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Machine
Learning

Educational Objectives

• Know about the «folk knowledge needed to advance machine 
learning applications» 
(Quoting the abstract of Domingos’ paper on «a few useful things to know about machine 
learning»)

• Explain the concept of regularization with at least 3 distinct 
examples

• Know how to proceed (debug) when machine learning 
algorithms fail in the first place

• Apply learning curves in your daily ML tasks

goals
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Machine
Learning

Taxonomy of Machine Learning 

The ML Landscape

Supervised Learning
(labeled data)

Regression Classification

Unsupervised Learining
(unlabeled data)

Dimensionality reduction Clustering

Reinforcement Learning
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Machine
Learning

Applications

Source: Jha, V. An overview of machine learning techniques.
https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies/

https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies/
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Machine
Learning

The Bias-Variance-Tradeoff

 Bias-Variance-Tradeoff
 A little bit of PAC learning theroy
 polynomial regression using pipelines

 Cross-Validation (cv)
 Train / Test / Validation datasets
 K-fold, stratified k-fold crossvalidation

 Hyperparameter Tuning (cross validated)
 Single parameter: validation curve
 Many parameters: grid search

 Optimum Bias-Variance-Tradeoff
 Learning Curves
 Reduction of model complexity
 Regularization of linear models: Ridge und Lasso

Bias-Variance-Tradeoff
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Machine
Learning

Which Polynomial fits the data best?

Overfitting - underfitting

plot_bias_variance.ipynb
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Machine
Learning

Polynomial Regression

 Using a pipeline a fantastic API

Polynomial Features

from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures

model = make_pipeline(PolynomialFeatures(degree),
LinearRegression())
model.fit(x[:, np.newaxis], y)

ax.plot(x_test, model.predict(x_test[:, np.newaxis]), '-b')
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Machine
Learning

Validation Curves: Training vs .Test Error

Validation Curves

Model “complexity”

Er
ro

r Best Fit

Overfitting  Underfitting

(e.g. number of features, parameters, 
neighbors, order of the polynomial)

 Used to tune the model complexity (hyper parameters)
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Machine
Learning

Bias-Variance-Decomposition

 We can write the relationship between predictor variables X and the 
response Y as variables:

 Then the expected value of the quadratic error can be written as :

 After some transformations you get:

Bias-Variance Decomposition

irreducibile
error
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Machine
Learning

Proof:
 Expected value of the square of a random variable X:

 With this:

(optional)
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Machine
Learning

Empirical Risk Minimization (ERM)

PAC learning theory

Shai Shalev-Shwartz, Shai Ben-David:  UNDERSTANDING MACHINE LEARNING
From Theory to Algorithms, Cambridge University Press

 The definition of Probably Approximately Correct learnability contains two 
approximation parameters. The accuracy parameter 𝜀𝜀 determines how far 
the output classier can be from the optimal one (this corresponds to the 
“approximately correct”), and a confidence parameter 𝛿𝛿 indicating how likely 
the classifier is to meet that accuracy requirement (corresponds to the 
“probably” part of PAC).

Empirical risk
minimization

Selected Hypothesis 
Space (our set of learners) our training samples

Training Error
(empirical risk)

True Error
(Generalization error,
always unknown)

𝑓𝑓:   true, unknown labelling function
𝒟𝒟:  full distribution over data space
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Machine
Learning

The No-Free-Lunch  theorem (PAC theory)

 There is no universal learner: no learner can succeed on all 
learning tasks, as formalized in the following theorem:

No Free Lunch Theorem

This theorem states that for every learner, there exists a task on 
which it fails, even though that task can be successfully learned 
by another learner.
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Machine
Learning

Lower Bounds for the numeber of samples𝑚𝑚
 For a sufficiently large 𝑚𝑚, the ERM rule over a finite hypothesis 

class ℋ will be probably (with condfidence 1-𝛿𝛿) approximately
(up to an error of 𝜀𝜀 ) correct. 

PAC theory
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Machine
Learning

Lex Parsimoniae
Occam's razor (also Ockham's razor or Ocham's razor; Latin: lex
parsimoniae "law of simlicity") is the problem-solving principle 
that the simplest solution tends to be the correct one.
When presented with competing hypotheses to solve a 
problem, one should select the solution with the fewest 
assumptions. 

