
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Machine Learning

V05: Ensemble Methods

Meta learning

Ensembles in practice

AdaBoost

Based on material from

Todd Holloway, Indiana University

Igor Labutov, Cornell University

Zhuowen Tu, University of California Los Angeles

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

2

Educational objectives

• Know when ensembles should work in practice

• Present arguments how & why ensembles work in practice

• Know and apply the AdaBoost algorithm to problems of

classification and feature selection

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

1. META LEARNING

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

4

Ensembles are meta learning algorithms
Learning to combine learners

Ensembles in a nutshell
• Goal: Combining multiple complementary classifiers to increase performance

• Idea: Build different “experts”, and let them vote

Pros & cons
 Very effective in practice

 Good theoretical guarantees

 Easy to implement, not too much parameter tuning

 The result is not so transparent (black box)

 Not a compact representation

Formal problem description
• Given 𝑇 binary classification hypotheses (ℎ1,…,ℎ𝑇), find a combined classifier with better

performance of the form

ℎ 𝑥 = 𝑠𝑔𝑛

𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

same or different ℋ

individual weightFor regression, use

average instead

Not to be confused with “learning to learn”, which also sometimes go by “meta

learning”: http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/ & appendix

http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

Why do they work? I
Intuitive thoughts

Intuition
• Utility of combining diverse, independent opinions in human decision-making

E.g., stock portfolio diversity

• Identifying single best model (i.e., proper level of model complexity) is hard
Example of Ockham’s 2nd razor (“simplicity is always good”) being “blunt” see [Domingos, 1998] and V03

Example of possible error reduction
• Suppose there are 25 binary base classifiers, each classifier has error rate ℇ = 0.3
• Assume independence among classifiers (i.e., classifiers are complementary)

• Probability that the final ensemble classifier makes a wrong prediction:

𝑝 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑐𝑜𝑚𝑚𝑖𝑡𝑠 𝑒𝑟𝑟𝑜𝑟 =

𝑟=13

25

25
𝑟

∙ 𝜀𝑟 ∙ 1 − 𝜀 25−𝑟 ≈ 0.06

 That is: combining 25 completely independent classifiers with 70% accuracy simply by

majority vote yields a 94% accurate classifier! (see appendix for derivation)

Complete independence

is often unrealistic!

prob. that r out of 25 classifiers are wrong (binomial distribution)

prob. that > 50% ensemble members are wrong (assuming independence)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

Why do they work? II
Three fundamental reasons why they may work better

Statistical
• Given finite amount of data, many hypothesis typically appear equally good

• Averaging may be a better approximation to the true 𝑓

Computational
• Search for ℎ is heuristic due to interesting ℋ’s being huge/infinite

• Strategy to avoid local minima:

repeat with random restarts, construct an ensemble

Representational
• The desired target function may not be realizable using individual

classifiers from ℋ
• It may be approximated by ensemble averaging

We cannot know the best so we average

We may not find the best so we average

We cannot find the best so we average

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Why do they work? III
In terms of bias and variance (see also V06)

Assume a regression task
• 𝐸𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒

• Bias problem:

E.g., 𝓗 used by particular learning method doesn’t include sufficient ℎ’s (near true 𝑓)

• Variance problem:

E.g., 𝓗 is too “expressive” for the training data selected ℎ may not generalize well

Example: decision trees

• Small trees have high bias (i.e., too restricted ℋ)

• Large trees have high variance
(i.e., very unstable decisions in the leaves)

Bias & variance in Ensembles
• Bias remains equal w.r.t. the base learners

• Variance is reduced with each added member

distance from true 𝑓 variance in predictions

independent of ℎ (i.e.,

the Bayes error)

Attention: the bias-variance trade-off for

classification has a very different

(unintuitive) form see appendix

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

Example: Bagging
Constructing for Diversity

Bootstrap Aggregating [Breiman, 1996]

• Almost always improves results if base learner is unstable (i.e., high variance)

