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Educational objectives

• Know when ensembles should work in practice

• Present arguments how & why ensembles work in practice

• Know and apply the AdaBoost algorithm to problems of 

classification and feature selection
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1. META LEARNING
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Ensembles are meta learning algorithms
Learning to combine learners

Ensembles in a nutshell 
• Goal: Combining multiple complementary classifiers to increase performance

• Idea: Build different “experts”, and let them vote

Pros & cons
 Very effective in practice 

 Good theoretical guarantees 

 Easy to implement, not too much parameter tuning

 The result is not so transparent (black box)

 Not a compact representation

Formal problem description
• Given 𝑇 binary classification hypotheses (ℎ1,…,ℎ𝑇), find a combined classifier with better 

performance of the form

෠ℎ 𝑥 = 𝑠𝑔𝑛 ෍

𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

same or different ℋ

individual weightFor regression, use 

average instead

Not to be confused with “learning to learn”, which also sometimes go by “meta 

learning”: http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/ & appendix

http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
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Why do they work? I
Intuitive thoughts

Intuition
• Utility of combining diverse, independent opinions in human decision-making

E.g., stock portfolio diversity

• Identifying single best model (i.e., proper level of model complexity) is hard
Example of Ockham’s 2nd razor (“simplicity is always good”) being “blunt” see  [Domingos, 1998] and V03

Example of possible error reduction
• Suppose there are 25 binary base classifiers, each classifier has error rate ℇ = 0.3
• Assume independence among classifiers (i.e., classifiers are complementary)

• Probability that the final ensemble classifier makes a wrong prediction: 

𝑝 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑐𝑜𝑚𝑚𝑖𝑡𝑠 𝑒𝑟𝑟𝑜𝑟 = ෍

𝑟=13

25

25
𝑟

∙ 𝜀𝑟 ∙ 1 − 𝜀 25−𝑟 ≈ 0.06

 That is: combining 25 completely independent classifiers with 70% accuracy simply by 

majority vote yields a 94% accurate classifier! ( see appendix for derivation)

Complete independence 

is often unrealistic!

prob. that r out of 25 classifiers are wrong (binomial distribution)

prob. that > 50% ensemble members are wrong (assuming independence)
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Why do they work? II
Three fundamental reasons why they may work better

Statistical
• Given finite amount of data, many hypothesis typically appear equally good

• Averaging may be a better approximation to the true 𝑓

Computational
• Search for ℎ is heuristic due to interesting ℋ’s being huge/infinite

• Strategy to avoid local minima: 

repeat with random restarts, construct an ensemble

Representational
• The desired target function may not be realizable using individual 

classifiers from ℋ
• It may be approximated by ensemble averaging

We cannot know the best  so we average

We may not find the best  so we average

We cannot find the best  so we average
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Why do they work? III
In terms of bias and variance ( see also V06)

Assume a regression task
• 𝐸𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒

• Bias problem: 

E.g., 𝓗 used by particular learning method doesn’t include sufficient ℎ’s (near true 𝑓)

• Variance problem:

E.g., 𝓗 is too “expressive” for the training data  selected ℎ may not generalize well

Example: decision trees

• Small trees have high bias (i.e., too restricted ℋ)

• Large trees have high variance 
(i.e., very unstable decisions in the leaves)

Bias & variance in Ensembles
• Bias remains equal w.r.t. the base learners

• Variance is reduced with each added member

distance from true 𝑓 variance in predictions

independent of ℎ (i.e., 

the Bayes error)

Attention: the bias-variance trade-off for 

classification has a very different 

(unintuitive) form  see appendix
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Example: Bagging
Constructing for Diversity

Bootstrap Aggregating [Breiman, 1996]

• Almost always improves results if base learner is unstable (i.e., high variance)

