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Educational objectives

Apply Bayesian learning, especially Bayes’ theorem and the Bayes 
classifier

Explain how a Gaussian Mixture Model (GMM) is trained and 
evaluated, given the respective equations and the EM algorithm

Apply GMMs for pattern recognition tasks on audio data

Based on material by 
• Stuart Russell, UC Berkeley
• T. Stadelmann, R. Ewerth & B. Freisleben, U Marburg
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I. Probability Theory
(a short repetition)
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you have repeated the basic rules of probability theory.
you know the difference between a joint and a conditional probability 
distribution.
you know how to apply Bayes Theorem to calculate the posterior probability 
distribution for simple discrete examples. 
You can name the prior probability distribution, the likelihood function, the 
evidence, and you know how to marginalize over a joint probability 
distribution.
you know the basic properties of a multivariate Gaussian probability 
distribution. You can plot a 2D Gaussian probability distribution given the 
mean vector μ and the covariance matrix Σ
you can estimate the parameters of a multivariate Gaussian distribution from 
data points using a kernel density estimation method.

Educational Objectives
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Probability and random variable:

Domain: dom( )

dom( ) denotes the states x can take.  For example:

When summing over a variable x, the interpretation is that all states of
x are included

Basic Probability Theory (recap)
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Sum Rule:

Product Rule:

Bayes Theorem:

Basic Rules of Probability

Marginal

Conditional

Bayes Rule
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Two colored boxes (X=r, X=b) with apples
(Y=a) and oranges (Y=o)

We may ask: What is the overall probability 
that the selection procedure will pick an 
apple? 

Or: “given that we have chosen an orange, 
what is the probability that the box we chose 
was the blue one?”.

Probability Tables – Joint Probability

Using the concept of the joint probability (density), the marginal 
probability and the sum and product rule, we can answer all those 
questions. We define:
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If we count the frequencies, we get the following table. In total, there
are 12 fruits, 8 are in a red box, 4 in a blue box. We have 5 apples and
7 oranges in total.

We can convert this into a probability table by normalization:

Most simple non-trivial example
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This table is the joint probability of this problem, the colums at the
borders are the marginals. Now we can easily calculate the
conditional probabilities using the joint and the marginals.

Conditional Probabilities
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Using Bayes Theorem, we can calculate the probability to draw an 
apple (5 from 12) resp. Orange (7 from 12):

The conditionals are not symmetric:

Bayes Theorem
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We can test Bayes rule:

Bayes Theorem
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Inspector Clouseau
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Exercise: compute the probability that the Butler and not the Maid is 
the murderer.

Inspector Clouseau II
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Joint Probability | Joint Probability Density
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Gaussian distribution (1D)

Normal distribution with mean 𝜇𝜇 and variance 𝜎𝜎2:

Normal Distribution
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Multivariate Gaussian Distribution

Gaussian defined over a vector x of continuous variables in a D-dimensional space
with mean vector 𝝁𝝁 and covariance matrix 𝚺𝚺, where |𝚺𝚺| is the determinant of 𝚺𝚺.

The quadratic form in the argument of the exponential is called Mahalanobis
distance:

Without loss of generality, we can assume that Σ is symmetric with real 
eigenvalues and an orthonormal set of eigenvectors 𝒖𝒖𝒊𝒊.

Multivariate Gaussian Distribution
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A bivariate Gaussian distribution
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Multivariate Normal Distribution

from scipy.stats import multivariate_normal
import numpy as np import matplotlib.pyplot as plt

F = multivariate_normal(mu, Sigma)
#draw random samples from the multivariate distribution #and try to
reconstruct the gaussian distribution
NSamples=10000
x, y = np.mgrid[-3:3:.1, -3:3:.1]
pos = np.dstack((x, y))
MVGauss = multivariate_normal(mu, Sigma)
MVGSamples = MVGauss.rvs(size=NSamples)
XS = MVGSamples[:,0]
YS = MVGSamples[:,1]

fig2 = plt.figure('Using Scikit Learn')
ax2 = fig2.add_subplot(111)
ax2.contourf(x, y, F.pdf(pos))
ax2.set_xlabel("x")
ax2.set_ylabel("y")

fig3 = plt.figure('Using Scikit Learn to draw random samples')
ax3 = fig3.add_subplot(111) ax3.scatter(XS,YS) ax3.set_xlabel("x")
ax3.set_ylabel("y")
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Since Σ ist real and symmetic, the eigenvectors 𝜆𝜆𝑖𝑖 are real and the
eigenvectors can be chosen from an orthonormal set, so that:

The quadratic form becomes

This describes D-dimensional ellipsoids with main axes 𝜆𝜆𝑖𝑖.

