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Agenda:
Methods: feature reduction and feature extraction
The curse of dimensionality and the mainfold hypothesis

The Manifold Hypothesis
Principal Component Analysis
 PCA: Principal Component Ananlysis (linear)

 Kernel PCA (non-linear)

Manifold Methods based on similarity
 MDS: Multidimensional scaling

 LLE: local linear embedding

 Isomap: Isometric mapping

 t-SNE: t-distributed stochastic neighbor embedding

V10: Dimensionality Reduction

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#Manifold_learning_algorithms
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We are increasingly confronted with very high dimensional data from speech, 
images, and genomes and other sources. 

One of the characteristics of high-dimensional data is that the number of 
dimensions is comparable or larger than the number of samples.

This has the consequence that the sample complexity of function 
approximation can grow exponentially.

Curse of dimensionality

The curse of dimensionality is well 
illustrated by a subcubical
neighborhood for uniform data in a 
unit cube. The figure on the right 
shows the side-length of the 
subcube needed to capture a 
fraction r of the volume of the data, 
for different dimensions p. In ten 
dimensions we need to cover 80% 
of the range of each coordinate to 
capture 10% of the data.

(Source: ESL)
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How many data are needed for a certain coverage?

intuition ? 

dim n for 10% 
coverage

1 10
2 100
3 1000

10 1010

p 10p
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d-dimensional unit hypercube: 𝐻𝐻𝑑𝑑 = 0,1 𝑑𝑑

 Calculate the pobability that a random point is closer that 0.001 from the border as function of d.

 Calculate the average distance of two random points in the unit hypercube as function of d.

High dimensional data is very sparse: most training instances are likely to
be far away from each other making predictions much harder, greater risk of
overfitting, joint probabilities are hard to fit.

The number of necessary training data to reach a given density grows
exponentially with the dimension d.
 Whith 100 features (less than in the MINST problem), you would need ≈ 10100 training data, more

than atoms in the universe, in order to be data points closer than 0.1 of each other.

E.g. MNIST Dataset: The number of dimensions (= #pixels) can be
reduced to accelerate training and to increase the robustness
 Pixels are almost always white, strong correlation between neighbouring pixels

Life in High dimensional space
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Dimensionality reduction is the process of reducing the number of 
random variables under consideration by obtaining a set of principal 
variables.

Feature Reduction: approaches try to find a subset of the original 
variables (also called features or attributes). There are three 
strategies: 
 the filter strategy (e.g. information gain), 

 the wrapper strategy (e.g. search guided by accuracy), and 

 the embedded strategy (features are selected to add or be removed while building the 
model based on the prediction errors).

Feature Extraction: transforms the data in the high-dimensional 
space to a space of fewer dimensions

Dimensionality Reduction
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Overview

Algorithms

Linearity

Data Dimensionality
reduction

linear

Linear PCA Kernel PCA

Non-linear

Distance:
MDS
Classical
Sammon
isoMDS
Isomap
Kohonoen
Maps

Probability

t-SNE
SNE

Only needs similarities,
Distance matrices

Needs the full
Data matrix 𝑋𝑋

distance Prob.

For a fine grained map see (Maarten, http://tsam-fich.wdfiles.com/local--files/apuntes/TPAMI_Paper.pdf )

Other methods: e.g. autoencoder
Today, we focus on:
• PCA 1901 (Karl Pearson) 
• t-SNE 2008 (Maaten, Hinton)
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A collection of methodologies for analyzing high dimensional data 
based on the hypothesis that data tend to lie near a low dimensional 
manifold is now called Manifold Learning.

Examples of low-dimensional manifolds embedded in high-
dimensional spaces include: image vectors representing 3D objects 
under different illumination conditions and camera views and 
phonemes in speech signals.

Manifold Learning

mailto:christoph.wuersch@ntb.ch
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The main linear technique for dimensionality reduction, principal component 
analysis PCA, performs a linear mapping of the data to a lower-dimensional 
space in such a way that the variance of the data in the low-dimensional 
representation is maximized.

The eigen vectors that correspond to the largest eigenvalues (the principal 
components) can now be used to reconstruct a large fraction of the variance of 
the original data. 

PCA identifies the d-dimensional hyperplane that lies closest to the data and 
then projects the data on it. (d is a hyperparameter).

PCA: Principal Component Analysis
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Data Matrix

Data Matrix X and covariance Matrix C

Covariance 
Matrix

Sum over all n
datapointsn p

It turns out that the optimization corresponds to a diagonalization of the 
covariance matrix C. 

pp

X𝑖𝑖𝑖𝑖

if 𝑋𝑋𝑖𝑖 = 0 ⇒ C = XTX

C𝑖𝑖𝑖𝑖 = X𝑖𝑖 − X𝑖𝑖 X𝑗𝑗 − X𝑗𝑗

𝑖𝑖 = 1 …𝑛𝑛

C = U D UT
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PCA is a rotation (or reflection) so that the first PC has the highest variance, 
the second is orthogonal to the first and has the second highest variance, … X 
is the (n,p)-dimensional data matrix column centered.

How can one calculate this?  It turns out that one can solve either 

the Eigenvalue Problem of XTX (see next slide)

or the Singular Value Decomposition of X

PCA is a rotation

Z = X U

mailto:christoph.wuersch@ntb.ch
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From linear algebra:
• Since C is positive and symmetrical U is composed of the Eigenvectors of C. 
• U is a rotation which transforms the experiments into the new coordinate system. 

• In this new coordinate system the covariance matrix is D and is diagonal with the 
Eigenvalues λi on the diagonal and (since sorted) the first axis carries the most 
variance. 