• Why? 𝑏𝑖𝑎𝑠 ෠ℎ 𝑥 =
1

𝑇
σ𝑡=1
𝑇 𝑏𝑖𝑎𝑠 ℎ𝑡 𝑥 , 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ෠ℎ 𝑥 ≈

1

𝑇
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ℎ𝑡 𝑥

 usually, the more ensemble members, the better

Algorithm
1. for 𝒕: = 𝟏. . 𝑻
2. 𝑿𝒕 ≔ sample i.i.d. from 𝑿 with replacement

3. 𝒉𝒕 ≔ train any algorithm on 𝑿𝒕

4. Return ෡𝒉 ≔ 𝒔𝒈𝒏 σ𝒕=𝟏
𝑻 𝟏 ∙ 𝒉𝒕(𝒙)

#(majority vote; for regression use average instead)

 The process is remarkably simple (also to implement)

 See appendix for Breiman’s extension into Random Forests®

Further Reading
• [Breiman, 1996]: «Bagging Predictors», Machine Learning, 24, 123-140, 1996
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2. ENSEMBLES IN PRACTICE
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The Netflix Prize of 2006–2009
Ca. 3 years of challenging the global data science community

Supervised learning task
• Goal: Construct a classifier that, given a user and an unrated movie, correctly classifies that movie as 

either 1, 2, 3, 4, or 5 stars (i.e., predict rating by user)

• Input: Training data is set of users and ratings (1,2,3,4,5 stars) for movies

• Incentive: $1’000’000 for a 10% improvement over Netflix’s current movie recommender (𝐸𝑀𝑆𝐸=0.9514)

 See http://www.netflixprize.com

http://www.netflixprize.com/
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Evolving results I
Low hanging fruits and slowed down progress

• After 3 weeks, at least 40 teams had 

improved the Netflix classifier

• Top teams showed about 6% 

improvement

• However, improvement slowed:

from http://www.research.att.com/~volinsky/netflix/

Mind the 1 

year gap!

http://www.research.att.com/~volinsky/netflix/
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Evolving results II
A leader board full of ensembles

Intermediate results
• Top team has posted a 8.5% 

improvement

• Ensemble methods are the best

performers…

• …as we will see on the next slides
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Quote
• “Thanks to Paul Harrison's collaboration, 

a simple mix of our solutions improved 

our result from 6.31 to 6.75”

Details: Rookies
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Details: Arek Paterek

Quote
• “My approach is to combine the results 

of many methods (also two-way 

interactions between them) using linear 

regression on the test set. The best 

method in my ensemble is regularized 

SVD with biases, post processed with 

kernel ridge regression”

[http://rainbow.mimuw.edu.pl/~ap/ap_kdd.pdf]

http://rainbow.mimuw.edu.pl/~ap/ap_kdd.pdf
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Details: University of Toronto

Quote
• “When the predictions of multiple RBM 

models and multiple SVD models are 

linearly combined, we achieve an error 

rate that is well over 6% better than the 

score of Netflix’s own system.”

[http://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pdf]

http://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pdf
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Details: Gravity

Quote
•

[home.mit.bme.hu/~gtakacs/download/gravity.pdf]

http://home.mit.bme.hu/~gtakacs/download/gravity.pdf
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Details: When Gravity and Dinosaurs Unite

Quote
• “Our common team blends the result of 

team Gravity and team Dinosaur Planet.”
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Details: BellKor / KorBell

Quote
• “Our final solution (RMSE=0.8712) 

consists of blending 107 individual 

results.“
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Evolving results III 
Final results

The winner was an ensemble of ensembles (including BellKor)

• Gradient boosted decision trees [http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf]

 Hint: Ensembles still win competitions, but Deep Learning has better performance for 

unstructured data ( see later and https://www.import.io/post/how-to-win-a-kaggle-competition/)

 The winner model was never used in Netflix’ practice due to its complexity

E.g. on Kaggle, 

pattern recognition 

benchmarks like 

ImageNet, etc.