Multivariate Gaussian Distribution
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The deterimant is given by the product of the eigenvalues:

In the orthonormal coordinate of the eigenvectors, the multivariate 
Gaussian distribution takes the form:

One can show:

Probability Distributions

Expectation value

Correlation

Covariance
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we partition x into two disjoint subsets 𝑥𝑥𝑎𝑎 and 𝑥𝑥𝑏𝑏. Without loss of 
generality, we can take 𝑥𝑥𝑎𝑎 to form the first 𝑀𝑀 components of 𝑥𝑥, with 𝑥𝑥𝑏𝑏
comprising the remaining 𝐷𝐷 −𝑀𝑀 components:

In many situations, it will be convenient to work with the inverse of the 
covariance matrix, the precision matrix:

Conditional Gaussian distributions
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To calculate the conditional 𝑝𝑝 𝑥𝑥𝑎𝑎 𝑥𝑥𝑏𝑏), we have a look at the exponent:

We see that as a function of 𝑥𝑥𝑎𝑎, this is again a quadratic form, and hence the 
corresponding conditional distribution 𝑝𝑝 𝑥𝑥𝑎𝑎 𝑥𝑥𝑏𝑏), will be Gaussian. 

Because this distribution is completely characterized by its mean and its 
covariance, our goal will be to identify expressions for the mean and 
covariance of 𝑝𝑝 𝑥𝑥𝑎𝑎 𝑥𝑥𝑏𝑏), by inspection of the above equation:

Completing the square:

Conditional Gaussian distributions II
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Quadratic term:

The covariance of 𝑝𝑝 𝑥𝑥𝑎𝑎 𝑥𝑥𝑏𝑏) is therefore given by: 

Linear term: 

The term in curly brackets must be equal to:
Therefore we have: 

Conditional Gaussian distributions III
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Conditional probability distribution

Marginal probability distribution:

Summary

Conditional Probability
Distribution of a Gaussian

Covariance matrix Precision matrix

Example: Squirrel on a Tree (Mitchell)
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Joint probability density – marginal – conditional
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Definition: A belief network is a directed acyclic graph (DAG) in which 
each node has associated the conditional probability of the node given 
its parents.

The joint distribution is obtained by taking the product of the 
conditional probabilities:

Belief Networks (Bayesian Networks)
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Sally's burglar Alarm is sounding. Has she been Burgled, or was the 
alarm triggered by an Earthquake? She turns the car Radio on for 
news of earthquakes.

General case:

Assumptions:
The alarm is not directly influenced by any report on the radio: 
𝑝𝑝 𝐴𝐴 𝑅𝑅,𝐸𝐸,𝐵𝐵 = 𝑝𝑝(𝐴𝐴|𝐸𝐸,𝐵𝐵)
The radio broadcast is not directly influenced by the burglar variable: 
𝑝𝑝 𝑅𝑅 𝐸𝐸,𝐵𝐵 = 𝑝𝑝(𝑅𝑅|𝐸𝐸)
Burglaries don't directly “cause” earthquakes: 𝑝𝑝 𝐸𝐸 𝐵𝐵 = 𝑝𝑝(𝐸𝐸)
Therefore:

Example: Burglar Alarm

𝑝𝑝 𝐴𝐴,𝑅𝑅,𝐸𝐸,𝐵𝐵 = 𝑝𝑝 𝐴𝐴 𝐸𝐸,𝐵𝐵 ⋅ 𝑝𝑝 𝑅𝑅 𝐸𝐸 ⋅ 𝑝𝑝 𝐸𝐸 ⋅ 𝑝𝑝(𝐵𝐵)
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The remaining tables are 𝑝𝑝 𝐵𝐵 = 1 = 0.01 and 𝑝𝑝 𝐸𝐸 = 1 = 10−6

The tables and graphical structure fully specify the distribution.

Directed acyclic graph
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Initial evidence: The alarm is sounding 𝐴𝐴 = 1:

Additional Evidence: (𝑅𝑅 = 1), The radio broadcasts an earthquake 
warning:
A similar calculation gives 𝑝𝑝 𝐵𝐵 = 1 𝐴𝐴 = 1,𝑅𝑅 = 1) ≈ 0.01.

Initially, because the alarm sounds, Sally thinks that she's been 
burgled. However, this probability drops dramatically when she hears 
that there has been an earthquake. The earthquake “explains away” to 
an extent the fact that the alarm is ringing.

Inference
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Prediction (discriminative): 𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

Prediction (generative): 𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ∝ 𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ⋅ 𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

Time-series: Markov chains, Hidden Markov Models.

Unsupervised learning: 𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∑𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ⋅ 𝑝𝑝(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

And many more: Personally I find the framework very useful for understanding 
and rationalising the many different approaches in machine learning and related 
areas.

Examples of Belief Networks in Machine Learning
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denotes that the two sets of variables X and Y are independent of 
each other given the state of the set of variables Z. This means that

for all states of X, Y, Z. In case the conditioning set is empty we may 
also write 

in which case X is (unconditionally) independent of Y.

Conditional Independence I
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In (a), (b) and (c), A, B are conditionally independent given C:

In (d) the variables A, B are conditionally dependent given C:

Conditional Independence II
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In (a), (b) and (c), the variables A;B are marginally dependent.

In (d) the variables A, B are marginally independent.

Conditional Independence III
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A collider contains two or more incoming arrows along a chosen path.