• The λi are the variances in the new coordinate system.

It can be shown that this definition is equivalent to the definition rotate so 
that highest variance is in first component second highest in second. 

Eigenvalues of 𝑿𝑿𝑻𝑻𝑿𝑿

1

2

n

0

D
0

0
0

λ 
 λ 
 
 

= λ 
 
 
 
 
 





Diagonalize Covariance Matrix 𝐶𝐶 = 𝑋𝑋𝑇𝑇𝑋𝑋

λi are the sorted Eigenvalues of C

C = U D UT

𝑈𝑈𝑇𝑇 = 𝑈𝑈−1
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Projection to the k most important directions
(dimensions)

Situation: We now have a rotation into a new coordinate system. 

No data is lost in that transformation . The first component explains most 
of the variance, the second the second most,…. All components explain the 
whole variance. 
Now take only a few components and hope that data is explained by them.
How good is the approximation? A measure is the explained variance.

PCA (rotation)

mailto:christoph.wuersch@ntb.ch


© NTB, christoph.wuersch@ntb.ch 15Januar 19 – MSE MachLe V10

there is some loss of information during the projection step, so the 
recovered 3D points are not exactly equal to the original 3D points. 
Check this!

Code Example

from sklearn.decomposition import PCA 
pca = PCA(n_components = 2)
X2D = pca.fit_transform(X)
X3D_inv = pca.inverse_transform(X2D)

fig = plt.figure(figsize=(6, 5))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X3D_inv[:, 0], X3D_inv[:, 1], X3D_inv[:, 2],
cmap=plt.cm.hot) ax.view_init(10, -70)
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)

mailto:christoph.wuersch@ntb.ch
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The percentage the first k dimensions contribute to the variance
(their importance).

Explained Variance Ratio:

Explained Variance Ratio 𝑷𝑷𝒌𝒌

𝑃𝑃𝑘𝑘 =
∑𝑖𝑖=1𝑘𝑘 var X𝑖𝑖
∑𝑗𝑗=1
𝑝𝑝 var X𝑗𝑗

=
∑𝑖𝑖=1𝑘𝑘 𝜆𝜆𝑖𝑖
∑𝑗𝑗=1
𝑝𝑝 𝜆𝜆𝑗𝑗

pca = PCA(n_components=0.80)
pca.explained_variance_ratio_
1 - pca.explained_variance_ratio_.sum()

mailto:christoph.wuersch@ntb.ch
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1st criterion: The total variance 𝑉𝑉tot can be calculated as:
(the total variance is preserved under rotation)

2nd criterion: 𝑃𝑃𝑘𝑘 as fuction of the dimension: Test with MINST Dataset.

How many PCs do we need? 1st and 2nd criterion

𝑉𝑉tot = �
𝑗𝑗=1

𝑝𝑝

var X𝑗𝑗 = �
𝑗𝑗=1

𝑝𝑝

var Z𝑗𝑗 = �
𝑗𝑗=1

𝑝𝑝

𝜆𝜆𝑗𝑗
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Interpretation 1: Minimization of SSE (Sum of
suqared error vs. maximization of variance)

mailto:christoph.wuersch@ntb.ch
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PCA Rotation can be achieved by multiplying X with an orthogonal 
rotation matrix U

Reconstruct X with only  k<p Principal Components:

PCA minimizes the reconstruction error over all m available datapoints. 
The first k PCs define a k-dim. hyperplane to which the sum of squared 
projection errors is minimal.

Interpretation 2: PCA minimizes the reconstruction
error (autoencoder)

Y(n×p) = X(n×p) ⋅ U(p×p)

X(n×p) = Y(n×p) ⋅ U(p×p)
𝑇𝑇

(projection)

(reconstruction)

�X(n×p) = Y(n×k), 0(n×p−k) ⋅ U(p×p)
𝑇𝑇

min �
𝑖𝑖=1

𝑚𝑚

�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖
2
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D-Dimensional data vectors: 𝒙𝒙𝑛𝑛 𝑛𝑛 = 1 …𝑁𝑁

Data Matrix: 𝑋𝑋 𝐷𝐷×𝑁𝑁 = 𝐱𝐱1, … , 𝐱𝐱N

Goal: Project the data to an M-dimensional subspace with 𝑀𝑀 < 𝐷𝐷 while
maximizing the variance of the projected data.

Assume 𝑀𝑀 = 1 ⇒ there is a 𝐷𝐷-dimensional vector 𝒖𝒖1 that does this, the norm 
can be chosen to be one: 𝒖𝒖1𝑇𝑇𝒖𝒖1 = 1

The mean 𝒙𝒙𝑝𝑝 and variance VARp of the projected data are given by:

Maximum Variance Formulation I (e.g. Bishop)

�𝒙𝒙 =
1
𝑁𝑁�

𝑛𝑛=1

𝑁𝑁

𝒙𝒙𝑛𝑛𝒙𝒙𝑝𝑝 = 𝒖𝒖1𝑇𝑇�𝒙𝒙

VARp =
1
𝑁𝑁�

𝑛𝑛=1

𝑁𝑁

𝒖𝒖1𝑇𝑇𝒙𝒙𝑛𝑛 − 𝒖𝒖1𝑇𝑇�𝒙𝒙 2 = 𝒖𝒖1𝑇𝑇C 𝒖𝒖1 C =
1
𝑁𝑁�

𝑛𝑛=1

𝑁𝑁

𝒙𝒙𝑛𝑛 − �𝒙𝒙 𝒙𝒙𝑛𝑛 − �𝒙𝒙 𝑇𝑇

data mean

data covariance matrix
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Now maximize VARp under the constraint, that the norm of the projection
operator is one: 𝒖𝒖1𝑇𝑇𝒖𝒖1 = 1

Use a Lagrange multiplier 𝜆𝜆1 for a constrained optimization

The variance will be maximum, if we set 𝒖𝒖1to be the eigenvector of C with
the largest value (1st principal component).
We can define additional principal components 𝜆𝜆𝑘𝑘 in an incremental fashion by
choosing each new direction that maximizes the variance amongst all possible
directions orthogonal to the those already considered.

