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Machine Learning

V04: Support Vector Machines

Basic idea

Mathematical definition and optimization

Kernels

More than two classes

Based on material from Oliver Dürr

See also [ISL, 2014, ch. 9] and [ESL, 2009, ch. 12]
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Educational objectives

• Know the Support Vector Machine method in some detail
• Explain the progression from maximal margin classifier  support 

vector classifier  SVM

• Explain the workings of the 𝑪 and 𝜸 parameters

• Use SVM successfully on tutorial-style examples, including

parameter grid search
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1. BASIC IDEA
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Recap: Unsupervised vs. supervised learning
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Support Vector Machine (SVM)
Basics & notation

Representation of SVM
• Each observation is a vector of values (𝑝-dimensional)

• SVM constructs a hyperplane to separate class members

SVM family of classifiers
1. (Maximal margin) hyperplane classifier (for linearly separable data)

2. Support vector classifier (for almost linearly separable data)

3. Support vector machine (for non-linearly separable data)

𝑝 features

𝑁 observations

Class 1 Class 2

1 2 3 4 5 6 7 8 9 10

1 2 1 3 4 4 5 7 6 6 3

2 4 2 6 8 10 2 1 2 1 1

3 3 1 5 6 6 2 1 2 2 1

Feature 1, 𝑥1

Feature 2,𝑥2

Feature 3, 𝑥3

Feature vectors being column 

vectors here (as opposed to 

row vectors usually) makes the 

math more convenient later

Probably a misnomer for SV “algorithm”
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(1) Hyperplane classifiers
Assumption (until further notice): data is linearly separable

Which hyperplane to construct / chose?
• Many candidates could potentially separate the data (given it is linearly separable)

𝑥1

𝑥2

Observations Hyperplane Alternative hyperplanes
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Maximal margin classifier

Ideally, choose a specific hyperplane

• The one maximizing the distance from the hyperplane to closest training point 

(on each side)

• Called the maximal margin hyperplane

• Can be represented as a linear combination of only few training points

𝑥1

𝑥2
Margin

Take the fattest margin!
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Support vectors
…for the maximum margin classifier

• Close (to the hyperplane) training examples determine the hyperplane

( Far away training examples do not participate in its specification)

• These examples are called the support vectors

 removing them would change the location of the separating hyperplane

𝑥1

𝑥2
Margin

Support vectors 
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2. MATHEMATICAL DEFINITION AND OPTIMIZATION

(Just a sketch  details in ISL ch. 9, ESL ch. 12)
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Formal: Definition of a hyperplane

Definition of a hyperplane
• Ԧ𝑥: 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 = 0

Separating hyperplanes for classes encoded as ±𝟏
• 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 > 0 if 𝑦𝑖 = 1

• 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 < 0 if 𝑦𝑖 = −1

Equivalently: 𝑦𝑖 ∙ 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 > 0

• If 𝛽 is a normal vector (length 1:  σ𝑗=1
𝑝

𝛽𝑗
2 = 1), evaluating the hyperplane formula for a 

point 𝑥 gives it’s distance to the hyperplane

Points 𝑥 satisfying this 

equation lie on the 

hyperplane

The hyperplane 1 + 2𝑋1 + 3𝑋2 = 0. 

It divides the 2D space into two areas 

(classes): red and blue, depending on 

which side of the straight line a point lies.

From ISL Fig. 9.1

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. 

James, D. Witten, T. Hastie and R. Tibshirani

More familiar notation:

𝑋2 = −
2

3
𝑋1 −

1

3
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Formal: Definition of optimization problem

Intuitive optimization
• maximize

𝛽0,𝛽1,…,𝛽𝑝
𝑀,

• subject to σ𝑗=1
𝑝

𝛽𝑗
2 = 1,

• and 𝑦𝑖 ∙ 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 ≥ 𝑀 ∀𝑖 = 1. . 𝑁

 All vectors have at least distance 𝑀; support vectors have distance = 𝑀

𝑥1

𝑥2
Margin 2𝑀

Support vectors 

have distance 𝑀 to 

the hyperplane
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Formal: Reformulation of optimization problem

Intuitive optimization
• maximize

𝛽0,𝛽1,…,𝛽𝑝
𝑀,

• subject to σ𝑗=1
𝑝

𝛽𝑗
2 = 1,

• and 𝑦𝑖 ∙ 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 ≥ 𝑀 ∀𝑖 = 1. . 𝑁

…can be reformulated using Lagrange multipliers

• Technically, find 𝐿𝐷 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑘=1

𝑁 𝛼𝑖𝛼𝑘𝑦𝑖𝑦𝑘𝑥𝑖
𝑇𝑥𝑘,

• subject to 𝛼𝑖 ≥ 0 and σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

• Once the 𝛼’s are computed, 𝛽 = σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝑥𝑖

An optimization method, together with quadratic 

programming used here to find the function’s local extrema, 

subject to several constraints (think of a relative of batch 

gradient descent for linear regression).