Summary of two previous slides:

Collider
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We can reason with certain or uncertain evidence using repeated 
application of Bayes' rule.
A belief network represents a factorisation of a distribution into 
conditional probabilities of variables dependent on parental 
variables.
Belief networks correspond to directed acyclic graphs (DAG).
Variables are conditionally independent 𝑥𝑥 ∥ 𝑦𝑦|𝑧𝑧 if
𝑝𝑝 𝑥𝑥,𝑦𝑦 𝑧𝑧 = 𝑝𝑝 𝑥𝑥 𝑧𝑧 ⋅ 𝑝𝑝(𝑦𝑦|𝑧𝑧); the absence of a link in a belief network 
corresponds to a conditional independence statement.
If in the graph representing the belief network, two variables are 
independent, then they are independent in any distribution consistent 
with the belief network structure.
Belief networks are natural for representing `causal' influences. 

Summary
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Recap: Probability distributions and PDFs

What does a pdf tell about a set of 
data?
• Where to expect samples

…with which probability
• Correlation/covariance of dimensions

 For data coming from some stochastic 
processes, the pdf tells everything there 
is to know about the data

 Allows for sampling data from the 
underlying distribution 
(generative modeling)

An example generative model
• The univariate Gaussian

A parametric pdf, recoverable from data 
(Gaussianity given)

Maximum likelihood 
estimate 𝑝𝑝(𝑥𝑥) with 

parameters mean 𝜇𝜇 and 
standard deviation 𝜎𝜎

Given data points 𝑥𝑥𝑖𝑖
Assumption: 𝑥𝑥𝑖𝑖~𝑝𝑝(𝑥𝑥;𝜃𝜃) = 𝑁𝑁(𝑥𝑥;𝜇𝜇,𝜎𝜎)

Terminology: its probability density function 
(pdf) is one way to describe a distribution.

Source: Brandon Amos, «Image Completion with Deep
Learning in TensorFlow», 2016, 
https://bamos.github.io/2016/08/09/deep-completion/
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II. Bayes’ Theorem

priorLikelihood (function)

posterior
Evidence (marginal likelihood)
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Bayes’ theorem
One of the cornerstones of modern data analysis

with (in a machine learning context with training data 𝑋𝑋 and model ℎ)
𝑝𝑝(𝑋𝑋|ℎ) the likelihood of the data, given the model  called the evidence for ℎ
𝑝𝑝(𝑋𝑋) the a priori probability of the training data 𝑋𝑋  this normalization factor is rarely 

needed/used
𝑝𝑝(ℎ) is the a priori probability of hypothesis ℎ  often neglected in practice due to dominance 

of evidence

Use cases
• Generally: Convert between prior and posterior probabilities
• Specific example: Model selection
 Given competing ℎ𝑖𝑖 ∈ ℋ, one can calculate the likelihood 𝑝𝑝(𝑋𝑋|ℎ𝑖𝑖), 

then select best �ℎ = max
ℎ𝑖𝑖

𝑝𝑝(ℎ𝑖𝑖|𝑋𝑋) ≈ max
ℎ𝑖𝑖

𝑝𝑝(𝑋𝑋|ℎ𝑖𝑖)

Rev. Thomas Bayes, 
1701-1761

Bayes Theorem
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For data D and variable 𝜃𝜃, Bayes' rule tells us how to update our prior 
beliefs about the variable 𝜃𝜃 in light of the data to a posterior belief:

The evidence is also called the marginal likelihood.

The term likelihood is used for the probability that a model generates 
observed data.

Prior, Likelihood and Posterior

priorLikelihood (function)

posterior
Evidence (marginal likelihood)
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if we condition on the model M, we have

The MAP assignment: The Most probable A Posteriori (MAP) setting 
is that which maximises the posterior,

The Max. Likelihood assignment: when 𝑝𝑝 𝜃𝜃 𝑀𝑀) = const

Prior, Likelihood and Posterior
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Theoretically optimal (=most probable) classification
Combine predictions of all hypotheses, weighted by their posterior 
probabilities: (where 𝑦𝑦𝑖𝑖 is a label from the set 𝑌𝑌 of classes)

No other method using the same ℋ and 𝑋𝑋 can do better on average
In particular outperforms simply taking the classification of the MAP 
hypothesis, enforces the idea of ensemble learning
Computationally intractable (linear in |ℋ|  see Reader (also on Moodle):  
http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf ) 

The Bayes optimal classifier
Classification’s «gold standard»

Naive Bayes Classifier
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Maximum Likelihood revisited

A quick example of a maximum likelihood estimate
• You flip a coin 10 times and observe the following sequence (H, T, T, H, T, T, T, T, H, T)¶
• What's the MLE of observing 3 heads in 10 trials?
• simple answer:

The frequentist MLE is (# of successes) / (# of trials) or 3/10

Maximum Likelihood Approach: What is the expected probability for head given the 
observed data? Solving first derivative of binomial distribution :

𝐿𝐿 𝜃𝜃| 𝑋𝑋 = 3 = 10
3 ⋅ 𝜃𝜃3⋅ 1 − 𝜃𝜃 7

log{𝐿𝐿 𝜃𝜃 } = log 10
3 + 3 log𝜃𝜃 + 7 log 1 − 𝜃𝜃

𝜕𝜕 log{𝐿𝐿 𝜃𝜃 }
𝜕𝜕𝜕𝜕

=
3
𝜃𝜃
−

7
1 − 𝜃𝜃

= 0

𝜃𝜃𝑀𝑀𝑀𝑀 =
3

10
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Given a data set 𝐗𝐗 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 𝑇𝑇 in which the observations 𝑥𝑥𝑛𝑛 are assumed 
to be drawn independently from a multivariate Gaussian distribution, we can 
estimate the parameters of the distribution by maximum likelihood.