Ockham’s Rasiermesser

Ockham's razor can be interpreted in Bayesian terms: in the choice 
of the prior probabilities of hypotheses, using scientific experience 
to judge that simpler hypotheses are more likely to be correct; as a 
consequence of the fact that a hypothesis with fewer adjustable 
parameters will automatically have an enhanced posterior 
probability, due to the fact that the predictions it makes are sharp; 
and in the choice of parsimonious empirical models.

William of Ockham
(1288–1347)

[1] https://de.wikipedia.org/wiki/Ockhams_Rasiermesser
[2] Information Theory, Inference, and Learning Algorithms“. Archived (PDF) from the original on 15 September 2012.
[3] Jefferys, William H.; Berger, James O. (1991). "Ockham's Razor and Bayesian Statistics« . American Scientist. 80 (1): 64–72. JSTOR 29774559.

https://de.wikipedia.org/wiki/Ockhams_Rasiermesser
http://www.inference.phy.cam.ac.uk/itprnn/book.pdf
https://web.archive.org/web/20120915043535/http:/www.inference.phy.cam.ac.uk/itprnn/book.pdf
http://quasar.as.utexas.edu/papers/ockham.pdf
https://en.wikipedia.org/wiki/American_Scientist
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/29774559
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Machine
Learning

Estimation of the accuracy on unknown data

 Generalization is decisive for a model: How well does the model 
work on unknown data?
 A model that is too simple can lead to an underadjustment (large bias). 
 If the model is too complex for the underlying training data, over-fitting 

(high variance) may occur.  

 In order to find an acceptable bias-variance compromise, we 
need to carefully evaluate the model. 
 In this section, you will learn about two useful methods for 

reliable estimations of the generalization error, which provide 
information on how well the model works with unknown data:
 2-fold and k-fold cross-validation

Generalization error
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Machine
Learning

1. Cross-Validation
The outer and the inner loop

 Hyperparameter
tuning
 Validation Curves
 Final Performance

Evaluation

The A&O of ML
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Machine
Learning

Split Training and Test Data !

 Learning the parameters of a prediction function and testing it 
on the same data is a methodological mistake: 
 a model that would just repeat the labels of the samples that it 

has just seen would have a perfect score but would fail to 
predict anything useful on yet-unseen data (huge generalization 
error). 
 This situation is called overfitting. 
 To avoid it, it is common practice when performing a 

(supervised) machine learning experiment to hold out part of 
the available data as a test set  X_test, y_test.

Don’t Do This
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Machine
Learning

train_test_split
 Absolute must: Separate into training and test data:

from sklearn.model_selection import train_test_split

# split into training, validation, and testing sets.
test_size = 0.4 x_train, x_test, y_train, y_test =

train_test_split(x, y, test_size=test_size)

2-fold crossvalidation



© Christoph Würsch | Institute ICE             ML06- Crossvalidation and Learning Curves Seite 19

Machine
Learning

2-fold crossvalidation = Hold-out-method
 Data is divided into a training data set and a test 

data set. The former is used to train the model, the 
latter to evaluate performance.

 Training Data: used for fitting the model.

 Test Data: Checking the generalization error.
 How to split? 
 temporal, random, geographical,...
 Depends on the application (usually random)

 Which size for the test data quantity? (90%-10%)
 Larger training data suitable for more complex models
 Larger test data:  Better estimation of the generalization 

error possible
 Typically between 75%-25% and 90%-10%

2-fold crossvalidation

Da
ta Tr

ai
n

Te
st

Train-Test
Split

You can only use the test dataset once after deciding on the model.
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Machine
Learning

Model Selection: training-validation-test

 Model selection = Adjustment and comparison of various parameters 
to improve the predictive power of unknown data, e.g. selection of 
optimal values for the hyperparameters (k for kNN) of a classification 
task. 
 However, if we use the same test data over and over again when 

selecting the model, they become part of the training data 
overadaptation of the model 
 A better way to use dual cross-validation for model selection is to 

divide the data into three parts: a training data set, a validation data 
set, and a test data set.
 The training data set is used to fit the different models (.fit) - and 

the performance of a model on the validation data is then used for 
model selection (e.g. hyperparameter tuning using GridSearch).