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.import.io/post/how-to-win-a-kaggle-competition/
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XGBoost: A scalable tree boosting system
[Chen & Guestrin, 2016]  using gradient boosting, see appendix

A skillfully engineered, highly optimized implementation
• Used by 17/29 winning teams on Kaggle 2015

• Open source (Python, R, Spark, …): https://github.com/dmlc/xgboost

• Scalable: 10 × faster than usual implementations, scales to ~109 training points

• Massive use of parallelization/distribution (e.g. on Hadoop/Spark, but also on desktop)

Algorithmic novelties
• Distributed approximate best split finding („weighted quantile sketch“ using quantile statistics)

• Exploit sparsity (induced by missing values/one-hot encoding  via default directions for branching)

Parallelization Cache-aware access (for gradient statistics)

• Efficient out-of-core computation (i.e., computation on data not fitting into main memory)

General tricks for tree boosting
• Use aggressive sub-sampling (e.g., selecting only 50% of the data)

• Using column sub-sampling prevents over-fitting even more so than row sub-sampling

Both types of novelties purely increase the 

computational performance, not learning in general

https://github.com/dmlc/xgboost
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3. ADABOOST
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Boosting

General idea
• Boost the performance of weak learners (error slightly >chance) iteratively

• Make currently misclassified examples more important, then combine hypotheses
 Each stage (additively) corrects shortcomings of previous stage by reweighting, then majority vote

• Origins in computer science: [Kearns & Valiant, 1988] (as opposed to Bagging: statistics)

Adaptive Boosting algorithm [Freund & Schapire, 1997]

• Weak learner: decision stump (=decision tree of height 1; but generalizable to others)

 Important: weak learners have skill but remain weak (to not lose the ensemble effect)

initialize weights: 𝑤𝑖 ≔
1

𝑁
#each sample gets same weight

for 𝑡: = 1. . 𝑇
ℎ𝑡 ≔ train decision stump on the 𝑥𝑖, weighted by the 𝑤𝑖

𝜀𝑡 ≔
σ𝑖=1
𝑁 𝑤𝑖∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖

σ𝑖=1
𝑁 𝑤𝑖

#compute error; 𝐼() is the identity function

𝛼𝑡 ≔ log
1−𝜀𝑡

𝜀𝑡
#compute influence of weak learner

𝑤𝑖 ≔ 𝑤𝑖 ∙ 𝑒
𝛼𝑡∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖 #increase weight by exp(influence) in case of error

return ෠ℎ ≔ 𝑠𝑔𝑛 σ𝑡=1
𝑇 𝛼𝑡 ∙ ℎ𝑡(𝑥) #majority vote
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Source
• [Elder, 2007]: «From Trees to Forests and Rule Sets –

A Unified Overview of Ensemble Methods»

Example run

3 iterations

20 iterations

AdaBoost’s classifications 

(colors) and weights (size) after 

1 iteration  still looks like a 

single decision tree with 

rectangular decision boundary

Goal
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AdaBoost in practice

Pros & cons
 Very little code

 Reduces bias & variance

 Still learns when others overfit  margin optimization

 Sensitive to noise and outliers

Implementation choices
• A good start for implementation is the variant “AdaBoost.M1” from [Frank & Witten, 2005], 

combined with ideas from “Real AdaBoost.MH” of [Schapire & Singer, 1999]

• For cost-sensitive binary classification, use “AdaC2” from [Sun et al., 2007]

Further reading
• [Freund & Schapire, 1997]: «A decision-theoretic generalization of on-line learning and an application to boosting»

• [Sun et al., 2007]: «Cost-Sensitive Boosting for Classification of Imbalanced Data»

• [Frank & Witten, 2005]: «Data Mining - Practical Machine Learning Tools and Techniques», 2nd Ed.

• [Schapire & Singer, 1999]: «Improved Boosting Algorithms Using Confidence-rated Predictions»



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

25

Example application: Real-time face detection
AdaBoost as a feature selector

Viola & Jones face detector
• The first method for object detection in 

images with human-like performance
(today outperformed by deep learning approaches)

• AdaBoost applied to >160’000 features

• First 𝑘 selected features of decision stumps 

are deemed meaningful

• Trained on very unbalanced data 
(faces ⟷ non-faces)

Further reading see appendix
• [Viola & Jones, 2001]: «Rapid object detection using a boosted 

cascade of simple features»