By simple rearrangement, we see that the log likelihood function depends on 
the data set only through the two quantities (sufficient statistics for a Gaussian)

Derivative with respect to 𝝁𝝁 and setting it to zero yields the ML estimate for 𝝁𝝁

Maximum Likelihood for a Gaussian

sample mean
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If we evaluate the expectations of the maximum likelihood solutions under the 
true distribution, we obtain the following results:

We see that the expectation of the maximum likelihood estimate for the mean 
is equal to the true mean. However, the maximum likelihood estimate for the 
covariance has an expectation that is less than the true value, and hence it is 
biased.

ML estimate for the covariance is biased

Unbiased estimator
of the covariance
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The maximum likelihood framework gave point estimates for the parameters 𝜇𝜇 and Σ. 
Now we develop a Bayesian treatment by introducing prior distributions over these
parameters.

NB: the likelihood function 𝑝𝑝 𝐗𝐗 𝜇𝜇 is not a probability distribution over 𝜇𝜇 and is not 
normalized. if we choose a prior 𝑝𝑝(𝜇𝜇) given by a Gaussian, it will be a conjugate 
distribution for this likelihood function because the corresponding posterior will be a 
product of two exponentials of quadratic functions of 𝜇𝜇 and hence will also be Gaussian.

In the exercices using completing the square in the exponent, you will be able to show 
that the posterior distribution is given by:

Bayesian Inference for a Gaussian
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The posterior distribution is a compromise between the prior mean 𝜇𝜇0 and 
the maximum likelihood solution 𝜇𝜇ML. If the number of observed data points 
𝑁𝑁 = 0, then 𝜇𝜇𝑁𝑁 reduces to the prior mean 𝜇𝜇0 as expected. For 𝑁𝑁 → ∞, the 
posterior mean 𝜇𝜇𝑁𝑁 is given by the maximum likelihood solution 𝜇𝜇ML.

Bayesian Inference for a Gaussian II

the precisions (inverse variance) are additive, so
that the precision of the posterior is given by the
precision of the prior plus one contribution of the
data precision from each of the observed data
points.
As we increase the number of observed data points,
the precision steadily increases, the posterior gets
infinitly peaked around the ML solution.
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III. Gaussian Mixture Models
(& the EM algorithm)

M-Step
update hypothesis
(e.g., parameters)

E-Step
update variables

(e.g., memberships)
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Recap: Probabilistic mixture models
Generative models for unknown, multivariate distributions

Mixture Models
• Approximate an arbitrary distribution by a linear combination of a 

simpler, “well-behaved” distribution
 Mathematically tractable, compact formulation, allows sampling & inference

The Gaussian Mixture Model (GMM)
• Modeled by a weighted sum of 𝑵𝑵 multivariate 

Gaussians (𝑁𝑁 being sufficiently large)
• Often used because of and “nice” mathematical properties

of Gaussian pdf and central limit theorem 
(~ data from natural phenomena tend to be Gaussian distributed)

• The Gaussians’ parameters can be estimated efficiently 
using the EM algorithm 

Example of a multivariate (2D) Gaussian 
distribution: samples and contour plot.

Example of a multimodal (but univariate) distribution, 
approximated by a GMM with 3 mixtures.
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The EM algorithm
A general-purpose, unsupervised learning algorithm

EM (expectation maximization)
• Iterative method to learn in the presence of unobserved variables
 A typical hidden variable is some sort of group/cluster membership

• Good convergence guarantees (finds local maximum)

Example
• A given dataset is known to be generated by either of 2 Gaussians (with equal probability)
• Only the data is observed
Which Gaussian generated a certain point is unobserved (Z)
 The Gaussians’ parameters 𝜽𝜽 are unknown

• The means & variances of these Gaussians shall be learned
 Needs an estimation of the membership probability of each point to 

either Gaussian

EM algorithm used to iteratively optimize the parameters of 2 Gaussians (animated)
Source: https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm)
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The EM algorithm (contd.)