2-fold crossvalidation
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Machine
Learning

Validation: Hyperparameters in sklearn
 Hyper-parameters are parameters that are not directly learnt 

within estimators. In scikit-learn they are passed as 
arguments to the constructor of the estimator classes. 
 Typical examples include C, kernel and gamma for Support 

Vector Classifier, alpha for Lasso, etc.
 It is possible and recommended to search the hyper-parameter 

space for the best cross validation score.
 Any parameter provided when constructing an estimator may 

be optimized in this manner. Specifically, to find the names and 
current values for all parameters for a given estimator, use

Hyperparameter tuning

estimator.get_params()

https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
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Machine
Learning

Model Selection: training-validation-test

 Disadvantage: the assessment of the performance can strongly 
depend on how the training data is divided into the subsets training 
data and validation data.

2-fold crossvalidation
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Machine
Learning

k-fold cross-validated model adjustment

 In k-fold cross validation, the training data is divided into k subsets 
(without substitution). Then k-1 subsets are used to train the model 
and a subset is used for testing. 
 This procedure is repeated k times so that we get k models and k 

estimates of performance.
 The k-fold cross-validation is used in model tuning to find the optimal 

values of the hyper-parameters that provide an acceptable 
generalization capability.
 Once we have found acceptable values for the hyper-parameters, we 

can re-train the model with the entire training data set.
 This provides more training data to the learning algorithm and 

generally leads to a more accurate and stable model.

k-fold crossvalidation
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Machine
Learning

k-fold cross-validated model adjustment

k-fold crossvalidation
Da

ta Tr
ai

n
Te

st
Train - Test

Split
Validation

Split

Tr
ai

n
V

5-Fold
Cross Validation

V
Tr

ai
n

V
Tr

ai
n

V
Tr

ai
n

V
Tr

ai
n

Cross validation simulates multiple train test-splits on the training data.

Validate
Generalization
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Machine
Learning

Inner and outer loop

k-fold crossvalidation
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Machine
Learning

 The performance measure reported by k-fold cross-validation is then the 
average of the values computed in the loop. This approach can be 
computationally expensive, but does not waste too much data.

 The simplest way to use cross-validation is to call the cross_val_score
helper function on the estimator and the dataset.

 Ron Kohavi has shown with practical data that 10-fold cross-validation is 
the best compromise between bias and variance in most cases [1].

10-fold crossvalidation

[1] R. Kohavi et al., A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, International Joint Conference on 
Artificial Intelligence (IJCAI), 14(12), Seiten 1137–1145, 1995).
[2] https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter

from sklearn.model_selection import cross_val_score
from sklearn import metrics

clf = svm.SVC(kernel='linear', C=1)
scores = cross_val_score(clf, iris.data, iris.target,

scoring= f1_macro', cv=5)
scores array([0.96..., 1. ..., 0.96..., 0.96..., 1. ])

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
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Machine
Learning

Leave-One out for very small data volumes

 The so-called Leave-One-Out cross validation (LOO) is a special 
case of k-fold cross validation. 
 In LOO, the number of subsets is equal to the number of 

training data sets (k=n).
 Only one training object is used for testing in each run. 
 This approach is recommended if you are dealing with very 

small amounts of data.

Leave-One-Out-crossvalidation
(LOO)
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Machine
Learning

stratified k-fold cv for unequal classes

 in cases where classes are unevenly distributed, stratified k-fold 
cross-validation reduces bias and variance of the estimation 
 In stratified cross-validation, care is taken to ensure that the classes 

are distributed approximately equally in the subsets. 
 This ensures that the individual subsets are representative of the class 

distribution in the training data set. 
 This can be illustrated with the StratifiedKFold generator from 
scikit-learn:

stratified k-fold cv
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Machine
Learning

General methodology
5 Steps

sklearn.model_selection.train_test_split
1. Step: Split Data in Training and Test

grid = GridSearchCV(pipe_knn, param_grid, cv=10)
sklearn.model_selection.cross_val_score

2. Step: Hyperparameter Tuning (GridSearch, CV, outer loop)
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Machine
Learning