The optimal linear projection matrix is then given by [𝒖𝒖1,𝒖𝒖2, … ,𝒖𝒖𝑀𝑀]

Maximum Variance Formulation II (e.g. Bishop)

Lagrange Function𝐿𝐿 𝒖𝒖1, 𝜆𝜆1 = 𝒖𝒖1𝑇𝑇C 𝒖𝒖1 + 𝜆𝜆1 1 − 𝒖𝒖1𝑇𝑇𝒖𝒖1

𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖1

= 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1

= 0

⇒ C 𝒖𝒖1 = 𝜆𝜆1𝒖𝒖1

⇒ 𝒖𝒖1𝑇𝑇C 𝒖𝒖1 = 𝜆𝜆1

mailto:christoph.wuersch@ntb.ch
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Define an orthonormal basis 𝒖𝒖𝑖𝑖 𝑖𝑖 = 1 …𝐷𝐷 of the D-dimensional dataset. Each vector
𝒙𝒙𝑛𝑛 can be represented exactly in this basis (rotation). The 𝛼𝛼𝑖𝑖 are the components in this
new basis 𝒖𝒖𝑖𝑖.

Taking the inner product with 𝒖𝒖𝑗𝑗 and making use of the orthonomality 𝒖𝒖𝑖𝑖𝑇𝑇𝒖𝒖𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖, we
find:

Our goal is an approximation with a restricted number 𝑀𝑀 < 𝐷𝐷 of variables:

Minimum error formulation I (Bishop)

𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝐷𝐷

𝛼𝛼𝑛𝑛𝑛𝑛𝒖𝒖𝑖𝑖

𝛼𝛼𝑛𝑛𝑗𝑗 = 𝒙𝒙𝑛𝑛𝑇𝑇𝒖𝒖𝑗𝑗

𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝐷𝐷

𝒙𝒙𝑛𝑛𝑇𝑇𝒖𝒖𝑖𝑖 𝒖𝒖𝑖𝑖

�𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝑀𝑀

𝑧𝑧𝑛𝑛𝑛𝑛 𝒖𝒖𝑖𝑖 + �
𝑖𝑖=𝑀𝑀+1

𝐷𝐷

𝑏𝑏𝑖𝑖 𝒖𝒖𝑖𝑖

(1)

(2)
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We are free to chose 𝒖𝒖𝑖𝑖 , 𝑧𝑧𝑛𝑛𝑛𝑛 and the 𝑏𝑏𝑖𝑖 to minimize the MSE:

Setting all derivatives to zero:

If we substitue these expressions in (3) and make use of (1), we obtain:

The displacement vector 𝒙𝒙𝑛𝑛 − �𝒙𝒙𝑛𝑛 ist orthogonal to the principal subspace 𝒖𝒖𝑖𝑖 𝑖𝑖 = 1 …𝑀𝑀
because it is a linear combination of 𝒖𝒖𝑖𝑖 with 𝑖𝑖 = 𝑀𝑀 + 1 …𝐷𝐷

Minimum error formulation II (Bishop)

J =
1
𝑁𝑁
�
𝑛𝑛=0

𝑁𝑁

𝒙𝒙𝑛𝑛 − �𝒙𝒙𝑛𝑛 2

𝜕𝜕 J
𝜕𝜕𝑧𝑧𝑛𝑛𝑛𝑛

= 0 ⇒ 𝑧𝑧𝑛𝑛𝑛𝑛= 𝒙𝒙𝑛𝑛𝑇𝑇𝒖𝒖𝑗𝑗

𝜕𝜕 J
𝜕𝜕𝑏𝑏𝑗𝑗

= 0 ⇒ 𝑏𝑏𝑗𝑗= 𝒙𝒙𝑇𝑇𝒖𝒖𝑗𝑗

�𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝑀𝑀

𝑧𝑧𝑛𝑛𝑛𝑛 𝒖𝒖𝑖𝑖 + �
𝑖𝑖=𝑀𝑀+1

𝐷𝐷

𝑏𝑏𝑖𝑖 𝒖𝒖𝑖𝑖

𝑗𝑗 = 𝑀𝑀 + 1, …𝐷𝐷

𝑗𝑗 = 1, …𝑀𝑀

(3)

(4)

𝒙𝒙𝑛𝑛 − �𝒙𝒙𝑛𝑛 = �
𝑖𝑖=𝑀𝑀+1

𝐷𝐷

𝒙𝒙𝑛𝑛 − 𝒙𝒙 𝑇𝑇𝒖𝒖𝑖𝑖 𝒖𝒖𝑖𝑖 (5)
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The MSE can therefore be written:

This leads to a Lagrangian as before, but for eigenvectors orthogonal to the projection
subspace, e.g. for D=2, M=1 (𝒖𝒖1 is the projection subspace, 𝒖𝒖2 is orthogonal)

The general solution for J is therefore:

To minimize J, we have to sum the 𝐷𝐷 −𝑀𝑀 smallest eigenvalues for the subspace
orthogonal to the projection. Or the other way round: the D eigenvectors
corresponding to the D largest eigenvalues of C span the subspace, where the
MSE error is minimized.