• Why? 𝑏𝑖𝑎𝑠 ℎ 𝑥 =
1

𝑇
σ𝑡=1
𝑇 𝑏𝑖𝑎𝑠 ℎ𝑡 𝑥 , 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ℎ 𝑥 ≈

1

𝑇
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ℎ𝑡 𝑥

 usually, the more ensemble members, the better

Algorithm
1. for 𝒕: = 𝟏. . 𝑻
2. 𝑿𝒕 ≔ sample i.i.d. from 𝑿 with replacement

3. 𝒉𝒕 ≔ train any algorithm on 𝑿𝒕

4. Return 𝒉 ≔ 𝒔𝒈𝒏 σ𝒕=𝟏
𝑻 𝟏 ∙ 𝒉𝒕(𝒙)

#(majority vote; for regression use average instead)

 The process is remarkably simple (also to implement)

 See appendix for Breiman’s extension into Random Forests®

Further Reading
• [Breiman, 1996]: «Bagging Predictors», Machine Learning, 24, 123-140, 1996

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

9

2. ENSEMBLES IN PRACTICE

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

The Netflix Prize of 2006–2009
Ca. 3 years of challenging the global data science community

Supervised learning task
• Goal: Construct a classifier that, given a user and an unrated movie, correctly classifies that movie as

either 1, 2, 3, 4, or 5 stars (i.e., predict rating by user)

• Input: Training data is set of users and ratings (1,2,3,4,5 stars) for movies

• Incentive: $1’000’000 for a 10% improvement over Netflix’s current movie recommender (𝐸𝑀𝑆𝐸=0.9514)

 See http://www.netflixprize.com

http://www.netflixprize.com/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

Evolving results I
Low hanging fruits and slowed down progress

• After 3 weeks, at least 40 teams had

improved the Netflix classifier

• Top teams showed about 6%

improvement

• However, improvement slowed:

from http://www.research.att.com/~volinsky/netflix/

Mind the 1

year gap!

http://www.research.att.com/~volinsky/netflix/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Evolving results II
A leader board full of ensembles

Intermediate results
• Top team has posted a 8.5%

improvement

• Ensemble methods are the best

performers…

• …as we will see on the next slides

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

Quote
• “Thanks to Paul Harrison's collaboration,

a simple mix of our solutions improved

our result from 6.31 to 6.75”

Details: Rookies

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

Details: Arek Paterek

Quote
• “My approach is to combine the results

of many methods (also two-way

interactions between them) using linear

regression on the test set. The best

method in my ensemble is regularized

SVD with biases, post processed with

kernel ridge regression”

[http://rainbow.mimuw.edu.pl/~ap/ap_kdd.pdf]

http://rainbow.mimuw.edu.pl/~ap/ap_kdd.pdf

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

Details: University of Toronto

Quote
• “When the predictions of multiple RBM

models and multiple SVD models are

linearly combined, we achieve an error

rate that is well over 6% better than the

score of Netflix’s own system.”

[http://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pdf]

http://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pdf

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

Details: Gravity

Quote
•

[home.mit.bme.hu/~gtakacs/download/gravity.pdf]

http://home.mit.bme.hu/~gtakacs/download/gravity.pdf

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

Details: When Gravity and Dinosaurs Unite

Quote
• “Our common team blends the result of

team Gravity and team Dinosaur Planet.”

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

Details: BellKor / KorBell

Quote
• “Our final solution (RMSE=0.8712)

consists of blending 107 individual

results.“

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

Evolving results III
Final results

The winner was an ensemble of ensembles (including BellKor)

• Gradient boosted decision trees [http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf]

 Hint: Ensembles still win competitions, but Deep Learning has better performance for

unstructured data (see later and https://www.import.io/post/how-to-win-a-kaggle-competition/)

 The winner model was never used in Netflix’ practice due to its complexity

E.g. on Kaggle,

pattern recognition

benchmarks like

ImageNet, etc.