5 Steps

4. Step: Performance Evaluation on Test Data

3. Step: Selection of the optimum parameter

grid.fit(X, y);
grid.best_params_

5. Step: Deployment
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Machine
Learning

Single parameter tuning using a validation curve

Validation curve

from sklearn.model_selection import validation_curve

degrees = np.arange(1, 14)
model = make_pipeline(PolynomialFeatures(), LinearRegression())
# The parameter to vary is the "degrees" on the pipeline step # 
"polynomialfeatures"

train_scores, validation_scores =
validation_curve( model, x[:, np.newaxis], y,
param_name='polynomialfeatures__degree',
param_range=degrees)

 Determine training and test scores for varying parameter values.
 Compute scores for an estimator with different values of a specified 

parameter. This is similar to grid search but with one single parameter. 
However, this will also compute training scores and is merely a utility for 
plotting the results.
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Machine
Learning

In our example (live)

Validation curve

 hyper parameter: order of the polynomial



© Christoph Würsch | Institute ICE             ML06- Crossvalidation and Learning Curves Seite 33

Machine
Learning

Scoring Functions

Scoring Functions

 In scikit-learn:

scoringFunctions= ['accuracy', 'adjusted_mutual_info_score',
'adjusted_rand_score', 'average_precision', 'completeness_score',
'explained_variance', 'f1', 'f1_macro', 'f1_micro', 'f1_samples',
'f1_weighted', 'fowlkes_mallows_score', 'homogeneity_score',
'mutual_info_score', 'neg_log_loss', 'neg_mean_absolute_error',
'neg_mean_squared_error', 'neg_mean_squared_log_error',
'neg_median_absolute_error', 'normalized_mutual_info_score',
'precision', 'precision_macro', 'precision_micro',
'precision_samples', 'precision_weighted', 'r2', 'recall',
'recall_macro', 'recall_micro', 'recall_samples',
'recall_weighted', 'roc_auc', 'v_measure_score']

See also: https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
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Machine
Learning

A cross-validated grid search consists of:

 an estimator (regressor or classifier such as sklearn.svm.SVC());
 a parameter space;
 a method for searching or sampling candidates;
 a cross-validation scheme; and
 a score function.

GridSearch

from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
iris = datasets.load_iris() 
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} 
svc = svm.SVC(gamma="scale") 
clf = GridSearchCV(svc, parameters, cv=5) 
clf.fit(iris.data, iris.target) 
sorted(clf.cv_results_.keys()) 
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Machine
Learning

2. Learning Curves
Checking the Bias-Variance-Tradeoff

 Plot Training and Test Error as function
of data size
 The following situations occur:

Learning Curves
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Machine
Learning

Diagnosing bias-variance regardless of 𝝀𝝀
Example

• Fitting a quadratic regression function to data: ℎ 𝑥𝑥, 𝜃𝜃 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥 + 𝜃𝜃2𝑥𝑥2

Building the learning curve

• Plot training and test (CV) errors vs. training set size 𝑁𝑁𝑁
• Vary 𝑁𝑁′ = 1. .𝑁𝑁 (test/validation set stays full size)

Learning Curves
er

ro
r

𝑵𝑵′

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 :
training error

𝐸𝐸𝐶𝐶𝐶𝐶 𝜃𝜃 :
CV / test set error

Mind: neither the same as a plot of error/loss per 
training step in e.g. NN; nor like last slide’s plot.
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Machine
Learning

Learning curves with high bias
I.e., systematic error, underfit

High bias
• Getting more training data will not (by itself) help much

• Learning curve is characterized by high training and test errors:
 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ 𝐸𝐸𝐶𝐶𝐶𝐶 is high even for large amounts of data

High Bias - underfit

Bias example: If the model is 
linear, a quadratic function for 

example can not be learned 
even with more data.

er
ro

r

𝑵𝑵′

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 :
training error

𝐸𝐸𝐶𝐶𝐶𝐶 𝜃𝜃 :
CV / test set error

large (what is “large”? 
 problem dependent)

small
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Machine
Learning

Learning curves with high variance
I.e., instability, overfit

High variance
• Getting more training data is likely to help

• Learning curve is characterized by gap between the two errors:
 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≪ 𝐸𝐸𝐶𝐶𝐶𝐶 even for the full training set