Minimum error formulation III (Bishop)

J =
1
𝑁𝑁
�
𝑛𝑛=0

𝑁𝑁

𝒙𝒙𝑛𝑛 − �𝒙𝒙𝑛𝑛 2 =
1
𝑁𝑁
�
𝑛𝑛=1

𝑁𝑁

�
𝑖𝑖=𝑀𝑀+1

𝐷𝐷

𝒙𝒙𝑛𝑛𝑇𝑇𝒖𝒖𝑖𝑖 − �𝒙𝒙𝑇𝑇𝒖𝒖𝑖𝑖 2 = �
𝑖𝑖=𝑀𝑀+1

𝐷𝐷

𝒖𝒖𝑖𝑖𝑇𝑇C𝒖𝒖𝑖𝑖 (6)

(7)

(5)

𝐿𝐿 𝒖𝒖2, 𝜆𝜆2 = 𝒖𝒖2𝑇𝑇C 𝒖𝒖2 + 𝜆𝜆2 1 − 𝒖𝒖2𝑇𝑇𝒖𝒖2

⇒ C 𝒖𝒖2 = 𝜆𝜆2𝒖𝒖2

J = �
𝑖𝑖=𝑀𝑀+1

𝐷𝐷

𝒖𝒖𝑖𝑖𝑇𝑇C 𝒖𝒖𝑖𝑖 = �
𝑖𝑖=𝑀𝑀+1

𝐷𝐷

𝜆𝜆𝑖𝑖
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Lab: Load the MNIST  dataset, select a training dataset

PCA: Plot the explained variance as function of the dimension
Select k for 𝑃𝑃𝑘𝑘 = 0.95
Reconstruct the original data using the projected dataset.
Plot the reconstructed and the original data for comparison.

PCA for data compression

from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.datasets import fetch_mldata
mnist = fetch_mldata('MNIST original')
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PCA on MNIST digits dataset
from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape
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Kernel PCA

Mainly on a one dimensional manifold
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Principal component analysis can be employed in a nonlinear way by 
means of the kernel trick.
Data that inseparable in the input space can be transformed in higher
dimensional space: we make the problem linearly separable by a simple 
mapping, e.g.: 𝜙𝜙: ℝ2 → ℝ2: 𝑥𝑥1, 𝑥𝑥2 ⟼ 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥12 + 𝑥𝑥22

High-dimensional mapping can seriously increase computation time. 
Can we get around this problem and still get the benefit of high-D? 
YES: using the Kernel-Trick:

Given any algorithm that can be expressed solely in terms of dot 
products, this trick allows us to construct different nonlinear 
versions of it.

Kernel PCA and the Kernel Trick

𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = 𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇 ⋅ 𝜙𝜙 𝑥𝑥𝑗𝑗
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Gaussian (RBF): 𝐾𝐾 𝒙𝒙,𝒙𝒙′ = exp −𝛽𝛽 ⋅ 𝒙𝒙 − 𝒙𝒙′ 2

Laplacian: 𝐾𝐾 𝒙𝒙,𝒙𝒙′ = exp −𝛾𝛾 𝒙𝒙 − 𝒙𝒙′ 1

Polynomial: 𝐾𝐾 𝒙𝒙,𝒙𝒙′ = 1 + 𝒙𝒙𝑇𝑇𝒙𝒙′ 𝑝𝑝

Sigmoid : 𝐾𝐾 𝒙𝒙,𝒙𝒙′ = tanh 𝛼𝛼 𝒙𝒙𝑻𝑻𝒙𝒙′ + 𝛿𝛿

Linear Kernel 𝐾𝐾 𝒙𝒙,𝒙𝒙′ = 𝒙𝒙𝑻𝑻𝒙𝒙′

Popular kernels
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Kernel Principal Component Analysis (KPCA) extends conventional 
principal component analysis (PCA) to a high dimensional feature space 
D using the “kernel trick”. 

1. Mapping into a nonlinear feature space:  𝑥𝑥𝑖𝑖 ↦ 𝜙𝜙(𝑥𝑥𝑖𝑖)
2. Extract the PCA in that space the result will be nonlinear in the

original data space

Mean value and variance in feature space D:

Kernel PCA (KPCA)

𝜇𝜇 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜙𝜙 𝑥𝑥𝑖𝑖 𝐶𝐶 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜙𝜙 𝑥𝑥𝑖𝑖 𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇 𝐶𝐶 𝑣𝑣 = 𝜆𝜆 𝑣𝑣

Mean value Covariance matrix Eigenvalue problem
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Eigenvectors of 𝐶𝐶 can be expressed as linear combination of the
features, i.e. they lie in the span of {𝜙𝜙 𝑥𝑥1 ,𝜙𝜙 𝑥𝑥2 , …𝜙𝜙 𝑥𝑥𝑛𝑛 }

How it works: Proof (optional)

𝑣𝑣 = �
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑖𝑖 𝜙𝜙 𝑥𝑥𝑖𝑖

𝐶𝐶𝐶𝐶 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝜙𝜙(𝑥𝑥𝑖𝑖)𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇𝑣𝑣 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝜙𝜙 𝑥𝑥𝑖𝑖 𝑣𝑣 𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇 = 𝜆𝜆𝜆𝜆

𝑣𝑣 =
1
𝜆𝜆𝜆𝜆�

𝑖𝑖=1

𝑛𝑛

𝜙𝜙(𝑥𝑥𝑖𝑖)𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇𝑣𝑣 =
1
𝜆𝜆𝑛𝑛�

𝑖𝑖=1

𝑛𝑛

𝜙𝜙 𝑥𝑥𝑖𝑖 𝑣𝑣 𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇 = �
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑖𝑖 𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇

for: 𝜆𝜆 ≠ 0

Finding the eigenvectors 𝒗𝒗 in the high dimensional feature space
D is equivalent to finding the coefficients 𝜶𝜶𝒊𝒊 in the n-dimensional 
data space.