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.import.io/post/how-to-win-a-kaggle-competition/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

XGBoost: A scalable tree boosting system
[Chen & Guestrin, 2016] using gradient boosting, see appendix

A skillfully engineered, highly optimized implementation
• Used by 17/29 winning teams on Kaggle 2015

• Open source (Python, R, Spark, …): https://github.com/dmlc/xgboost

• Scalable: 10 × faster than usual implementations, scales to ~109 training points

• Massive use of parallelization/distribution (e.g. on Hadoop/Spark, but also on desktop)

Algorithmic novelties
• Distributed approximate best split finding („weighted quantile sketch“ using quantile statistics)

• Exploit sparsity (induced by missing values/one-hot encoding via default directions for branching)

Parallelization Cache-aware access (for gradient statistics)

• Efficient out-of-core computation (i.e., computation on data not fitting into main memory)

General tricks for tree boosting
• Use aggressive sub-sampling (e.g., selecting only 50% of the data)

• Using column sub-sampling prevents over-fitting even more so than row sub-sampling

Both types of novelties purely increase the

computational performance, not learning in general

https://github.com/dmlc/xgboost

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

3. ADABOOST

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

Boosting

General idea
• Boost the performance of weak learners (error slightly >chance) iteratively

• Make currently misclassified examples more important, then combine hypotheses
 Each stage (additively) corrects shortcomings of previous stage by reweighting, then majority vote

• Origins in computer science: [Kearns & Valiant, 1988] (as opposed to Bagging: statistics)

Adaptive Boosting algorithm [Freund & Schapire, 1997]

• Weak learner: decision stump (=decision tree of height 1; but generalizable to others)

 Important: weak learners have skill but remain weak (to not lose the ensemble effect)

initialize weights: 𝑤𝑖 ≔
1

𝑁
#each sample gets same weight

for 𝑡: = 1. . 𝑇
ℎ𝑡 ≔ train decision stump on the 𝑥𝑖, weighted by the 𝑤𝑖

𝜀𝑡 ≔
σ𝑖=1
𝑁 𝑤𝑖∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖

σ𝑖=1
𝑁 𝑤𝑖

#compute error; 𝐼() is the identity function

𝛼𝑡 ≔ log
1−𝜀𝑡

𝜀𝑡
#compute influence of weak learner

𝑤𝑖 ≔ 𝑤𝑖 ∙ 𝑒
𝛼𝑡∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖 #increase weight by exp(influence) in case of error

return ℎ ≔ 𝑠𝑔𝑛 σ𝑡=1
𝑇 𝛼𝑡 ∙ ℎ𝑡(𝑥) #majority vote

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

Source
• [Elder, 2007]: «From Trees to Forests and Rule Sets –

A Unified Overview of Ensemble Methods»

Example run

3 iterations

20 iterations

AdaBoost’s classifications

(colors) and weights (size) after

1 iteration still looks like a

single decision tree with

rectangular decision boundary

Goal

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

24

AdaBoost in practice

Pros & cons
 Very little code

 Reduces bias & variance

 Still learns when others overfit margin optimization

 Sensitive to noise and outliers

Implementation choices
• A good start for implementation is the variant “AdaBoost.M1” from [Frank & Witten, 2005],

combined with ideas from “Real AdaBoost.MH” of [Schapire & Singer, 1999]

• For cost-sensitive binary classification, use “AdaC2” from [Sun et al., 2007]

Further reading
• [Freund & Schapire, 1997]: «A decision-theoretic generalization of on-line learning and an application to boosting»

• [Sun et al., 2007]: «Cost-Sensitive Boosting for Classification of Imbalanced Data»

• [Frank & Witten, 2005]: «Data Mining - Practical Machine Learning Tools and Techniques», 2nd Ed.