• [Viola & Jones, 2003]: «Robust Real-Time Face Detection»
Ju et al., “Outline of face detection using AdaBoost algorithm”, Journal 

of NeuroEngineering and Rehabilitation, 6:33, 2009
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Review

• Ensembles can be seen as meta learners (operating on learners, 

not data): learning to make the best of many base learners

• Building ensembles can be as easy as Bagging: train any 𝑻
classifiers on different bootstrap samples, then take a 

(classification:) majority vote or (regression:) average

• Ensembles work because they use averaging in a clever way: 

reduce variance, reach ෡𝒉 ∉ 𝓗, overcome small data sets

• Ensembles have been very successful in the past; it is good advice 

to always build an ensemble of complementary models as the 

final classifier

• AdaBoost is very immune to overfitting and can be used for 

feature selection ( see appendix)
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P04.3: Building ensembles

Work through exercise P04.3

• Goal is to build a final classifier for SPAM classification

• Which one of different algorithms performs best?

• Is a combination beneficial on this task?
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• More on ensembles and error analysis

• Random Forest® and gradient boosting

• The Viola-Jones face detector

APPENDIX
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Learning to learn

The Auto-sklearn pipeline approach
• 2 times winner of AutoML challenge

(2015/16 & 2017/18)

• Utilizes good initialization by starting 

from a well performing model on a 

similar dataset seen as seen during meta 

learning

• Uses Bayesian optimization of pipeline and 

hyperparameters to tweak this model

• Finally builds an ensemble of best candidates

Source: https://www.automl.org/wp-content/uploads/2018/07/autosklearn.png, https://www.kdnuggets.com/wp-content/uploads/auto-sklearn-overview.jpg

See also: Tuggener et al., “Automated Machine Learning in Practice: State of the Art and Recent Results”, Proc. 6th Swiss Conference on Data Science (SDS), 2019

https://www.automl.org/wp-content/uploads/2018/07/autosklearn.png
https://www.kdnuggets.com/wp-content/uploads/auto-sklearn-overview.jpg
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Derivation: Ensemble error of 𝒕 independent 

binary classifiers

• Suppose there are 𝑡 independent base classifiers, each classifier has error rate ℇ

• They form an ensemble via majority voting: 
𝑡

2
base classifiers have to be correct for the ensemble to be correct

• Let 𝐸𝑟 be the event that 𝑟 out of 𝑡 base classifiers vote incorrectly:

Its probability follows a binomial distribution 𝑝 𝐸𝑟 =
𝑡
𝑟

∙ ℇ𝑟 ∙ 1 − ℇ 𝑡−𝑟

• Let 𝐸 be the event that the whole ensemble is wrong (i.e., at least 
𝑡

2
incorrect votes):

Its probability is given by 𝑝 𝐸 = σ
𝑟=

𝑡

2

𝑡 𝑝 𝐸𝑟

Reasoning
• 𝐸 occurs if 𝑡

2
base classifiers are wrong, or if 

𝑡

2
+ 1 base classifiers are wrong, or if … 𝑡 base classifiers are wrong

• Assuming independence among these events, their probabilities are added

𝑡 being an uneven integer

The binomial coefficient 
𝑛
𝑘

=
𝑛!

𝑘! 𝑛−𝑘 !
gives the 

number of subsets of size k 

of a superset of size n
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Discussion: Bias-variance trade-off for 0/1 loss
Going from regression to classification

Definitions: Bias and variance of a learner w.r.t a single instance 𝑥 [Domingos, 2000]

• 𝑏𝑖𝑎𝑠 ∶= deviation of best possible prediction from main prediction

• 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ∶= average deviation (over all training sets) from actual to main prediction

Regression
• The bias-variance trade-off has originally been defined for regression problems

• Typical loss function is the mean squared error (MSE)
• 𝐿𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒 ( see V03)

Classification
• Usually binary classification is studied in depth first result may then be extended to multi-class

• Binary classification uses classification error as its typical loss function (a.k.a. 0/1 loss)

• The main prediction is the most frequent prediction; we subsequently ignore the additive noise term

