist. to centers on
validation data

2.10 How do we choose K?

K=2 K=3 K=?

S. Still and W. Bialek. How many clusters? An information-
theoretic perspective. Neural Comput., 16(12):2483 - 2506, 2004.
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Given K and K clusters, given any data point 𝑖𝑖,  let 𝑎𝑎𝑖𝑖 be the average 
distance or dissimilarity of 𝑖𝑖 with all other points in the same cluster.

For Euclidean k-means, use Euclidean distance for dissimilarity.
𝑎𝑎𝑖𝑖 measures how well 𝑖𝑖 fits into its cluster. 𝑏𝑏𝑖𝑖 is the smallest average 
distance of 𝑖𝑖 to other clusters.

Define: Silhouette score 𝑠𝑠𝑖𝑖 ∈ [−1,1]

𝑠𝑠𝑖𝑖 is close to 1 if point 𝑖𝑖 is in a tight cluster and far away from other 
clusters; close to -1, if it is in a loose cluster and close to other 
clusters.

Maximize                         over k.

2.10 Silhouette (Peter J. Rousseeuw, 1986): 
graphic method for K selection

44
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Silhouette analysis can be used to study the separation distance 
between the resulting clusters. 

2.10 An example: consider the ith point in the box  

= 5.52

= 21.82 (because the other 
cluster is further away by
visal inspection)

= 0.75 is the Silhouette score

So the ith point is in a pretty
tight cluster
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The silhouette plot displays a measure of how close each point in 
one cluster is to points in the neighboring clusters and thus provides a 
way to assess parameters like number of clusters visually.

2.10 Silhouette Plot
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Compute clustering algorithm (e.g., k-
means clustering) for different values 
of k. For instance, by varying k from 1 
to 10 clusters.

For each k, calculate the average 
silhouette of observations.

Plot the curve of average silhouette as 
function of to the number of clusters k.

The location of the maximum is 
considered as the appropriate number 
of clusters.

2.11 Average Silhouette method

Alternative: Gap Statistic: Tibshirani R, Walther G, Hastie T. Estimating the 
number of clusters in a dataset via the gap statistic. Journal of the Royal Statistics 
Society 2001. (https://statweb.stanford.edu/~gwalther/gap)
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Inertia

ARI: Adjusted Rand Index

NMI: Normalized Mutual Information

BIC: Bayesian Information Criterium

3. Cluster Metrics (scores)
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The within-cluster inertia W of the partition 𝐶𝐶𝐾𝐾 is the sum of the inertia of the 
clusters and measures then the heterogeneity within the clusters.

The between-cluster inertia B of the partition 𝐶𝐶𝐾𝐾 is the inertia of the gravity 
centers of the clusters weighted by 𝜇𝜇𝑘𝑘 and measures then the separation 
between the clusters. A good partition has a large between-cluster inertia 
and a small within-cluster inertia.

3.1 Inertia W (KMeans.inertia_)

Sum_of_squared_distances = []
K = range(1,15) for k in K:

km = KMeans(n_clusters=k)
km = km.fit(data_transformed)
Sum_of_squared_distances.append(km.inertia_)

plt.plot(K, Sum_of_squared_distances, 'bx-')
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The Rand Index (RI) computes a similarity measure between two clusterings
by considering all pairs of samples and counting pairs that are assigned in the 
same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the 
following scheme:

The adjusted Rand index is thus ensured to have a value close to 0.0 for 
random labeling independently of the number of clusters and samples and 
exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure.

3.2 ARI (Rand index adjusted for chance)

sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)

ARI =
RI − ExpectedRI

max RI − ExpectedRI

[1] L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985
http://link.springer.com/article/10.1007%2FBF01908075

[2]  https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index
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NMI is a good measure for determining the quality of clustering.
It is an external measure because we need the class labels of the 
instances to determine the NMI.
Since it’s normalized we can measure and compare the NMI between 
different clusterings having different number of clusters.

3.3 NMI: Normalized Mutual Information

NMI =
2 ⋅ 𝐼𝐼(𝑌𝑌; C)
𝐻𝐻 𝑌𝑌 + 𝐻𝐻[𝐶𝐶]

𝐼𝐼 𝑌𝑌;𝐶𝐶 = 𝐻𝐻 𝑌𝑌 − ∑𝑘𝑘𝐻𝐻 𝑌𝑌 𝐶𝐶𝑘𝑘

𝐼𝐼 𝑌𝑌;𝐶𝐶 : mutual information between Y and C
𝐻𝐻 𝑌𝑌 : Entropy of class labels
𝐻𝐻 𝐶𝐶 : Entropy of cluster labels

sklearn.metrics.normalized_mutual_info_score(labels_true,
labels_pred, average_method=’warn’)
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It can measure the efficiency of the parameterized model in terms of 
predicting the data.
It penalizes the complexity of the model where complexity refers to the 
number of parameters in the model.
It can be used to choose the number of clusters according to the 
intrinsic complexity present in a particular dataset.
It is independent of the prior.