• [Schapire & Singer, 1999]: «Improved Boosting Algorithms Using Confidence-rated Predictions»

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

Example application: Real-time face detection
AdaBoost as a feature selector

Viola & Jones face detector
• The first method for object detection in

images with human-like performance
(today outperformed by deep learning approaches)

• AdaBoost applied to >160’000 features

• First 𝑘 selected features of decision stumps

are deemed meaningful

• Trained on very unbalanced data
(faces ⟷ non-faces)

Further reading see appendix
• [Viola & Jones, 2001]: «Rapid object detection using a boosted

cascade of simple features»

• [Viola & Jones, 2003]: «Robust Real-Time Face Detection»
Ju et al., “Outline of face detection using AdaBoost algorithm”, Journal

of NeuroEngineering and Rehabilitation, 6:33, 2009

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Review

• Ensembles can be seen as meta learners (operating on learners,

not data): learning to make the best of many base learners

• Building ensembles can be as easy as Bagging: train any 𝑻
classifiers on different bootstrap samples, then take a

(classification:) majority vote or (regression:) average

• Ensembles work because they use averaging in a clever way:

reduce variance, reach 𝒉 ∉ 𝓗, overcome small data sets

• Ensembles have been very successful in the past; it is good advice

to always build an ensemble of complementary models as the

final classifier

• AdaBoost is very immune to overfitting and can be used for

feature selection (see appendix)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

27

P04.3: Building ensembles

Work through exercise P04.3

• Goal is to build a final classifier for SPAM classification

• Which one of different algorithms performs best?

• Is a combination beneficial on this task?

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

28

• More on ensembles and error analysis

• Random Forest® and gradient boosting

• The Viola-Jones face detector

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

29

Learning to learn

The Auto-sklearn pipeline approach
• 2 times winner of AutoML challenge

(2015/16 & 2017/18)

• Utilizes good initialization by starting

from a well performing model on a

similar dataset seen as seen during meta

learning

• Uses Bayesian optimization of pipeline and

hyperparameters to tweak this model

• Finally builds an ensemble of best candidates

Source: https://www.automl.org/wp-content/uploads/2018/07/autosklearn.png, https://www.kdnuggets.com/wp-content/uploads/auto-sklearn-overview.jpg

See also: Tuggener et al., “Automated Machine Learning in Practice: State of the Art and Recent Results”, Proc. 6th Swiss Conference on Data Science (SDS), 2019

https://www.automl.org/wp-content/uploads/2018/07/autosklearn.png
https://www.kdnuggets.com/wp-content/uploads/auto-sklearn-overview.jpg

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

30

Derivation: Ensemble error of 𝒕 independent

binary classifiers

• Suppose there are 𝑡 independent base classifiers, each classifier has error rate ℇ

• They form an ensemble via majority voting:
𝑡

2
base classifiers have to be correct for the ensemble to be correct

• Let 𝐸𝑟 be the event that 𝑟 out of 𝑡 base classifiers vote incorrectly:

Its probability follows a binomial distribution 𝑝 𝐸𝑟 =
𝑡
𝑟

∙ ℇ𝑟 ∙ 1 − ℇ 𝑡−𝑟

• Let 𝐸 be the event that the whole ensemble is wrong (i.e., at least
𝑡

2
incorrect votes):

Its probability is given by 𝑝 𝐸 = σ
𝑟=

𝑡

2

𝑡 𝑝 𝐸𝑟

Reasoning
• 𝐸 occurs if 𝑡

2
base classifiers are wrong, or if

𝑡

2
+ 1 base classifiers are wrong, or if … 𝑡 base classifiers are wrong

• Assuming independence among these events, their probabilities are added

𝑡 being an uneven integer

The binomial coefficient
𝑛
𝑘

=
𝑛!

𝑘! 𝑛−𝑘 !
gives the

number of subsets of size k

of a superset of size n

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

31

Discussion: Bias-variance trade-off for 0/1 loss
Going from regression to classification

Definitions: Bias and variance of a learner w.r.t a single instance 𝑥 [Domingos, 2000]

• 𝑏𝑖𝑎𝑠 ∶= deviation of best possible prediction from main prediction

• 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ∶= average deviation (over all training sets) from actual to main prediction

Regression
• The bias-variance trade-off has originally been defined for regression problems

• Typical loss function is the mean squared error (MSE)
• 𝐿𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒 (see V03)

Classification
• Usually binary classification is studied in depth first result may then be extended to multi-class

• Binary classification uses classification error as its typical loss function (a.k.a. 0/1 loss)

• The main prediction is the most frequent prediction; we subsequently ignore the additive noise term

