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K-means revisited

Gaussian Mixture Models (GMM)

Expectation Maximization (EM)

Summary
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best-known clustering algorithm

Assume that K is known. The optimization that leads to the clusters is 
the following:

Where: 

K-means revisited

indicator variable: 
Assignment of datapoint 𝑛𝑛 to
a certain cluster: 
membership, (latent variable)

K-means cost function

e.g. point 𝑛𝑛 belongs to cluster 3.
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For fixed centers 𝝁𝝁𝑘𝑘, the cost is minimized if we map each sample to 
its nearest center, where we measure distance in terms of Euclidean 
distance.
In words, each sample is assigned exactly to one center (cluster) and 
this is indicated by setting the corresponding indicator variable 𝑧𝑧𝑛𝑛𝑘𝑘 to 1
and all the other ones 𝑧𝑧𝑛𝑛𝑘𝑘𝑛 to 0.
This leads directly to a very intuitive algorithm:   initialize

taking the derivatives of the cost function w.r.t. 𝜇𝜇𝑘𝑘 and solving for the 
cluster centers, we get:

K-means algorithm

1. For all 𝑛𝑛, compute 𝒛𝒛𝑛𝑛 given 𝝁𝝁
2. For all 𝑘𝑘, compute 𝝁𝝁𝑘𝑘 given 𝒛𝒛
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Convergence to a local optimum is assured since each step 
decreases the cost (see Bishop, Exercise 9.1). But note that we are 
not guaranteed to reach the globally optimal solution with this 
iterative algorithm.

K-means is a coordinate descent algorithm:

K-means as coordinate descent algorithm
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Assume that, conditioned that a point is associated to cluster 𝑘𝑘, we 
consider it a sample from the D-dimensional Gaussian with mean 
𝝁𝝁𝑘𝑘 and covariance matrix 𝕀𝕀. i.e., the likelihood of a sample 𝑥𝑥 given the 
cluster assignment 𝒛𝒛 and the centers 𝝁𝝁 is:

Then, the likelihood associated for the whole data set is:

Taking the negative logarithm in order to minmize the negative 
loglikelihood, we get again the K-means cost function:

Probabilistic K-means
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Hard and Soft Clustering

• given: a simple data set consisting of class heights 𝑿𝑿 = {𝑥𝑥𝑖𝑖} with groups 𝑍𝑍 =
{𝑧𝑧1, 𝑧𝑧2} separated by gender

• Imaging that we did not have the convenient gender labels (male, female) 
associated with each data point. How could we estimate the two group means?

• We assume that height data (observed values 𝑿𝑿) are drawn from two 
independent Gaussian distributions with mean 𝜇𝜇𝑘𝑘 and variance 𝜎𝜎𝑘𝑘2 𝑘𝑘 = 1,2

• Understanding the range the 𝑧𝑧𝑗𝑗 values can take is important: In K-means, the 
two  𝑧𝑧𝑗𝑗 can only take the values of 0 or 1. This is called hard clustering.

• In Gaussian Mixture Models (GMM), the  𝑧𝑧𝑗𝑗 can take on any value between 
0 and 1 . This is called soft or fuzzy clustering.
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K-means is equivalent to assuming that the data came from K 
spherically symmetric Gaussians. Instead of isotropic covariances , 
we now use full covariance matrices 𝚺𝚺𝑘𝑘 to model elliptical clusters.

In K-means, each sample belongs to exacltly one cluster. This is not 
always a good choice, esp. for points near the boundary. 
By interpreting 𝑧𝑧𝑛𝑛 as random variable taking the values {1,2, … ,𝐾𝐾} with
a prior distribution that follows a multinomial distribution, we can define
a fractional assignment (soft clustering).

Clustering with Gaussians
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A Gaussian mixture model is a probabilistic model that assumes all 
the data points are generated from a mixture of a finite number 𝐾𝐾 of 
Gaussian distributions with unknown parameters (𝜇𝜇𝑘𝑘 ,Σ𝑘𝑘).

One can think of mixture models as generalizing K-means clustering 
to incorporate information about the covariance structure of the data 
as well as the centers of the latent Gaussians. 

Gaussian Mixture Models (GMM)

Speed: It is the fastest algorithm for learning mixture models

Agnostic:
As this algorithm maximizes only the likelihood, it will not bias the means 
towards zero, or bias the cluster sizes to have specific structures that might or 
might not apply.

See also: https://scikit-learn.org/stable/modules/mixture.html#gmm

Singularities:

When one has insufficiently many points per mixture, estimating the covariance 
matrices becomes difficult, and the algorithm is known to diverge and find 
solutions with infinite likelihood unless one regularizes the covariances
artificially.
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K-means for circular clusters
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K-means for elliptical clusters
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GMM for circular clusters
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GMM for elliptical clusters
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We assume that the samples {𝒙𝒙𝑛𝑛} are iid samples from a weighted
sum of 𝐾𝐾 D-dimensional Gaussians. The (probability) density is
characterized by the following parameters 𝜽𝜽:

The (joint) probability density is given by:

Marginal likelihood: the 𝑧𝑧𝑛𝑛 are latent variables that can be
marginalized out to get a cost function that does not depend on 𝑧𝑧𝑛𝑛.