• 𝐿0/1 = 𝑏𝑖𝑎𝑠 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 in case of 𝑏𝑖𝑎𝑠 = 0 (i.e., classifier is correct  > 50% of the time)

• 𝐿0/1 = 𝑏𝑖𝑎𝑠 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 in case of 𝑏𝑖𝑎𝑠 = 1 (i.e., classifier’s accuracy is ≤ 50%) 
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Discussion: Bias-variance trade-off for 0/1 loss
Counter-intuitive implications 

Consequences for classification
• Bias and variance have a complicated, multiplicative interaction [Friedman, 1997]

( not directly visible in the form shown on the last slide due to the 2 cases)

• Good classifiers become better with less variance; 

bad classifiers become better with more variance!

• This explains why highly unstable classifiers (e.g., decision trees; kNN in high 

dimensions; naïve Bayes) work well in practice

• Casting classification as a regression problem by estimating class probabilities instead 

often doesn’t pay off: 

• Good regression results don’t imply good classification performance

• Reason: Different behavior of errors

Further reading
• [Domingos, 2000]: «A Unified Bias-Variance Decomposition for Zero-One and 

Squared Loss»

• [Friedman,1997]: «On Bias, Variance, 0/1-Loss, and the Curse of Dimensionality»
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Random Forest®
A brief description

Build a majority-voting ensemble of decision trees; for each tree,
• Choose a stratified training set of 𝑛 out of 𝑁 instances by sampling with replacement

• At every level, 
• choose a random feature set (with replacement) of 𝑚 out the 𝑝 attributes 

• choose the best split among those attributes

• No pruning of the branches takes place

Advantages
• Fast training, parallelizable application

• High independence of base classifiers  nearly no overfitting

• Few hyper parameters 

• Applicable to large quantities of 𝑁, 𝑝 and #classes

 Very good out-of-the-box method

Further reading
• [Breiman 2001]: «Random Forests». Machine Learning 45 (1), 5-32 
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From AdaBoost to gradient boosting

Recall: In AdaBoost, ”shortcomings" are identified by high-weight data points

A brief history of modern boosting (selective, shortened)

1. Invention: AdaBoost, the first successful boosting algorithm

[Freund et al., 1996], [Freund & Schapire, 1997]

2. Translation: Formulation as gradient descent with special loss function ( cp. V02)

[Breiman et al., 1998], [Breiman, 1999]

3. Generalization: Gradient boosting in order to handle a variety of loss functions 

[Friedman et al., 2000], [Friedman, 2001]

 For a great example of cross-disciplinary fertilization, see 

Breiman, “Arcing classifiers (with discussion and a rejoinder by the author)”, 1998

In gradient boosting, “shortcomings" are identified by gradients
• Gradients of what? Why?  see next slides
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Intuition for gradient boosting

Setup
• For ease of discussion we change the setting from (binary) 

classification to regression (i.e., real-valued labels)

• Results are again applicable to classification
(but not intuitively as straight-forward) 

Let’s play a game
• You are given data 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁) and the task to fit model ෠ℎ(𝑥)

 minimize squared loss ℓ 𝑦, ℎ 𝑥 =
1

2
𝑦 − ℎ(𝑥) 2

• Suppose a friend helps by giving you an initial model 𝐹 𝑥 (a regression tree)

 You check his model and find the model is good but not perfect (e.g. 𝐹 𝑥1 = 0.8 while 𝑦1 = 0.9)

• Rule: 𝐹 𝑥 must not be changed in any way, but another model might be added
 i.e. ෠ℎ 𝑥 = 𝐹 𝑥 + ℎ 𝑥

• How to train ℎ 𝑥 ?

𝐹1 𝑥1 + ℎ 𝑥1 = 𝑦1  ℎ 𝑥1 = 𝑦1 − 𝐹 𝑥1
⋮

𝐹 𝑥𝑁 + ℎ 𝑥𝑁 = 𝑦𝑁  ℎ 𝑥𝑁 = 𝑦𝑁 − 𝐹 𝑥𝑁

We want this to be true Equivalently, we can fit the new regression tree ℎ to:

𝑥

𝑦
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Intuition for gradient boosting (contd.)