This is only a scalar!
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Substituting back, we find:

Proof II (optional)

𝐶𝐶𝑣𝑣𝑗𝑗 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜙𝜙(𝑥𝑥𝑖𝑖)𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇 �
𝑗𝑗=1

𝑛𝑛

𝛼𝛼𝑗𝑗𝑗𝑗 𝜙𝜙 𝑥𝑥𝑙𝑙 = 𝜆𝜆𝑗𝑗�
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑗𝑗𝑗𝑗 𝜙𝜙 𝑥𝑥𝑙𝑙

𝐶𝐶𝑣𝑣𝑗𝑗 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝜙𝜙(𝑥𝑥𝑖𝑖) �
𝑗𝑗=1

𝑛𝑛

𝛼𝛼𝑗𝑗𝑗𝑗 𝝓𝝓 𝒙𝒙𝒊𝒊 𝑻𝑻𝝓𝝓 𝒙𝒙𝒍𝒍 = 𝜆𝜆𝑗𝑗�
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑗𝑗𝑗𝑗 𝜙𝜙 𝑥𝑥𝑙𝑙

𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑙𝑙

Multiply this by 𝜙𝜙(𝑥𝑥𝑘𝑘) from the left:

𝑣𝑣𝑗𝑗

1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝜙𝜙 𝑥𝑥𝑘𝑘 𝑇𝑇𝜙𝜙 𝑥𝑥𝑖𝑖 𝛼𝛼𝑗𝑗𝑗𝑗 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑙𝑙) = 𝜆𝜆𝑗𝑗�
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑗𝑗𝑗𝑗 𝜙𝜙 𝑥𝑥𝑘𝑘 𝑇𝑇𝜙𝜙 𝑥𝑥𝑙𝑙

1
𝑛𝑛𝐾𝐾𝑘𝑘𝑘𝑘𝛼𝛼𝑗𝑗𝑗𝑗𝐾𝐾𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗 𝐾𝐾𝑘𝑘𝑘𝑘
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In matrix form:

Proof III (optional) :

1
𝑛𝑛
𝐾𝐾𝑘𝑘𝑘𝑘𝛼𝛼𝑗𝑗𝑗𝑗𝐾𝐾𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗 𝐾𝐾𝑘𝑘𝑘𝑘

𝐾𝐾𝑘𝑘𝑖𝑖𝐾𝐾𝑖𝑖𝑙𝑙 𝛼𝛼𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗 𝐾𝐾𝑘𝑘𝑘𝑘

𝐾𝐾2 𝛼𝛼𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑗𝑗 𝐾𝐾𝛼𝛼𝑗𝑗

𝐾𝐾 𝛼𝛼𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑗𝑗 𝛼𝛼𝑗𝑗
Eigenvalue problem
for the Kernel matrix

For a new point 𝑥𝑥, its projection 𝑦𝑦𝑗𝑗 onto the principal component 𝑗𝑗 is: 

𝑦𝑦𝑗𝑗 = 𝜙𝜙 𝑥𝑥 𝑇𝑇𝑣𝑣𝑗𝑗 = �
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑗𝑗𝑗𝑗𝜙𝜙 𝑥𝑥 𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) = �
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑗𝑗𝑗𝑗 𝐾𝐾 𝑥𝑥, 𝑥𝑥𝑖𝑖 (𝑗𝑗 = 1 …𝑑𝑑)

http://sebastianraschka.com/Articles/2014_kernel_pca.html
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Situation: given data 𝑦⃗𝑦 in high dimensional space with distance, (e.g. 
99 features)

Idea: Have distances / dissimilarities 𝑑𝑑𝑖𝑖𝑖𝑖 between many objects in high 
dimensional space  draw this in low dimensional space ℝ2,ℝ3

The distances in (low-D) 𝑑𝑑𝑖𝑖𝑖𝑖∗ should match the original ones 𝑑𝑑𝑖𝑖𝑖𝑖 (high-
D) as “good as possible” 

Visualization of high dimensional data using
similarities: Basic Idea (MDS, SNE)

𝑑𝑑𝑖𝑖𝑖𝑖∗ → 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒋𝒋
2

High-dimensional spaceLow-dimensional space
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1. MDS: Multidimensional scaling
2. LLE: local linear embedding
3. Isomap: Isometric mapping
4. t-SNE: t-distributed stochastic neighbor embedding

Similarity is based on a metric, a generalized form of
distance measure.

Methods based on similarity
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Multidimensional Scaling (MDS) reduces dimensionality while trying to preserve the 
distances between all the instances

Local Linear Embedding (LLE) reduces dimensionality while trying to preserve the 
distances between close instances only.

Isomap creates a graph by connecting each instance to its nearest neighbors, then 
reduces dimensionality while trying to preserve the geodesic distances between the 
instances.

t-Distributed Stochastic Neighbor Embedding (t-SNE) reduces dimensionality while 
trying to keep similar instances close and dissimilar instances apart. It is mostly used for 
visualization, in particular to visualize clusters of instances in high-dimensional space 
(e.g., to visualize the MNIST images in 2D).

Linear Discriminant Analysis (LDA) is actually a classification algorithm. During 
training it learns the most discriminative axes between the classes. These axes can be 
used to define a hyperplane onto which to project the data. The projection will keep 
classes as far apart as possible, so LDA is a good technique to reduce dimensionality 
before running another classification algorithm such as an SVM classifier.