1. Start with a random initial hypothesis
Example: Pretend to know the parameters 𝜇𝜇, 𝜎𝜎2 of the 2 Gaussians 

(e.g., pick random values)

2. E-Step: Estimate expected values of unobserved variables, 
assuming the current hypothesis holds
Example: Compute probabilities 𝒑𝒑𝒕𝒕𝒕𝒕 that feature vector 𝑥𝑥𝑡𝑡 was produced by 

Gaussian 𝑖𝑖
(i.e., 𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑝𝑝 𝐺𝐺 = 𝑖𝑖 𝑥𝑥𝑡𝑡 = 𝑝𝑝 𝑥𝑥𝑡𝑡|𝐺𝐺=𝑖𝑖 𝑝𝑝(𝐺𝐺=𝑖𝑖)

𝑝𝑝(𝑥𝑥𝑡𝑡)
≈ 𝑝𝑝 𝑥𝑥𝑡𝑡 𝐺𝐺 = 𝑖𝑖 = 𝑔𝑔𝑖𝑖(𝑥𝑥𝑡𝑡, 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖) with 𝑔𝑔𝑖𝑖 being the 

Gaussian pdf 
and 𝐺𝐺 the unobserved random variable indicating membership to one of the Gaussians)

3. M-Step: Calculate new Maximum Likelihood (ML) estimate of hypothesis, 
assuming the expected values from (2) hold
Example: Calculate the 𝝁𝝁𝒊𝒊, 𝝈𝝈𝒊𝒊𝟐𝟐, given the currently assigned membership

(i.e., using standard ML estimation: 𝜇𝜇𝑖𝑖 = 1
𝑇𝑇
∑𝑡𝑡=1𝑇𝑇 𝑝𝑝𝑡𝑡𝑡𝑡 � 𝑥𝑥𝑡𝑡, 𝜎𝜎𝑖𝑖2 = 1

𝑇𝑇
∑𝑡𝑡=1𝑇𝑇 𝑝𝑝𝑡𝑡𝑡𝑡 � 𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑖𝑖 2)

4. Repeat with step 2 until convergence 
Always replacing old estimates with new ones

M-Step
update hypothesis
(e.g., parameters)

E-Step
update variables

(e.g., memberships)
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This suggests an iterative algorithm, in the case where both 𝒁𝒁 and 𝜽𝜽 are unknkown,e.g. for two 
unknown classes (membership 𝒁𝒁 = 1,2 , e.g. male, female) is unknown. Input data is 𝑿𝑿 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 , 
weights and heights of N male and female persons.

1. First, initialize the model parameters 𝜽𝜽 = {𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘2} to some random values, here a Gaussian for each 
gender 𝑘𝑘 = 1,2.

2. E-Step: Compute the probability of each possible value of 𝑍𝑍 = {1,2}, given 𝜃𝜃 = probability that 𝑥𝑥𝑖𝑖 is 
member of class 𝑧𝑧𝑗𝑗

3. M-Step: Then, use the just-computed values of 𝒁𝒁 to compute a better estimate for the parameters 
𝜽𝜽 = {𝜇𝜇𝑛𝑛,𝜎𝜎2}

4. Repeat with step 2 until convergence 
Always replacing old estimates with new ones

Example: EM for GMM

𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑝𝑝 𝑍𝑍 = 𝑗𝑗 | 𝑥𝑥𝑖𝑖 =
𝑝𝑝 𝑥𝑥𝑖𝑖 𝑍𝑍 = 𝑗𝑗 ) ⋅ 𝑝𝑝 𝑍𝑍 = 𝑗𝑗
∑𝑘𝑘=12 𝑝𝑝 𝑥𝑥𝑖𝑖 𝑍𝑍 = 𝑘𝑘)

≈
𝑝𝑝 𝑥𝑥 = 𝑥𝑥𝑖𝑖 𝜇𝜇𝑗𝑗 )

∑𝑘𝑘=12 𝑝𝑝 𝑥𝑥 = 𝑥𝑥𝑖𝑖 𝜇𝜇𝑘𝑘 )
=

𝑒𝑒
− 1
2𝜎𝜎𝑗𝑗

2 𝑥𝑥𝑖𝑖−𝜇𝜇𝑗𝑗
2

∑𝑘𝑘=12 𝑒𝑒
− 1
2𝜎𝜎𝑘𝑘

2 𝑥𝑥𝑖𝑖−𝜇𝜇𝑘𝑘 2

𝜇̂𝜇𝑗𝑗 = 𝔼𝔼 𝜇𝜇𝑗𝑗 =
∑𝑖𝑖=1𝑁𝑁 𝑝𝑝 𝑍𝑍 = 𝑗𝑗 | 𝑥𝑥𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖
∑𝑖𝑖=1𝑁𝑁 𝑝𝑝 𝑍𝑍 = 𝑗𝑗 | 𝑥𝑥𝑖𝑖

�𝜎𝜎2𝑗𝑗 = 𝔼𝔼 𝜎𝜎𝑗𝑗2 =
1
𝑁𝑁�𝑖𝑖=1

𝑁𝑁
𝑧𝑧𝑖𝑖𝑖𝑖 � 𝑥𝑥𝑖𝑖 − 𝜇̂𝜇𝑗𝑗

2 M-Step
update hypothesis
(e.g., parameters)

E-Step
update variables

(e.g., memberships)
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General Description: EM Algorithm