• 𝐿0/1 = 𝑏𝑖𝑎𝑠 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 in case of 𝑏𝑖𝑎𝑠 = 0 (i.e., classifier is correct > 50% of the time)

• 𝐿0/1 = 𝑏𝑖𝑎𝑠 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 in case of 𝑏𝑖𝑎𝑠 = 1 (i.e., classifier’s accuracy is ≤ 50%)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

32

Discussion: Bias-variance trade-off for 0/1 loss
Counter-intuitive implications

Consequences for classification
• Bias and variance have a complicated, multiplicative interaction [Friedman, 1997]

(not directly visible in the form shown on the last slide due to the 2 cases)

• Good classifiers become better with less variance;

bad classifiers become better with more variance!

• This explains why highly unstable classifiers (e.g., decision trees; kNN in high

dimensions; naïve Bayes) work well in practice

• Casting classification as a regression problem by estimating class probabilities instead

often doesn’t pay off:

• Good regression results don’t imply good classification performance

• Reason: Different behavior of errors

Further reading
• [Domingos, 2000]: «A Unified Bias-Variance Decomposition for Zero-One and

Squared Loss»

• [Friedman,1997]: «On Bias, Variance, 0/1-Loss, and the Curse of Dimensionality»

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

33

Random Forest®
A brief description

Build a majority-voting ensemble of decision trees; for each tree,
• Choose a stratified training set of 𝑛 out of 𝑁 instances by sampling with replacement

• At every level,
• choose a random feature set (with replacement) of 𝑚 out the 𝑝 attributes

• choose the best split among those attributes

• No pruning of the branches takes place

Advantages
• Fast training, parallelizable application

• High independence of base classifiers nearly no overfitting

• Few hyper parameters

• Applicable to large quantities of 𝑁, 𝑝 and #classes

 Very good out-of-the-box method

Further reading
• [Breiman 2001]: «Random Forests». Machine Learning 45 (1), 5-32

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

34

From AdaBoost to gradient boosting

Recall: In AdaBoost, ”shortcomings" are identified by high-weight data points

A brief history of modern boosting (selective, shortened)

1. Invention: AdaBoost, the first successful boosting algorithm

[Freund et al., 1996], [Freund & Schapire, 1997]

2. Translation: Formulation as gradient descent with special loss function (cp. V02)

[Breiman et al., 1998], [Breiman, 1999]

3. Generalization: Gradient boosting in order to handle a variety of loss functions

[Friedman et al., 2000], [Friedman, 2001]

 For a great example of cross-disciplinary fertilization, see

Breiman, “Arcing classifiers (with discussion and a rejoinder by the author)”, 1998

In gradient boosting, “shortcomings" are identified by gradients
• Gradients of what? Why? see next slides

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

35

Intuition for gradient boosting

Setup
• For ease of discussion we change the setting from (binary)

classification to regression (i.e., real-valued labels)

• Results are again applicable to classification
(but not intuitively as straight-forward)

Let’s play a game
• You are given data 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁) and the task to fit model ℎ(𝑥)

 minimize squared loss ℓ 𝑦, ℎ 𝑥 =
1

2
𝑦 − ℎ(𝑥) 2

• Suppose a friend helps by giving you an initial model 𝐹 𝑥 (a regression tree)

 You check his model and find the model is good but not perfect (e.g. 𝐹 𝑥1 = 0.8 while 𝑦1 = 0.9)

• Rule: 𝐹 𝑥 must not be changed in any way, but another model might be added
 i.e. ℎ 𝑥 = 𝐹 𝑥 + ℎ 𝑥

• How to train ℎ 𝑥 ?

𝐹1 𝑥1 + ℎ 𝑥1 = 𝑦1 ℎ 𝑥1 = 𝑦1 − 𝐹 𝑥1
⋮

𝐹 𝑥𝑁 + ℎ 𝑥𝑁 = 𝑦𝑁 ℎ 𝑥𝑁 = 𝑦𝑁 − 𝐹 𝑥𝑁

We want this to be true Equivalently, we can fit the new regression tree ℎ to:

𝑥

𝑦

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

36

Intuition for gradient boosting (contd.)