Overview
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A metric 𝑑𝑑(𝑥𝑥, 𝑦𝑦) is a generalized distance measure
that follows the following axioms

1. Non-negativity: 𝑑𝑑 𝑥𝑥,𝑦𝑦 ≥ 0
2. Coincidence: 𝑑𝑑 𝑥𝑥,𝑦𝑦 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
3. Symmetry: 𝑑𝑑 𝑥𝑥,𝑦𝑦 = 𝑑𝑑 𝑦𝑦, 𝑥𝑥
4. Triangle inequality: 𝑑𝑑 𝑥𝑥,𝑦𝑦 + 𝑑𝑑 𝑦𝑦, 𝑧𝑧 ≥ 𝑑𝑑 𝑥𝑥, 𝑧𝑧

Similarity: metric and non-metric

Examples of metrics:
a. Euclidian and other 𝐿𝐿𝑝𝑝-Metric: induced metric by the 

norm of the vector space 𝑥𝑥 − 𝑦𝑦 𝑝𝑝
b. Jaccard-Distance ( 1 - Jaccard Index)
c. Graph Distance (shortest-path)
d. Wasserstein metic: between two probability 

distributions
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𝐿𝐿𝑝𝑝 metric: 𝑑𝑑𝑝𝑝 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 𝑝𝑝 = 𝑝𝑝 ∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝑝𝑝

𝐿𝐿∞ metric: 𝑥𝑥 ∞ = max
𝑖𝑖

𝑥𝑥𝑖𝑖

𝐿𝐿1 metric: 𝑑𝑑1 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 1 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖
(taxicab distance, Manhattan distance, chess, compressed sensing)

Hamming distance: In information theory, the Hamming distance 
between two strings of equal length is the number of positions at which 
the corresponding symbols are different.

Examples of metrics
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String metrics are in areas including fraud detection, fingerprint
analysis, plagiarism detection, ontology merging, DNA analysis, RNA 
analysis, image analysis, evidence-based machine learning, data
mining, data integration, and semantic knowledge integration.

String Metrics

https://en.wikipedia.org/wiki/String_metric#List_of_string_metrics
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Multidimensional scaling (MDS) seeks a low-dimensional representation of the 
data in which the distances respect well the distances in the original high-
dimensional space.

MDS attempts to model similarity or dissimilarity data as distances in a 
geometric spaces. In general, is a technique used for analyzing similarity or 
dissimilarity data. 

1. MDS: Multi-Dimensional Scaling

Modern Multidimensional Scaling, Theory and Applications
Ingwer Borg, Patrick J. F. Groenen in Springer Series in Statistics (2005)
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© NTB, christoph.wuersch@ntb.ch 41Januar 19 – MSE MachLe V10

Classical MDS takes an input matrix 𝐼𝐼 giving dissimilarities between pairs of
items and outputs a coordinate matrix whose configuration minimizes a loss
function called strain.

For example, given the aerial distances between many cities in a matrix 𝐷𝐷 =
𝑑𝑑𝑖𝑖𝑖𝑖 where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between the coordinates of 𝑖𝑖𝑡𝑡𝑡 and 𝑗𝑗𝑡𝑡𝑡 city,  we

want to find the coordinates 𝑥𝑥𝑖𝑖 of the cities. 

The strain is given by:

MDS attempts to find an embedding from the high dimensional objects in 𝐼𝐼
into 𝑥𝑥𝑖𝑖 ∈ ℝ𝑁𝑁 such that distances 𝑑𝑑𝑖𝑖𝑖𝑖 are preserved: 

1.1 Classical MDS = Principal Coordinates Analysis
(PCoA) 

𝑆𝑆𝐷𝐷 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 =
∑𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗

2

∑𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖2

1
2

𝑆𝑆𝐷𝐷 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 ≈�
𝑖𝑖<𝑗𝑗

𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖∗
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Classical MDS uses the fact that the coordinate matrix can be derived by an 
eigenvalue decomposition from 𝐵𝐵 = 𝑋𝑋𝑋𝑋𝑇𝑇. And the matrix 𝐵𝐵 can be computed
from proximity matrix 𝐷𝐷 by using double centering

1. Set up the squared proximity matrix (covariance):  𝐶𝐶 = 𝐷𝐷(2) = 𝑑𝑑𝑖𝑖𝑖𝑖2

2. Apply double centering: 𝐵𝐵 = −1
2
𝐻𝐻𝐶𝐶𝐶𝐶𝑇𝑇 using the centering matrix H = 𝕀𝕀𝑛𝑛 −

1
𝑛𝑛

11𝑇𝑇

where n is the number of objects.

3. Determine the m largest eigenvalues {𝜆𝜆1, … , 𝜆𝜆𝑚𝑚} and corresponding eigenvectors
𝑢𝑢1, … ,𝑢𝑢𝑚𝑚 of 𝐵𝐵 (m= output dimension) 

4. Now, 𝑋𝑋 = 𝑈𝑈𝑚𝑚 Λ𝑚𝑚 1/2, where 𝑈𝑈𝑚𝑚 ist the matrix of m eigenvectors [𝑢𝑢1, … ,𝑢𝑢𝑚𝑚] and Λ𝑚𝑚 is 
the diagonal matrix of meigenvalues of B

Classical MDS assumes Euclidean distances. 
So this is not applicable for direct dissimilarity ratings.

1.2 Steps of a Classical MDS algorithm

mailto:christoph.wuersch@ntb.ch


© NTB, christoph.wuersch@ntb.ch 43Januar 19 – MSE MachLe V10

1.3 Multidimensional Scaling (MDS)
as mainfold earning (lab)
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Is fast, because it is based on linear algebra

Only distances are needed as input (as all MDS methods)

The formulation as a cost function is valid for Euclidian distances only 
(internally Eigenvalues are used). If other distances (besides 
Euclidian) are used, nothing is guaranteed. 