3.4 BIC: Bayesian Information Criterium

BIC = ln n ⋅ 𝑘𝑘 − 2 ln(�𝐿𝐿)

�𝐿𝐿: the maximized value of the likelihood function of the model M
�𝐿𝐿 = 𝑝𝑝(𝑥𝑥|𝜃̂𝜃,𝑀𝑀) where 𝜃̂𝜃 are the ML estimates of the parameters

𝑥𝑥: observed data
𝑛𝑛: number of data points
𝑘𝑘: number of parameters estimated by the model M
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Bayesian Information Criterium (BIC)

3.4 Metrics to evaluate cluster algorithms: BIC

from sklearn import mixture
lowest_bic = np.infty; bic = []
n_components_range = range(1, 7)
for n_components in n_components_range:

# Fit a Gaussian mixture with EM
gmm =mixture.GaussianMixture(n_components=n_components,

covariance_type='full')
gmm.fit(X)
bic.append(gmm.bic(X))
if bic[-1] < lowest_bic:

lowest_bic = bic[-1]
best_gmm = gmm

bic = np.array(bic)
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Alternative to elbow-curve (plotting of the inertia)

3.4 BIC = Bayesian Information Criterium
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DBSCAN

4. Density basesd Clustering
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The basic idea of DBSCAN is that clusters form dense regions in 
the data and are separated by relatively empty areas. Points within a 
dense region are called core points. DBSCAN identifies points in 
"densely populated" regions of the feature space in which many data 
points lie close together. 

Advantages of DBSCAN:
 the user can not set the number of clusters a priori

 DBSCAN is able to capture clusters with complex shapes,

 it identifies points that do not belong to any of the clusters. 

The DBSCAN procedure is slower than the agglomerative clustering 
and k-Means, but scales relatively well for large data sets.

4. DBSCAN=density-based spatial clustering of
applications with noise
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In DBSCAN there are two parameters: min_samples and eps.

If at least min_samples data points are within the distance eps to a 
given point, this data point is classified as a core object. Core objects 
that are closer than eps to each other are assigned to the same 
cluster.

At the beginning, the algorithm selects any starting point. Then it finds 
all points at distance eps or closer to this point. If less than 
min_samples points are found within the distance eps to the starting 
point, this point will be classified as noise. (It does not belong to any 
cluster). 

If there is more as min_samples points at a distance of eps, the point 
is used as core object and receives a new cluster designation.

4.1 How DBSCAN works
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4.3 DBSCAN Algorithm

Eliminate noise points
Perform clustering on the remaining points
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Clustering is an old activity and is used for information organization

Agglomerative clustering: Linkage and distance metrics

K-means algorithm: 
 initial values, choice of K

 Euclidean distance in K-means corresponds to taking means – sensitive to
outliers because of the squared Euclidean distance; 

 using median corresponds to absolute loss function, robust.

Advantages of DBSCAN:
 the user can not set the number of clusters a priori

 DBSCAN is able to capture clusters with complex shapes,

 it identifies points that do not belong to any of the clusters. 

We do not always have labels to compare – other investigation is 
needed to back up why the clustering results are meaningful in context

Summary
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Appendix
Method name Parameters Scalability Usecase Geometry (metric

used)

K-Means number of clusters
Very large n_samples, 
medium n_clusterswith
MiniBatch code

General-purpose, even 
cluster size, flat 
geometry, not too many 
clusters

Distances between 
points

Affinity propagation damping, sample 
preference

Not scalable with 
n_samples

Many clusters, uneven 
cluster size, non-flat 
geometry

Graph distance (e.g. 
nearest-neighbor graph)

Mean-shift bandwidth Not scalable
with n_samples

Many clusters, uneven 
cluster size, non-flat 
geometry

Distances between 
points

Spectral clustering number of clusters Medium n_samples, 
small n_clusters

Few clusters, even 
cluster size, non-flat 
geometry

Graph distance (e.g. 
nearest-neighbor graph)

Ward hierarchical
clustering number of clusters Large n_samples and n

_clusters
Many clusters, possibly 
connectivity constraints

Distances between 
points

Agglomerative clustering number of clusters, 
linkage type, distance

Large n_samples and n
_clusters

Many clusters, possibly 
connectivity constraints, 
non Euclidean distances

Any pairwise distance

DBSCAN neighborhood size Very large n_samples, 
medium n_clusters

Non-flat geometry, 
uneven cluster sizes

Distances between 
nearest points

Gaussian mixtures many Not scalable Flat geometry, good for 
density estimation

Mahalanobis distances 
to centers

Birch
branching factor, 
threshold, optional 
global clusterer.

Large n_clustersand n_s
amples

Large dataset, outlier 
removal, data reduction.

Euclidean distance
between points

https://scikit-learn.org/stable/modules/clustering.html
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A cluster analysis is affected by characteristics of 

Data

Clusters

Clustering algorithms

Looking at these characteristics gives us a number of dimensions that 
you can use to describe clustering algorithms and the results that they 
produce

Characteristics of Data, Clusters, and 
Clustering Algorithms
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Both are partitional.
K-means is complete; DBSCAN is not.
K-means has a prototype-based notion of a cluster; DB uses a density-
based notion.
K-means can find clusters that are not well-separated. DBSCAN will 
merge clusters that touch.
DBSCAN handles clusters of different shapes and sizes; K-means 
prefers globular clusters.

Comparison of DBSCAN and K-means
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DBSCAN can handle noise and outliers; K-means performs poorly in 
the presence of outliers
K-means can only be applied to data for which a centroid is 
meaningful; DBSCAN requires a meaningful definition of density
DBSCAN works poorly on high-dimensional data; K-means works well 
for some types of high-dimensional data
Both techniques were designed for Euclidean data, but extended to 
other types of data
DBSCAN makes no distribution assumptions; K-means is really 
assuming spherical Gaussian distributions

Comparison of DBSCAN and K-means
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K-means has an O(n) time complexity; DBSCAN is O(n^2)
Because of random initialization, the clusters found by K-means can 
vary from one run to another; DBSCAN always produces the same 
clusters
DBSCAN automatically determines the number of clusters; K-means 
does not
K-means has only one parameter, DBSCAN has two. 
K-means clustering can be viewed as an optimization problem and as 
a special case of EM clustering; DBSCAN is not based on a formal 
model.

Comparison of DBSCAN and K-means
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