Simple ensemble solution
• The 𝑦𝑖 − 𝐹 𝑥𝑖 are called residuals

 These are the parts that the initial model 𝐹 cannot do well

 The role of ℎ is to compensate the shortcomings of 𝐹

• If the new model 𝐹 + ℎ is still not satisfactory, we can add another regression tree...

How is this related to gradient descent?
• Gradient Descent: Minimize function a 𝐽 by moving into opposite direction of the gradient

𝜃𝑖
𝑛𝑒𝑤 = 𝜃𝑖

𝑜𝑙𝑑 − 𝛼
𝜕𝐽

𝜕𝜃𝑖
𝑜𝑙𝑑

• Want to minimize loss function: L = σ𝑖=1
𝑁 ℓ 𝑦𝑖 , 𝐹 𝑥𝑖 = σ𝑖=1

𝑁 1

2
𝑦𝑖 − 𝐹 𝑥𝑖

2

 𝐹 𝑥𝑖 are the parameters of 𝐿, so we can take derivatives:

𝜕𝐿

𝜕𝐹 𝑥𝑖
=
𝜕σ𝑖=1

𝑁 ℓ 𝑦𝑖 , 𝐹 𝑥𝑖
𝜕𝐹 𝑥𝑖

=
𝜕ℓ 𝑦𝑖 , 𝐹 𝑥𝑖

𝜕𝐹 𝑥𝑖
= 𝐹 𝑥𝑖 − 𝑦𝑖

• That is: We can interpret residuals as negative gradients

 𝑦𝑖 − 𝐹 𝑥𝑖 = −
𝜕𝐿

𝜕𝐹 𝑥𝑖

w.r.t 𝐽’s parameters 𝜃

i.e., 𝐽 = 𝐿

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

37

Gradient boosting of regression trees

Algorithm
• Gradient boosting for regression

True for ℓ = squared loss
• Residual ⇔ negative gradient

• Fit ℎ𝑖 to residual ⇔ fit ℎ𝑖 to negative gradient

• Update ℎ𝑖 based on residual ⇔ update ℎ𝑖 based on negative gradient

 So we are actually updating our model using gradient descent!

Advantage of gradient descent formulation
• Allows considering other loss functions (e.g. more outlier-robust, domain-specific, …)

 Derive the corresponding algorithms in the same way

Start with an initial model, e.g. 𝐹 =
σ𝑖=1
𝑁 𝑦𝑖

𝑁
always predict mean value)

repeat until convergence

−𝑔 𝑥𝑖 = −
𝜕ℓ 𝑦𝑖,𝐹 𝑥𝑖

𝜕𝐹(𝑥𝑖)

fit regression tree ℎ to −𝑔 𝑥𝑖
𝐹 ≔ 𝐹 + 𝛼ℎ #𝛼 is a tunable learning rate, e.g. = 1

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

38

Extension to (multiclass) classification

Model
• Each class 𝑐 has its own model 𝐹𝑐(𝑥) (binary classification tree, emitting 0/1)

• Use outputs to compute class probabilities: 𝑃𝑐 𝑥 =
𝑒𝐹𝑐(𝑥)

σ𝑖 𝑒
𝐹𝑖(𝑥)

(softmax)

 Final classification = class with highest probability

Loss function per data point
• Turn the label 𝑦𝑖 into a (true) probability distribution 𝑌𝑐(𝑥𝑖)
• Calculate predicted probability distribution 𝑃𝑐 𝑥𝑖

 Based on current models 𝐹𝑐(𝑥𝑖)

• Calculate difference between true and predicted probability distribution
 Use e.g. KL-divergence as loss

Overall objective
• Do gradient descent to make true and predicted distribution as close as possible ∀𝑥𝑖
• We achieve this goal by adjusting our models 𝐹𝑐

Example: Letter (A-Z) classification

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

39

AdaBoost for face detection
A detailed example of a boosted decision stumps application

Challenges
• Slide a window across image and evaluate a face model at every location & scale

 Sliding window detector must evaluate tens of thousands of location/scale combinations