MDS tries to preserve the distance between all data points, even if 
they are far separated  LLE only preserves distance between 
nearby points and is often able to map complex structures to low 
dimensions.

For Euclidean distances, classical MDS is equivalent to PCA (but 
conceptually different)

1.4 Summary MDS

mailto:christoph.wuersch@ntb.ch


© NTB, christoph.wuersch@ntb.ch 45Januar 19 – MSE MachLe V10

LLE describes the local properties of the manifold around a data point 𝑥𝑥𝑖𝑖 by 
writing the data point as a linear combination (the so-called reconstruction 
weights 𝑤𝑤𝑖𝑖𝑖𝑖) of its k nearest neighbors: 𝑥𝑥𝑗𝑗 ≈ ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
In the low dimension, LLE attempts to retain the reconstruction weights 
𝑾𝑾 as well as possible.
Hence, LLE fits a hyperplane through the data point 𝑥𝑥𝑖𝑖 and its nearest 
neighbors, thereby assuming that the manifold is locally linear. 
The local linearity assumption implies that the reconstruction weights 𝑤𝑤𝑖𝑖𝑖𝑖 of 
the data points 𝑥𝑥𝑖𝑖 are invariant to translation, rotation, and rescaling. 
Because of the invariance to these transformations, any linear mapping of the 
hyperplane to a space of lower dimensionality preserves the reconstruction 
weights in the space of lower dimensionality. 
As a consequence, finding the d-dimensional data representation 𝑌𝑌 amounts 
to minimizing the cost function 𝜙𝜙:

2. LLE = local linear embedding

𝜙𝜙 𝑌𝑌 = �
𝑖𝑖

𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑘𝑘

𝑤𝑤𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗

2
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first, for each training instance 𝑥𝑥𝑖𝑖, the algorithm identifies its k closest 
neighbors (e.g. k = 10), then tries to reconstruct 𝑥𝑥𝑖𝑖 as a linear function of these 
neighbors: 𝑥𝑥𝑗𝑗 ≈ ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
More specifically, it finds the weights 𝑤𝑤𝑖𝑖𝑖𝑖 such that the squared distance 
between 𝑥𝑥𝑖𝑖 and ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 is as small as possible, assuming 𝑤𝑤𝑖𝑖𝑖𝑖 = 0 if 𝑥𝑥𝑗𝑗 is not 
one of the k closest neighbors of 𝑥𝑥𝑖𝑖. 
Thus the first step of LLE is the constrained optimization problem where 𝑊𝑊
is the weight matrix containing all the weights 𝑤𝑤𝑖𝑖𝑖𝑖. 
The second constraint simply normalizes the weights for each training 
instance 𝑥𝑥𝑖𝑖

2. LLE = local linear embedding

�𝑊𝑊 = argmin
𝑊𝑊

�
𝑖𝑖=1

𝑚𝑚

𝑥𝑥𝑖𝑖 − Σ𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
2

𝑤𝑤𝑖𝑖𝑖𝑖 = 0

�
𝑗𝑗=1

𝑚𝑚

𝑤𝑤𝑖𝑖𝑖𝑖 = 1 𝑖𝑖 = 1 …𝑚𝑚

if 𝑥𝑥𝑗𝑗 is not one of the k n.n. of 𝑥𝑥𝑖𝑖
subject to
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LLE Pseudocode

1. Find neighbours in X space [b,c].
for i=1:N 

compute the distance from Xi to every other point Xj
find the K smallest distances 
assign the corresponding points to be neighbours of Xi 

2. Solve for reconstruction weights W.
for i=1:N create matrix Z consisting of all

neighbours of Xi[d]
subtract Xi from every column of Z
compute the local covariance C=Z'*Z [e]
solve linear system C*w = 1 for w [f]
set Wij=0 if j is not a neighbor of i
set the remaining elements in the ith
row of W equal to w/sum(w);

3. Compute embedding coordinates Y using weights W.
create sparse matrix M = (I-W)'*(I-W) 
find bottom d+1 eigenvectors of M (corresponding to the d+1 smallest 
eigenvalues) set the qth ROW of Y to be the q+1 smallest eigenvector 
(discard the bottom eigenvector [1,1,1,1...] with eigenvalue zero)

https://cs.nyu.edu/~roweis/lle/publications.html 𝜙𝜙 𝑌𝑌 = �
𝑖𝑖

𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑘𝑘

𝑤𝑤𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗

2
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A nonlinear method for dimensionality reduction

Finds the map that preserves the global, nonlinear geometry of the data by 
preserving the geodesic manifold interpoint distances
Geodesic: Shortest curve along the manifold connecting two points

First approximates the geodesic interpoint distances, then runs MDS to find 
the projection that preserves these distances.

Isomap uses the same basic idea as PCA, the difference being that linearity is 
only preserved locally (via small  neighborhoods).

The basic steps are:
1. For each object, find a small set of neighboring objects and their distances.
2. Compute all-pairs shortest paths on the above neighborhood graph.
3. Run multidimensional scaling using the matrix of shortest-path distances.

3.2  Isomap (isometric feature mapping)

http://science.sciencemag.org/content/290/5500/2319.full
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graph geodesic: In the field of graph theory, the distance between 
two vertices in a graph is the number of edges in a shortest path 
connecting them. This is also known as the geodesic distance.