Gaussian Mixture Model (II)
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Gaussian Mixture Model (III)

Source: C.M. Bishop, Pattern Recognition and Machine Learning, Springer (2006) 
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To determine the unknown parameters we maximise
the log likelihood.

Compute the cluster assignments (E-step):

Update the cluster centers, covariances and probabilities (M-Step)

The EM Algorithm
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Convergece in 4 iteration steps (see exercise)

Iteration 2Iteration 1

Iteration 3 Iteration 4
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The main difficulty in learning Gaussian mixture models from unlabeled data is 
that one usually doesn’t know which points came from which latent 
component (if one has access to this information, it gets very easy to fit a 
separate Gaussian distribution to each set of points).

Expectation-maximization is a well-founded statistical algorithm to get around 
this problem by an iterative process. 

E-Step: First one assumes random components (randomly centered on data 
points, learned from k-means, or even just normally distributed around the 
origin) and computes for each point a probability of being generated by each 
component of the model. 

M-Step: Then, one tweaks the parameters to maximize the likelihood of the 
data given those assignments. Repeating this process is guaranteed to always 
converge to a local optimum.

EM algorithm (see chapter 9a)

Watch Alexander Ihler: https://www.youtube.com/watch?v=qMTuMa86NzU
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Gaussian mixture models
 Flexible class of probability distributions

 Explain variation with hidden groupings or clusters of data

 Latent “membership” 𝑧𝑧𝑖𝑖
 Feature values 𝑥𝑥𝑖𝑖 are Gaussian given 𝑧𝑧𝑖𝑖

Expectation-Maximization
 Compute soft membership probabilities, “responsibility” 𝛾𝛾𝑖𝑖𝑘𝑘
 Update mixture component parameters given soft memberships

 Ascent on log-likelihood: convergent, but local optima

Selecting the number of clusters
 Penalized likelihood or validation data likelihood

Summary
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We assume EM clustering using the Gaussian (normal) distribution.
MIN is hierarchical, EM clustering is partitional.
Both MIN and EM clustering are complete.
MIN has a graph-based (contiguity-based) notion of a cluster, while 
EM clustering has a prototype (or model-based) notion of a cluster.
MIN will not be able to distinguish poorly separated clusters, but EM 
can manage this in many situations.
MIN can find clusters of different shapes and sizes; EM clustering 
prefers globular clusters and can have trouble with clusters of different 
sizes. 
Min has trouble with clusters of different densities, while EM can often 
handle this.
Neither MIN nor EM clustering finds subspace clusters. 

Practice: Comparison of MIN and EM-Clustering

mailto:christoph.wuersch@ntb.ch


© NTB, christoph.wuersch@ntb.ch 21May 19 – MachLe V13 GMM & EM

MIN can handle outliers, but noise can join clusters; EM clustering can 
tolerate noise, but can be strongly affected by outliers.
EM can only be applied to data for which a centroid is meaningful; MIN 
only requires a meaningful definition of proximity.
EM will have trouble as dimensionality increases and the number of its 
parameters (the number of entries in the covariance matrix) increases 
as the square of the number of dimensions; MIN can work well with a 
suitable definition of proximity.
EM is designed for Euclidean data, although versions of EM clustering 
have been developed for other types of data. MIN is shielded from the 
data type by the fact that it uses a similarity matrix.
MIN makes no distribution assumptions; the version of EM we are 
considering assumes Gaussian distributions.

Practice: Comparison of MIN and EM-Clustering
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EM has an O(n) time complexity; MIN is O(n2log(n)).
Because of random initialization, the clusters found by EM can vary 
from one run to another; MIN produces the same clusters unless there 
are ties in the similarity matrix.
Neither MIN nor EM automatically determine the number of clusters. 
MIN does not have any user-specified parameters; EM has the 
number of clusters and possibly the weights of the clusters. 
EM clustering can be viewed as an optimization problem; 
MIN uses a graph model of the data.
Neither EM or MIN are order dependent. 

Practice: Comparison of MIN and EM-Clustering
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Daume, A Course in Machine Learning
Barber, Bayesian Reasoning and Machine Learning
Hastie, Tibshirani, and Friedman, The Elements of Statistical Learning
MacKay, Information Theory, Inference, and Learning Algorithms

The following print textbooks are good quality, but in some cases more advanced 
or mathematical than this course:

Bishop, Pattern Recognition and Machine Learning
Murphy, Machine Learning: A Probabilistic Perspective
Duda, Hart, and Stork, Pattern Classification
Rogers and Girolami, A First Course in Machine Learning
Mitchell, Machine Learning

General Literature (excellent reference books)
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