High Variance - overfit

Variance example: A high 
variance model like e.g. a 
polynomial of degree 𝑑𝑑 =

100 profits from more data 
(or regularization).

er
ro

r

𝑵𝑵′

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 :
training error

𝐸𝐸𝐶𝐶𝐶𝐶 𝜃𝜃 :
CV / test set error

gap
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Machine
Learning

Debugging a learning algorithm – revisited

Suppose you are using some algorithm on a given training set
• However, it makes unacceptably large errors in its predictions on unseen data

 What should be tried next? 
 Get more training examples

 fixes high variance/overfit

• Try smaller sets of features
 fixes high variance/overfit

• Try getting additional features
 fixes high bias/underfit

• Try adding polynomial features 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥12, 𝑥𝑥22, …
 fixes high bias/underfit

• Try decreasing 𝝀𝝀 (i.e., loosing regularization)
 fixes high bias/underfit

• Try increasing 𝝀𝝀 (i.e., intensifying regularization)
 fixes high variance/overfit

Best Practice

Put also on the list: Building 
ensembles. 

 fixes high variance, utilizes 
limited data best.



© Christoph Würsch | Institute ICE             ML06- Crossvalidation and Learning Curves Seite 41

Machine
Learning

Learning Curves

Checking the Bias-Variance-Tradeoff
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Machine
Learning

Bias-Variance-Decomposition

 We can write the relationship between predictor variables X and the 
response Y as variables:

 Then we can write the expected value of the quadratic error as :

 After some transformations one obtains:

Bias-Variance-Decomposition

irreduzierbarer
Fehler
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Machine
Learning

3.Regularization
Parametrically Controlling the 
Model Complexity

 Tradeoff:
 Increase bias
 Decrease variance

Controlling Model Complexity
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Machine
Learning

Basic Idea of Regularization
 How should we define R(θ)?
 How do we determine 𝜆𝜆?

Idea

Fit the Data
Penalize

Complex Models

Regularization 
Parameter
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Machine
Learning

The Regularization Function R(θ)

Goal: Penalize model complexity
Recall earlier:
 More features 

overfitting …
 How can we control 

overfitting through θ
 Proposal: 

set weights = 0
to remove features

Penalize Complexity
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Machine
Learning

Common Regularization Functions
 Distributes weight across related features (robust)

 Analytic solution (easy to compute)

 Does not encourage sparsity 
small but non-zero weights.

Ridge (L2) and Lasso (L1)

Ridge Regression
(L2-Reg)

LASSO
(L1-Reg)

 Encourages sparsity by setting 
weights = 0
 Used to select informative 

features
 Does not have an analytic solution 

 numerical methods
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Machine
Learning

Regularization and Norm Balls

 Constrained Optimization:

Norm Balls

𝜃𝜃1

𝜃𝜃2

L2 Norm (Ridge)

Weight 
sharing

𝜃𝜃1

𝜃𝜃2

L1 Norm (LASSO)

Sparsity
inducing

Snaps to 
corners

𝜃𝜃1

𝜃𝜃2

L1 + L2 Norm
(Elastic Net)

Compromise…
Two parameters …

Snaps to 
corners
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Machine
Learning

Difference between Lasso und Ridge-Regression

Lasso vs. Ridge
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Machine
Learning

Reduction of the model complexity

 Increasing the complexity of a model usually increases its 
variance and lowers its bias. 
 Conversely, a lower complexity of the model increases its bias 

and lowers its variance. Therefore, this is called equilibrium.
 Regularizing the model (restricting it) is one way to avoid 

overfitting: 
 The less freedom the model has, the more difficult it becomes 

to overfit the data. For example, a polynomial model can easily 
be regularized by reducing the degree of the polynomial.

Regularization
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Machine
Learning

Which order of the polynom?

Under- and Overfitting

plot_bias_variance.ipynb
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Machine
Learning

Ridge – Lasso and Elastic Net

 In a linear model, regularization is usually implemented in the 
form of constraints on the weights of the model. 