3.3 Euclidian vs. Geodesic Distance
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3.4 Calculation Effort

Step Name Description
1
O(DN2)

Construct 
neighborhood 
graph, G

Compute matrix DG={dX(i,j)}

dx(i,j) = Euclidean distance between 
neighbors

2
O(DN2)

Compute shortest 
paths between all
pairs

Compute matrix DG={dG(i,j)}

dG(i,j) = sequence of hops = approx 
geodesic dist.

3
O(dN2)

Construct k-
dimensional 
coordinate vectors

Apply MDS to DG instead of DX
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Advantages:
Nonlinear
Non-iterative
Globally optimal
Parameters: k or ε (chosen fixed radius)

Disadvantages:
Graph discreteness overestimates the geodesic distance
k must be high to avoid “linear shortcuts” near regions of high surface 
curvature

3.5 Advantages and disadvantages of Isomap
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t-SNE, is a manifold learning algorithm that in essence constructs a 
probability distribution 𝑝𝑝 over the dataset X, and then another 
probability distribution 𝑞𝑞 in a lower dimensional data space Y, making 
both the distribution as “close” as possible.

Is well suited for the visualization of high-dimensional datasets.

t-SNE uses a tuneable parameter, “perplexity,” which says (loosely) 
how to balance attention between local and global aspects of your 
data. The parameter is, in a sense, a guess about the number of close 
neighbors each point has

t-SNE is incredibly flexible, and can often find structure where other 
dimensionality-reduction algorithms cannot. Unfortunately, that very 
flexibility makes it tricky to interpret.

4. t-SNE (t-distr. Stochastic neighbour
embedding)

https://lvdmaaten.github.io/tsne/
https://distill.pub/2016/misread-tsne/
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Step 1: In the high-dimensional space 𝑋𝑋, create a probability 
distribution 𝑝𝑝𝑖𝑖|𝑗𝑗 that dictates the relationships between various 
neighboring points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗
Step 2: It then tries to recreate a probability distribution 𝑞𝑞𝑖𝑖|𝑗𝑗 in a low 
dimensional space 𝑌𝑌 that follows that probability distribution 𝑝𝑝𝑖𝑖|𝑗𝑗 as 
best as possible (KL-divergence as loss function).

The “t” in t-SNE comes from the t-distribution, which is the 
distribution used in Step 2. The “S” and “N” (“stochastic” and 
“neighbor”) come from the fact that it uses a probability distribution 
across neighboring points.
before looking into t-SNE, we will investigate SNE, which uses 
Gaussian distribution instead of Student-t distribution.

4.1 How it works
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we construct a probability distribution 𝑞𝑞 in the lower dimensional space using 
the following formula for pairwise points y.

The goal is to make sure the two probability distributions are as similar as 
possible. This is achieved by considering the Kullback-Leibler (KL) 
divergence. KL divergence is a measure of how different two probability 
distributions are from one another:

In essence, the KL divergence is the expected value of the log difference of 
the probabilities of the data points. Now that we have a notion of how to 
measure the similar/difference between distributions, we can optimize this by 
well known gradient descent methods.

4.1 How it works (SNE)
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A.I. Experiments: Visualizing High-Dimensional Space
https://experiments.withgoogle.com/ai
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1. What are the main motivations for reducing a dataset’s dimensionality? What are the
main applications? What are the main drawbacks?

2. What is the curse of dimensionality?

3. Once a dataset’s dimensionality has been reduced, is it possible to reverse the
operation? If so, how? If not, why?

4. Can PCA be used to reduce the dimensionality of a highly nonlinear dataset? Which
methods can alternatively be used?

5. Suppose you perform a PCA on a 1000-dimensional dataset, setting the explained
variance to 95%. How many dimensions will the resulting dataset have?

6. In which cases would you use incremental PCA, randomized PCA or kernel PCA?

7. How can you evaluate the performance of a dimensionality reduction algorithm?

8. Does it make sense to chain two different dimensionality reduction algorithms?

Excercises (Aurélien Géron)
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Definition: An autoencoder is a feed-forward neural network which is 
trained to approximate the identity function. That is, it is trained to map 
from a vector of values to the same vector. 

When used for dimensionality reduction purposes, one of the hidden layers in 
the network is limited to contain only a small number of network units. Thus, 
the network must learn to encode the vector into a small number of 
dimensions and then decode it back into the original space. 

Thus, the first half of the network is a model which maps from high to low-
dimensional space, and the second half maps from low to high-dimensional 
space. Although the idea of autoencoders is quite old, training of deep 
autoencoders has only recently become possible through the use of restricted 
Boltzmann machines and stacked denoising autoencoders. 

Autoencoder for dimensionality reduction

mailto:christoph.wuersch@ntb.ch


© NTB, christoph.wuersch@ntb.ch 58Januar 19 – MSE MachLe V10

Principle of an Autoencoder

Source: https://www.jeremyjordan.me/autoencoders

bottleneck
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PCA performs a linear mapping of the data to a lower-dimensional space in 
such a way that the variance of the data in the low-dimensional representation 
is maximized. In practice, the covariance (and sometimes the correlation) 
matrix of the data is constructed and the eigenvectors on this matrix are 
computed. 
PCA can be employed in a nonlinear way by means of the kernel trick. The 
resulting technique, kernel PCA, is capable of constructing nonlinear 
mappings that maximize the variance in the data. 

Advantages of Dimensionality Reduction:
It reduces the time and storage space required.
Removal of multi-collinearity improves the interpretation of the parameters of 
the machine learning model.
It becomes easier to visualize the data when reduced to very low dimensions 
such as 2D or 3D.
It avoids the curse of dimensionality (e.g. for k-means).

Summary PCA & Dimensionality Reduction
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