Note: Only the inner products (dot- or scalar 

product) between feature vectors enter: this 

opens the door for “kernel trick” ( see below)
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(2) Towards linearly non-separable data
General idea of the 𝐶 penalty factor on misclassifications

New assumption: Data is not linearly separable any more

 Idea of soft margins that allows for some misclassifications

• Data may contain untypical or mislabeled samples; 

process might really be (moderately) non-linear

• The number of misclassifications is controlled by a penalty factor 𝐶

 Sometimes a larger margin is worth having some misclassified observations

𝑥1

𝑥2

Margin

Low penalty: high # of misclassified training examples High penalty: low # of misclassified training examples

𝑥1

𝑥2
Margin

Small 𝐶  weak penalty
Large 𝐶  strong penalty
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Formal: Support vector classifier optimization

Intuitive optimization
• maximize

𝛽0,𝛽1,…,𝛽𝑝
𝑀,

• subject to σ𝑗=1
𝑝

𝛽𝑗
2 = 1,

• and 𝑦𝑖 ∙ 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 ≥ 𝑀 1 − 𝜉𝑖 ∀𝑖 = 1. . 𝑁,

• and 𝜉𝑖 ≥ 0, σ𝑖=1
𝑁 𝜉𝑖 ≤ ሚ𝐶

• where 𝝃𝒊 is a slack variable introduced to allow instance 𝑖 to lie on the wrong side of the margin

 There’s a total budget of ෩𝑪 for misclassifications (distance from the hyperplane for wrong points)

Equivalent technical optimization («dual form»)

• Maximize 𝐿𝐷 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑘=1

𝑁 𝛼𝑖𝛼𝑘𝑦𝑖𝑦𝑘𝑥𝑖
𝑇𝑥𝑘,

• subject to 0 ≤ 𝛼𝑖 ≤ 𝐶 and σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

• Again, 𝛽 = σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝑥𝑖 is minimized

The figure is taken from fig. 12.1 in “The Elements of Statistical Learning" (Springer, 2009)

Note the parameter name ሚ𝐶 here: It is inversely related to the actual 

hyper parameter 𝐶 below (i.e., 𝐶 ∽
1

ሚ𝐶
). 𝐶 is also exposed in the APIs of 

SVM implementations we will use (i.e., scikit-learn).
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 

the hyperplane (starts 

upper right corner)

Black lines: 

Margins around 

hyperplane

Red/green dots: 

training instances

Blue circled dots: 

support vectors

Very low 𝐶, nearly 

no penalty for 

misclassifications

 Big margin

Let’s increase 𝐶
and see what happens. 
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 

the hyperplane (starts 

upper right corner)
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Margins around 
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training instances
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 

the hyperplane (starts 

upper right corner)
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Margins around 
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications
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the hyperplane (starts 

upper right corner)
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Margins around 
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 

the hyperplane (starts 

upper right corner)

Black lines: 

Margins around 

hyperplane

Red/green dots: 

training instances

Blue circled dots: 

support vectors
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 

the hyperplane (starts 

upper right corner)

Black lines: 

Margins around 

hyperplane

Red/green dots: 

training instances

Blue circled dots: 

support vectors

Note: in the non-

separable case, all 

vectors on- or within 

the margin are support 

vectors. 

 Hence, this one is 

mislabeled



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

22

Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 

the hyperplane (starts 

upper right corner)

Black lines: 

Margins around 

hyperplane

Red/green dots: 

training instances

Blue circled dots: 

support vectors

Note: in the non-

separable case, all 

vectors on- or within 

the margin are support 

vectors. 

 Hence, this one is 
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Visualizing the effect of the 𝐶 parameter
Penalty for misclassifications

White line: 

the hyperplane (starts 

upper right corner)

Black lines: 

Margins around 

hyperplane

Red/green dots: 

training instances

Blue circled dots: 

support vectors

Varying 𝐶 leads to 

convergence to a stable 

solution.

Generally: 𝐶 controls 

the bias-variance trade-

off in SVM: 

Bigger 𝐶 result in 

smaller margins,

hence less support 

vectors,

hence more variance

Note: in the non-

separable case, all 

vectors on- or within 

the margin are support 

vectors. 