We will now consider three different types of constraints: 
a) Ridge regression (L2 regularization, Tikhonov)
b) Lasso regression (L1 regularization)
c) Elastic Net (combination of a and b)

Regularization of linear models
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Machine
Learning

 Ridge-Regression: regularization using Euklidian norm (L2)

 Lasso-Regression: regularization using L1 norm

Minimization of the loss function with a penalty

Loss Function

𝜆𝜆: Regularization
Parameter (Hyper-
parameter)
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Machine
Learning

 By assigning larger values to the hyper parameter λ, we 
increase the regularization strength and reduce the weights of 
our model.
 The axis segment term 𝜃𝜃0 is not regularized.
 LASSO is an approach that can lead to sparse models.  

Depending on the regularization strength, certain weights can 
become zero, which means that LASSO can also function as a 
monitored feature selection procedure.
 The regularization strength (parameter λ) is freely selectable 

and must be optimized, for example, by k-fold cross validation.

regression strength
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Idea of the gradient descent

Gradient Descent

𝜂𝜂: Learning Rate

Gradient descent
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Linear Regression
 In the case of linear regression, the gradient can be calculated 

analytically:

Gradient of the MSE
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Summary 
• Take a low bias algorithm and feed it tons of data (ensures low 

variance)  small test error

• Try simpler algorithms first (e.g., naïve Bayes before logistic 
regression, kNN before SVM); try different algorithms.

• Regularization combats overfitting by penalizing (but still 
allowing) high flexibility

• Learning curves (𝐸𝐸train and 𝐸𝐸CV vs. increasing 𝑁𝑁) help 
diagnosing problems in terms of bias and variance decide 
what to do next

• If more data is needed: Can be manually labeled, artificially 
created (data augmentation) or bought

• Assess covariate shift through 2 distinct development sets: one 
resembling training data, one resembling real data

Take this home
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Recipe for Machine Learning

Nuts and Bolts of ML

Source: Andrew Ng, Nuts and Bolts of Building Applications using Deep Learning 
https://nips.cc/Conferences/2016/Schedule?showEvent=6203

https://nips.cc/Conferences/2016/Schedule?showEvent=6203


© Christoph Würsch | Institute ICE             ML06- Crossvalidation and Learning Curves Seite 58

Further reading (can be found on Moodle) 
Author Title Year
Domingos A Few Useful Things to Know about Machine Learning

Learning = Representation + Evaluation + Optimization; It's Generalization that Counts; Data Alone is not Enough; Overfitting has many Faces; Intuition 
Fails in High Dimensions; Theoretical Guarantees are not what They Seem; Feature Engineering is the Key; More Data Beats Clever Algorithm; Learn Many 
Models, not just One; Simplicity does not Imply Accuracy; Representable does not Imply Learnable; Correlation does not Imply Causation

2012

Wu et al. Top 10 algorithms in data mining
C4.5; k-Means; SVM; Apriori; EM; PageRank; AdaBoost; kNN; Naive Bayes; CART

2008

Langford and 
Piatetsky-Shapiro

11 Clever Methods of Overfitting and how to avoid them
Traditional overfitting; Parameter tweak overfitting; Brittle measure; Bad statistics; Choice of measure; Incomplete prediction; Human-loop overfitting; 
Data set selection; Reprobleming; Old datasets; Overfitting by review

2015

Kotsiantis et al. Data Preprocessing for Supervised Leaning
Instance Selection & Outliers Detection; Missing Feature Values; Discretization; Data Normalization; Feature Selection; Feature Construction

2006

Chu Machine Learning Done Wrong
Take default loss function for granted; Use plain linear models for non-linear interaction; Forget about outliers; Use high variance model when 𝑛𝑛 << 𝑝𝑝; 
L1/L2/… regularization without standardization; Use linear models without considering multi-collinear predictors; Interpreting absolute value of 
coefficients from linear or logistic regression as feature importance

2015

Hinman The Do's and Don'ts of Data Mining
Do: plan for data to be messy; create a clearly-defined & measurable objective for every project; ask questions; simplify the solution; cross-check data 
coming out of the ETL process; use more than one technique/algorithm; be informed; 
Don’t: ever (!) underestimate the power of good data preparation; use the default model accuracy metric; forget to document all modeling steps and 
underlying data; overfit; just collect a pile of data and “toss it into the big data mining engine”; wrongly think “it’s all about the algorithms“; 
underestimate the power of a simpler-to-understand solution that is slightly less accurate; blindly trust assumptions made to satisfy frequency statistics, 
as well as p-values and AIC