Simple ensemble solution
• The 𝑦𝑖 − 𝐹 𝑥𝑖 are called residuals

 These are the parts that the initial model 𝐹 cannot do well

 The role of ℎ is to compensate the shortcomings of 𝐹

• If the new model 𝐹 + ℎ is still not satisfactory, we can add another regression tree...

How is this related to gradient descent?
• Gradient Descent: Minimize function a 𝐽 by moving into opposite direction of the gradient

𝜃𝑖
𝑛𝑒𝑤 = 𝜃𝑖

𝑜𝑙𝑑 − 𝛼
𝜕𝐽

𝜕𝜃𝑖
𝑜𝑙𝑑

• Want to minimize loss function: L = σ𝑖=1
𝑁 ℓ 𝑦𝑖 , 𝐹 𝑥𝑖 = σ𝑖=1

𝑁 1

2
𝑦𝑖 − 𝐹 𝑥𝑖

2

 𝐹 𝑥𝑖 are the parameters of 𝐿, so we can take derivatives:

𝜕𝐿

𝜕𝐹 𝑥𝑖
=
𝜕σ𝑖=1

𝑁 ℓ 𝑦𝑖 , 𝐹 𝑥𝑖
𝜕𝐹 𝑥𝑖

=
𝜕ℓ 𝑦𝑖 , 𝐹 𝑥𝑖

𝜕𝐹 𝑥𝑖
= 𝐹 𝑥𝑖 − 𝑦𝑖

• That is: We can interpret residuals as negative gradients

 𝑦𝑖 − 𝐹 𝑥𝑖 = −
𝜕𝐿

𝜕𝐹 𝑥𝑖

w.r.t 𝐽’s parameters 𝜃

i.e., 𝐽 = 𝐿
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Gradient boosting of regression trees

Algorithm
• Gradient boosting for regression

True for ℓ = squared loss
• Residual ⇔ negative gradient

• Fit ℎ𝑖 to residual ⇔ fit ℎ𝑖 to negative gradient

• Update ℎ𝑖 based on residual ⇔ update ℎ𝑖 based on negative gradient

 So we are actually updating our model using gradient descent!

Advantage of gradient descent formulation
• Allows considering other loss functions (e.g. more outlier-robust, domain-specific, …)

 Derive the corresponding algorithms in the same way

Start with an initial model, e.g. 𝐹 =
σ𝑖=1
𝑁 𝑦𝑖

𝑁
always predict mean value)

repeat until convergence

−𝑔 𝑥𝑖 = −
𝜕ℓ 𝑦𝑖,𝐹 𝑥𝑖

𝜕𝐹(𝑥𝑖)

fit regression tree ℎ to −𝑔 𝑥𝑖
𝐹 ≔ 𝐹 + 𝛼ℎ #𝛼 is a tunable learning rate, e.g. = 1
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Extension to (multiclass) classification

Model
• Each class 𝑐 has its own model 𝐹𝑐(𝑥) (binary classification tree, emitting 0/1)

• Use outputs to compute class probabilities: 𝑃𝑐 𝑥 =
𝑒𝐹𝑐(𝑥)

σ𝑖 𝑒
𝐹𝑖(𝑥)

(softmax)

 Final classification = class with highest probability

Loss function per data point
• Turn the label 𝑦𝑖 into a (true) probability distribution 𝑌𝑐(𝑥𝑖)
• Calculate predicted probability distribution 𝑃𝑐 𝑥𝑖

 Based on current models 𝐹𝑐(𝑥𝑖)

• Calculate difference between true and predicted probability distribution
 Use e.g. KL-divergence as loss

Overall objective
• Do gradient descent to make true and predicted distribution as close as possible ∀𝑥𝑖
• We achieve this goal by adjusting our models 𝐹𝑐

Example: Letter (A-Z) classification
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AdaBoost for face detection
A detailed example of a boosted decision stumps application

Challenges
• Slide a window across image and evaluate a face model at every location & scale

 Sliding window detector must evaluate tens of thousands of location/scale combinations