• Faces are rare: 0–10 per image
• For computational efficiency, we should try spending as little time as possible on non-face windows

 A megapixel image has ~106 pixels and a comparable number of candidate face locations

• To avoid having a false positive in every image, the false positive rate has to be less than 𝟏𝟎−𝟔

The Viola-Jones face detector [Viola & Jones, 2001]

• A seminal approach to real-time object detection
Training is slow, but detection is very fast

• Key ideas
• Integral images for fast feature evaluation

• Boosting for feature selection amongst ~105 candidates

• Attentional cascade for fast & accurate rejection of non-face windows

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

40

Rectangular facial features

…and their efficient calculation via the integral image

Pixel-based features for face detection
• Reminiscent of Haar wavelets

• Simple sum of pixel intensities within rectangular regions resemble

typical shading patterns of faces

Integral images (𝑖𝑖)
• Let each pixel be the sum of all pixels left and above

Computing sums of pixels within a rectangle using 𝑖𝑖
• 𝑠𝑢𝑚 = 𝑖𝑖𝐴 − 𝑖𝑖𝐵 − 𝑖𝑖𝐶 + 𝑖𝑖𝐷
• Needs only 3 additions for any size of rectangle (constant time)

D B

C A

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

41

Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle

feature on faces and non-faces.

Resulting weak classifier:

 Continue using AdaBoost

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

42

Training the boosting classifier
Incorporating feature selection

Training set contains face and non-face examples
• 𝟓𝟎𝟎𝟎 faces (frontal, many variations among illumination/pose, rescaled to 24 × 24)

• 𝟑𝟎𝟎 million non-faces (extracted from 9’500 non-face images)

• Faces are normalized (scale, translation)

• Initially, all have equal weights

For each round of boosting:
• Evaluate each rectangle filter on each example, select best threshold

• Select best filter/threshold combination

• Reweight examples

Computational complexity: 𝑂(𝑟𝑜𝑢𝑛𝑑𝑠 × 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

Result
• A 200-feature classifier can yield 95% detection rate and a

false positive rate of 1 in 14084

 Not yet good enough for practice!

False alarm rate of 𝑂(10−5),
but 𝐎(𝟏𝟎−𝟔) needed

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

43

Removing false alarms while retaining high

detection rate

Attentional Cascade
• Start with a simple classifier (2 features)

 Rejecting many of the negative sub-windows while detecting almost all positive sub-windows

• Positive response from the first classifier triggers the evaluation the next classifier, etc.
 Subsequent classifiers get more complex, hence longer runtime but lower false alarm rate

• A negative outcome at any point leads to the immediate rejection of the sub-window

• Training:
• Keep adding features to current stage until its target rates (TP, FP) have been met

• If overall FP is not low enough, then add another stage

• Use false positives from current stage as the negative training examples for the next stage

Detection rate (TP) vs. false alarm rate (FP) for chained classifiers
• Found by multiplying the respective rates of the individual stages

 TP of 𝟎. 𝟗 and FP of ~𝟏𝟎−𝟔 can be achieved with

a 𝟏𝟎-stage cascade: each stage having

- TP of 0.99 (0.9910 ≈ 0.9)

- FP of ~0.3 (0.310 ≈ 6 × 10−6)

Reject sub-window

1 2 3 4 5 6 7 8 38 Face

F F F F F F F F F

T T T T T T T T T

All sub-windows

2 features, reject 50% non-faces, detect 100% faces

10 features, reject 80% non-faces, detect 100% faces

25 features

50 features
6061 features

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

44

Final result of Viola-Jones face detection

After some more engineering…
• Variance normalization of pixel intensities to cope with different lighting

• Merging multiple detections

• Multi-scale detection by scaling the detector (factor of 1.25 yields good resolution)

Lasting effect
• Got applied to more visual detection problems

 facial feature localization, profile faces, male/female image classification, audio fingerprinting, …

• Solved the problem of face detection in real time (e.g. for digicams)

 available in OpenCV (http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html)

• One of the first mind-blowing computer vision applications before deep learning trend

http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