Given the statistical model which generates a set 𝑿𝑿 of observed data, a set of unobserved 
latent data 𝒁𝒁 (e.g membership), and a vector of unknown parameters 𝜽𝜽, along with a 
likelihood function 𝐿𝐿(𝜽𝜽;𝑿𝑿,𝒁𝒁) = 𝑝𝑝 𝑿𝑿,𝒁𝒁 𝜽𝜽 the maximum likelihood estimate (MLE) of the 
unknown parameters 𝜃𝜃 is determined by maximizing the (log) marginal likelihood of the 
observed data

However, the exact calculation of the sum is extremely difficult: The EM algorithm seeks to 
find the MLE of the marginal likelihood by iteratively applying these two steps:

1. Expectation step (E-step)

Calculate the expected value of the log likelihood function, with respect to the 
conditional distribution of 𝑍𝑍 given 𝑋𝑋 under the current estimate of the parameters 𝜃𝜃𝑡𝑡

2. Maximization step (M-step): Find the parameters that maximize this quantity:

𝐿𝐿 𝜃𝜃;𝑋𝑋 = 𝑝𝑝 𝑋𝑋 𝜃𝜃 = �
𝑍𝑍
𝑝𝑝 𝑋𝑋,𝑍𝑍|𝜃𝜃 𝑑𝑑𝑑𝑑

𝑄𝑄 𝜃𝜃 𝜃𝜃𝑡𝑡 = 𝔼𝔼𝑍𝑍|𝑋𝑋,𝜃𝜃𝑡𝑡 log 𝑝𝑝 𝑋𝑋,𝑍𝑍 𝜃𝜃)

𝜃𝜃𝑡𝑡+1 = arg max
𝜃𝜃

𝑄𝑄 𝜃𝜃 𝜃𝜃𝑡𝑡

⇒ �𝜃𝜃 𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

log 𝑝𝑝 𝑋𝑋 𝜃𝜃
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Motivation: EM for GMM

• If the value of the parameters 𝜽𝜽 is known, usually the value of the latent 
variables 𝒁𝒁 can be found by maximizing the log-likelihood over all possible
values of 𝒁𝒁, either simply by iterating over 𝒁𝒁 or using a Viterbi algorithm for
hidden Markov models. 

• Conversely, if we know the value of the latent variables 𝒁𝒁, we can find an 
estimate of the parameters 𝜽𝜽 fairly easily, typically by simply grouping the
observed data points according to the value of the associated latent variable 
and averaging the values.
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Applications of the EM algorithm

Applications: 

• Unsupervised learning of clusters
• Filling in missing data from a sample set

• Discovering values of latent (i.e. hidden) variables (Z)

• Estimating parameters of HMMs (hidden Markov models)

• Estimating parameters of finite mixtures [mixture models]
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3. APPLICATION TO VOICE RECOGNITION
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GMMs as generative models for voice modeling

Reference
• Reynolds, Rose, «Robust Text-Independent Speaker Identification 

Using Gaussian Mixture Speaker Models», 1995

Key ideas
• Take the estimated probability density 

function (pdf) 𝑝𝑝(𝑥𝑥|ℎ) of a speaker’s 𝐷𝐷-dim.
training vectors 𝑥𝑥 as a model of his voice

• Model the pdf as a weighted sum of 𝑀𝑀
𝐷𝐷-dimensional Gaussians
(e.g., 𝑀𝑀 = 32, 𝐷𝐷 = 16)

GMM with 3 mixtures in 1 dimension. Solid line shows GMM density, 
dashed lines show constituting Gaussian densities.
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The task of speaker recognition
( see appendix for an introduction to speech processing)

Speaker recognition
• Tell identity of an utterances’ speaker
• Typical: score feature-sequence against a speaker model

Three subsequently more complex settings
Verification: Verify that a given utterance fits a claimed identity (model) or not

Identification: Find the actual speaker among a list of prebuilt models 
(or declare as unknown: open set identification)

Diarization (a.k.a. tracking, clustering): Segment an audio-stream by voice identity 
(who spoke when, no prior knowledge of any kind)
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GMM rationale

Hybrid solution between non-parametric clusters 
(vector quantization) and compact smoothing 
(single Gaussian):

Smooth approximation of arbitrary densities 

Implicit clustering into broad phonetic classes

GMM comparison with other techniques; from [Reynolds and Rose, 1995].
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Mathematical formulation of the GMM

Notation
• ℎ: model (GMM)
• 𝑤𝑤: weight (scalar)
• 𝜇𝜇: mean vector
• 𝜎𝜎2: variance vector (the diagonal of the 

covariance matrix)
• 𝑔𝑔𝑖𝑖: Gaussian pdf of 𝑖𝑖th (out of 𝑀𝑀) mixtures
• 𝑥𝑥: feature vector
• 𝐷𝐷: dimensionality of 𝑥𝑥, 𝜇𝜇, 𝜎𝜎2