• Faces are rare:  0–10 per image
• For computational efficiency, we should try spending as little time as possible on non-face windows

 A megapixel image has ~106 pixels and a comparable number of candidate face locations

• To avoid having a false positive in every image, the false positive rate has to be less than 𝟏𝟎−𝟔

The Viola-Jones face detector [Viola & Jones, 2001]

• A seminal approach to real-time object detection
Training is slow, but detection is very fast

• Key ideas
• Integral images for fast feature evaluation

• Boosting for feature selection amongst ~105 candidates

• Attentional cascade for fast & accurate rejection of non-face windows
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Rectangular facial features

…and their efficient calculation via the integral image

Pixel-based features for face detection
• Reminiscent of Haar wavelets

• Simple sum of pixel intensities within rectangular regions resemble 

typical shading patterns of faces

Integral images (𝑖𝑖)
• Let each pixel be the sum of all pixels left and above

Computing sums of pixels within a rectangle using 𝑖𝑖
• 𝑠𝑢𝑚 = 𝑖𝑖𝐴 − 𝑖𝑖𝐵 − 𝑖𝑖𝐶 + 𝑖𝑖𝐷
• Needs only 3 additions for any size of rectangle (constant time)

D B

C A
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Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle 

feature on faces and non-faces.

Resulting weak classifier: 

 Continue using AdaBoost
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Training the boosting classifier
Incorporating feature selection

Training set contains face and non-face examples
• 𝟓𝟎𝟎𝟎 faces (frontal, many variations among illumination/pose, rescaled to 24 × 24) 

• 𝟑𝟎𝟎 million non-faces (extracted from 9’500 non-face images)

• Faces are normalized (scale, translation)

• Initially, all have equal weights

For each round of boosting:
• Evaluate each rectangle filter on each example, select best threshold

• Select best filter/threshold combination

• Reweight examples

Computational complexity: 𝑂(𝑟𝑜𝑢𝑛𝑑𝑠 × 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

Result
• A 200-feature classifier can yield 95% detection rate and a 

false positive rate of 1 in 14084

 Not yet good enough for practice!

False alarm rate of 𝑂(10−5), 
but 𝐎(𝟏𝟎−𝟔) needed
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Removing false alarms while retaining high 

detection rate

Attentional Cascade
• Start with a simple classifier (2 features) 

 Rejecting many of the negative sub-windows while detecting almost all positive sub-windows

• Positive response from the first classifier triggers the evaluation the next classifier, etc.
 Subsequent classifiers get more complex, hence longer runtime but lower false alarm rate

• A negative outcome at any point leads to the immediate rejection of the sub-window

• Training: 
• Keep adding features to current stage until its target rates (TP, FP) have been met

• If overall FP is not low enough, then add another stage

• Use false positives from current stage as the negative training examples for the next stage

Detection rate (TP) vs. false alarm rate (FP) for chained classifiers
• Found by multiplying the respective rates of the individual stages

 TP of 𝟎. 𝟗 and FP of ~𝟏𝟎−𝟔 can be achieved with 

a 𝟏𝟎-stage cascade: each stage having 

- TP of 0.99 (0.9910 ≈ 0.9) 

- FP of ~0.3 (0.310 ≈ 6 × 10−6) 

Reject sub-window

1 2 3 4 5 6 7 8 38 Face

F F F F F F F F F

T T T T T T T T T

All sub-windows

2 features, reject 50% non-faces, detect 100% faces 

10 features, reject 80% non-faces, detect 100% faces 

25 features

50 features
6061 features
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Final result of Viola-Jones face detection

After some more engineering…
• Variance normalization of pixel intensities to cope with different lighting

• Merging multiple detections

• Multi-scale detection by scaling the detector (factor of 1.25 yields good resolution)

Lasting effect
• Got applied to more visual detection problems

 facial feature localization, profile faces, male/female image classification, audio fingerprinting, …

• Solved the problem of face detection in real time (e.g. for digicams)

 available in OpenCV (http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html)

• One of the first mind-blowing computer vision applications before deep learning trend

http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