2014

Raschka What is wrong when my neural network's error increases?
Debug using: Gradient checking, feature scaling and learning rate adaptation (we would add: check for proper weight initialization in 
conjunction with scaling [see batchnorm and http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization] 
and self-adapting training procedures like ADAM [see http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf, and 
for their problems: Reddi, Kale & Kumar “On the Convergence of Adam and Beyond” @ ICLR’2018])

2016

Zinkevich Rules of Machine Learning: Best Practices for ML Engineering
Google's best practices in machine learning: It presents a style for machine learning, similar to the Google C++ Style Guide and other 
popular guides to practical programming.

2018

http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
http://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf
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Appendix
 Proof of the Bias-Variance Decomposition
 Gradient Descent
 Batch Gradient Descent
 Importance of Scaling
 Exact Solution for Ridge Regression
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Proof of the Bias-Variance-Decomposition
 Expected value of the square of a random variable X:

 With this:

Proof
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convergence: local minima and saddle points

 MSE as cost function of a linear regression model is a convex function
 no local minima, only a global minimum.
 Derivation is also a continuous function with a slope that never changes abruptly (Lipschitz 

continuous).

 With the gradient method you can approach the global minimum arbitrarily 
close

Gradient Descent
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Batch gradient method in Python

 Batch gradient method: This method uses the entire stack of 
training data for each step and is therefore noticeably slow for 
very large training data sets.
 The gradient method scales well with the number of features; 

training a linear regression model with hundreds of thousands 
of features is much faster with the gradient method than with 
the normal equation.

Batch gradient

eta = 0.1 # Learning Rate
n_iterations = 1000
m = 100
theta = np.random.randn(2,1) # random initialization
for iteration in range(n_iterations):

gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
theta = theta - eta * gradients
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important: scale the data

 Make sure that all characteristics are similarly scaled (e.g. using 
the StandardScaler class in Scikit-Learn).
 otherwise it will take significantly longer for the algorithm to 

converge.

StandardScaler
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Exact Solutions
 Exact solution for the Ridge regression:

 There’s no exact solution for Lasso or elastic net. An 
optimization algorithm (such as gradient descent) has to be
uesed. 

Ridge Regression



© Christoph Würsch | Institute ICE             ML06- Crossvalidation and Learning Curves Seite 65

Machine
Learning

BIC and AIC
 Some models can offer an information-theoretic closed-form 

formula of the optimal estimate of the regularization parameter 
by computing a single regularization path (instead of several 
when using cross-validation).
 Here is the list of models benefiting from the Akaike

Information Criterion (AIC) or the Bayesian Information 
Criterion (BIC) for automated model selection:

linear_model.LassoLarsIC([criterion, …]) Lasso model fit with Lars using BIC or AIC for 
model selection

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC
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train-test data mismatch

 The covariate shift is the change in the distribution of training data sets and 
the distribution of test data sets. The functional relationship is retained, but 
not, for example, the mean value and covariance.

 Normally one would expect them to come from the same multivariate distribution (stationary), but that 
almost never happens. 

 Latent variables: We will never be able to observe all the factors that influence the distribution of a 
population. Some of them are latent (hidden, i.e. not observable per se).  When this latent variable changes, 
the conditional distribution of observed data changes.

 Therefore, training data must be constantly updated or rebalanced with the 
latest test sets.

 Covariate shift methods reweight instances in the training data so that the 
distribution of training instances matches more closely with the distribution 
of instances in the predicted set. This is achieved by giving more weight to an 
instance in the training set that is similar to an instance in the forecast set 
during model building.

Covariate shift methods
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weak extrapolation
 Test data and training data have the same functional form, but a different 

mean and variance.
 The test data lies outside (the convex envelope) of the training dataset
 Extrapolation, prediction outside the training dataset is only conditionally 

possible

Covariate shift
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Overview: Python for data analysis

Your Swiss Army Knife
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