• 𝑝𝑝: density/likelihood of a feature 
vector given the model

Formulae
• Model consists of: ℎ = 𝑤𝑤𝑖𝑖 ,𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2

 subject to 𝑖𝑖 = 1. .𝑀𝑀 and ∑𝑖𝑖=1𝑀𝑀 𝑤𝑤𝑖𝑖 = 1

• The multimodal Gaussian with diagonal 
covariance computes as 

𝑔𝑔𝑖𝑖 𝑥𝑥,𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2 = �
𝑑𝑑=1

𝐷𝐷 1
2𝜋𝜋𝜎𝜎𝑖𝑖𝑖𝑖2

� 𝑒𝑒
− 𝑥𝑥−𝜇𝜇𝑖𝑖𝑖𝑖 2

2𝜎𝜎𝑖𝑖𝑖𝑖2

• Model evaluation: 

𝑝𝑝 𝑥𝑥 ℎ = �
𝑖𝑖=1

𝑀𝑀
𝑤𝑤𝑖𝑖 � 𝑔𝑔𝑖𝑖(𝑥𝑥, 𝜇𝜇𝑖𝑖 , Σ𝑖𝑖)

Condition on weights to sum up to 1

Just the product over the assumedly 
independent marginals (dimensions)

full covariance diagonal covariance

The univariate Gaussian pdf

Using diagonal covariance ( see appendix for reasons)
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GMM training via the EM algorithm

Maximum likelihood training
Initialize model ℎ = 𝑤𝑤𝑖𝑖,𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2 using data 𝑋𝑋 = 𝑥𝑥1. . 𝑥𝑥𝑇𝑇
 Instead of pure random initialization, find better values via subsequent clustering (e.g., with 𝑘𝑘-means)

E-Step:

𝑝𝑝𝑡𝑡𝑡𝑡 𝑖𝑖 𝑥𝑥𝑡𝑡 ,ℎ =
𝑤𝑤𝑖𝑖 � 𝑔𝑔𝑖𝑖 𝑥𝑥𝑡𝑡,𝜇𝜇𝑖𝑖 , 𝐼𝐼𝐷𝐷 � 𝜎𝜎𝑖𝑖2

∑𝑖𝑖=1𝑀𝑀 𝑤𝑤𝑖𝑖 � 𝑔𝑔𝑖𝑖 𝑥𝑥𝑡𝑡,𝜇𝜇𝑖𝑖 , 𝐼𝐼𝐷𝐷 � 𝜎𝜎𝑖𝑖2

M-Step:

𝑤𝑤𝑖𝑖 =
1
𝑇𝑇�𝑡𝑡=1

𝑇𝑇
𝑝𝑝𝑡𝑡𝑡𝑡(𝑖𝑖|𝑥𝑥𝑡𝑡,ℎ)

𝜇𝜇𝑖𝑖 =
1

𝑇𝑇 � 𝑤𝑤𝑖𝑖
�

𝑡𝑡=1

𝑇𝑇
𝑝𝑝𝑡𝑡𝑡𝑡(𝑖𝑖|𝑥𝑥𝑡𝑡,ℎ) � 𝑥𝑥𝑡𝑡

𝜎𝜎𝑖𝑖2 =
1

𝑇𝑇 � 𝑤𝑤𝑖𝑖
�

𝑡𝑡=1

𝑇𝑇
𝑝𝑝𝑡𝑡𝑡𝑡(𝑖𝑖|𝑥𝑥𝑡𝑡, ℎ) � 𝑥𝑥𝑡𝑡2 − 𝜇𝜇𝑖𝑖2

Alternative: Training via maximum a posteriori (MAP) adaptation (i.e. uses a priori knowledge)
 see Reynolds, Quatieri, Dunn, «Speaker Verification Using Adapted Gaussian Mixture Models», 2000

Mixture 𝑖𝑖’s weight is just the 
mean probability of all training 
vectors being assigned to it

The (properly normalized) probability 
of 𝑥𝑥𝑡𝑡 being issued by mixture 𝑖𝑖

 see appendix
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Doing speaker identification

Finding the speaker 𝑠𝑠 of a new utterance, given a set of trained speaker 
models
• Utterance represented by its feature vector sequence 𝑋𝑋 = 𝑥𝑥1. . 𝑥𝑥𝑇𝑇
• Speakers models given by {ℎ1. .ℎ𝑆𝑆}

𝑠𝑠 = arg max
𝑠𝑠

𝑝𝑝 𝑋𝑋 ℎ𝑠𝑠

= arg max
𝑠𝑠

�
𝑡𝑡=1

𝑇𝑇

𝑝𝑝(𝑥𝑥𝑡𝑡|ℎ𝑠𝑠)

= arg max
𝑠𝑠

�
𝑡𝑡=1

𝑇𝑇

log𝑝𝑝(𝑥𝑥𝑡𝑡|ℎ𝑠𝑠)

Model comparison via generalized likelihood ration (GLR)
Absolute likelihood values are not meaningful, but their ratios are
 To decide if given models ℎ1,ℎ2 trained on utterances 𝑋𝑋1,𝑋𝑋2 are actually of the same speaker,

threshold GLR distance measure:

𝐺𝐺𝐺𝐺𝐺𝐺 ℎ1,ℎ2 = log
𝑝𝑝 𝑋𝑋1 ℎ1 � 𝑝𝑝 𝑋𝑋2 ℎ2
𝑝𝑝 𝑋𝑋1 ∪ 𝑋𝑋2 ℎ1∪2

The prob. of a set of feature vectors 
is the product of the individual probs

(independence assumed)

Using the log turns the product into 
a sum  makes the computation 

numerically stable
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What GMMs do not capture

Re-synthesizing speech from intermediate stages 
of the speaker modeling pipeline
Original utterance 

Resynthesized feature vectors (MFCCs)

Resynthesized MFCCs from GMM

Implication
Temporal context isn’t modeled by GMMs

More on temporal context modeling: 
Friedland, Vinyals, Huang, Müller, «Prosodic and other 
Long-Term Features for Speaker Diarization», 2009

Stadelmann, Freisleben, «Unfolding Speaker Clustering 
Potential – A Biomimetic Approach», 2009

Lukic, Vogt, Dürr, Stadelmann, «Speaker Identification and 
Clustering using Convolutional Neural Networks», 2016
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Review

• Understanding uncertain events as random variables gives us a potent arsenal of tools 
for modeling: E.g., probability density function (pdf) of a random variable tells us 
everything there is to know about this function

• Thus, estimating the pdf is a rewarding target for (unsupervised) learning

• Bayes’ theorem is used to turn priors (i.e., prior knowledge) into posteriors (i.e., taking all 
evidence & priors into account)

• Speaker recognition comes in the flavors of verification, identification or diarization
• The classic approach is MFCC features and GMM models
• Optimal parameters are best found using best practices ( see appendix)

• EM training iterates between estimating updates values of hidden variables (based on 
assumed parameters of the sought distribution – E-step), and updating these parameters 
(based on these new estimates – M-step)
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GMM best practices

• Use log-likelihoods instead of likelihoods
 Likelihoods become so small that one ends up with numerical instabilities otherwise

• Use a diagonal covariance matrix
 Simpler/faster training, same/better results due to more compact model (with more mixtures)

• Use a variance limit and beware of curse of dimensionality
 Prohibit artifacts through underestimation of components

• Use 16-32 mixtures and a minimum of 30s of speech (ML)
• Adapt only means from 512-1024 mixtures per gender (MAP)

Score only with top-scoring mixtures

• Find optimal number of mixtures for data via brute force and BIC
• Compare models via 

Score-wise (more precise): Generalized Likelihood Ratio (GLR)

Parameter-wise (faster): Earth Mover‘s Distance (EMD) or this paper:
Beigi, Maes, Sorensen, «A distance measure between collections of distributions and its 
application to speaker recognition», 1998

mailto:christoph.wuersch@ntb.ch

	Bayes Theorem and the Gaussian Distribution
	Educational objectives
	Foliennummer 3
	Educational Objectives
	Basic Probability Theory (recap)
	Basic Rules of Probability
	Probability Tables – Joint Probability
	Most simple non-trivial example
	Conditional Probabilities
	Bayes Theorem
	Bayes Theorem
	Inspector Clouseau
	Inspector Clouseau II
	Joint Probability | Joint Probability Density
	Gaussian distribution (1D)
	Multivariate Gaussian Distribution
	A bivariate Gaussian distribution
	Multivariate Normal Distribution
	Multivariate Gaussian Distribution
	Probability Distributions
	Conditional Gaussian distributions
	Conditional Gaussian distributions II
	Conditional Gaussian distributions III
	Summary
	Joint probability density – marginal – conditional 
	Belief Networks (Bayesian Networks)
	Example: Burglar Alarm
	Directed acyclic graph
	Inference
	Examples of Belief Networks in Machine Learning
	Conditional Independence I
	Conditional Independence II
	Conditional Independence III
	Collider
	Summary
	Recap: Probability distributions and PDFs
	Foliennummer 37
	Bayes’ theorem�One of the cornerstones of modern data analysis
	Prior, Likelihood and Posterior
	Prior, Likelihood and Posterior
	The Bayes optimal classifier�Classification’s «gold standard»
	Maximum Likelihood revisited
	Maximum Likelihood for a Gaussian
	ML estimate for the covariance is biased
	Bayesian Inference for a Gaussian
	Bayesian Inference for a Gaussian II
	Foliennummer 48
	Recap: Probabilistic mixture models�Generative models for unknown, multivariate distributions
	The EM algorithm�A general-purpose, unsupervised learning algorithm
	The EM algorithm (contd.)
	Example: EM for GMM
	General Description: EM Algorithm
	Motivation: EM for GMM
	Applications of the EM algorithm
	Foliennummer 56
	GMMs as generative models for voice modeling
	The task of speaker recognition�( see appendix for an introduction to speech processing)
	GMM rationale
	Mathematical formulation of the GMM�
	GMM training via the EM algorithm
	Doing speaker identification
	What GMMs do not capture
	Review
	GMM best practices