 Hence, this one is 

mislabeled
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Experimental observations 
…for SVMs on gene expression data

Gene expression characteristic: 𝑝 ≫ 𝑁
• 𝐶 too low: nearly no penalty for misclassification

 Overgeneralization (“I don’t care for data”, underfitting) 

• 𝐶 larger

 Converging to a stable solution

Figure
• Typical curve for gene expression: 

Misclassification rate as a function of log(𝐶)
• In general, 𝐶 is a hyper-parameter 

which can be optimized 

(beware of overfitting  see V06)
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3. KERNELS
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(3) Support vector machines
Towards linearly completely non-separable data

Solution
• Map the data into a higher-dimensional space

• Define a separating hyperplane there

If this is a typical case is very much domain specific
• E.g., not in gene expression data, 𝑝 ≫ 𝑁
 Practically always linearly separable

• E.g., often in multimedia analysis and pattern recognition, 𝑝 and 𝑁 are large

 Practically always difficult non-linear relationships

Feature 𝑥1

Feature 𝑥2
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Variable transformation
Making non-separable cases separable 

Only a single variable 𝑥
 Not separable by a point (hyperplane in 1D) 

Take single variable 𝑥 and 𝑥2

 Separable by a line (hyperplane in 2D) 

Feature 𝑥 Feature 𝑥

F
e

a
tu

re
 𝑥
2

Optimization view: Given features 𝑥1, 𝑥1
2, 𝑥2, 𝑥2

2, … , 𝑥𝑝, 𝑥𝑝
2
 maximize 𝑀, subject to… 

• 𝑦𝑖 𝛽0 + σ𝑗=1
𝑝

𝛽𝑗1𝑥𝑖𝑗 + σ𝑗=1
𝑝

𝛽𝑗2𝑥𝑖𝑗
2 ≥ 𝑀 1 − 𝜉𝑖 , σ𝑖=1

𝑁 𝜉𝑖 ≤ ሚ𝐶, 𝜉𝑖 ≥ 0, σ𝑗=1
𝑝 σ𝑘=1

2 𝛽𝑗𝑘
2 = 1.

This is now a quadratic equation, in which a linear decision boundary may exist

 Enlarging the feature space allows for non-linear decision boundaries in input space



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

28

SVM – Feature space

Power of feature space transformation
• With an appropriately chosen feature space of sufficient dimensionality…

• …any consistent training set can be made separable

• (see last slide)

Kernel Trick
• Remember: only scalar products <. , . > enter SVM optimization

• Let’s rewrite the scalar product after transformation to feature space:
𝑥𝑖
𝑥𝑖
2 ∙

𝑥𝑖′
𝑥𝑖′

2 = 𝑥𝑖𝑥𝑖′ + 𝑥𝑖
2𝑥𝑖′

2 ≔ 𝐾 𝑥𝑖 , 𝑥𝑖′

 Instead of calculating the inner product, we calculate the kernel 𝐾 . , .
 As soon as we use some 𝐾, the resulting support vector classifier becomes a SVM

𝐾 is known as a kernel function. It can be used to efficiently 

compute feature space transformations (i.e., we don’t really 

have to work/optimize in higher dimensions).

Equivalent technical optimization («dual form»)

• Maximize 𝐿𝐷 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑘=1

𝑁 𝛼𝑖𝛼𝑘𝑦𝑖𝑦𝑘𝒙𝒊
𝑻𝒙𝒌

= σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑘=1

𝑁 𝛼𝑖𝛼𝑘𝑦𝑖𝑦𝑘𝑲(𝒙𝒊, 𝒙𝒌)
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Other kernel functions
Different distance measures between instances

The following Kernels are commonly used
• Identity (inner product): 𝐾 𝑥𝑖 , 𝑥𝑖′ = σ𝑗=1

𝑝
𝑥𝑖𝑗𝑥𝑖′𝑗

• this yields the standard support vector classifier

• Polynomial of degree 𝑑: 𝐾 𝑥𝑖 , 𝑥𝑖′ = 1 + σ𝑗=1
𝑝

𝑥𝑖𝑗𝑥𝑖′𝑗
𝑑

• the polynomial kernel of degree 𝑑 = 1 is just the identity kernel

• Radial basis (Gaussian): 𝐾 𝑥𝑖 , 𝑥𝑖′ = exp −𝛾 σ𝑗=1
𝑝

𝑥𝑖𝑗 − 𝑥𝑖′𝑗
2

• the Gaussian kernel computes a very local neighborhood

• 𝛾 is a hyper parameter controlling the width of that neighborhood, i.e., the degree of non-linearity:

low 𝜸 great width

• the feature space spanned by the Gaussian kernel is implicit and infinite-dimensional

Kernels can also be used for non-vector data
• E.g., string kernels for text

• Many research has been devoted to develop non-standard kernels for specialized tasks 
( google “kernel methods” by the authors Christianini and Shawe-Taylor)

i.e., only locally near instances 

𝑥𝑖 and 𝑥𝑖′ have kernel function 

values substantially larger 

than zero.

because it is inversely related to the variance of the Gaussian  see below
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More intuition for the Gaussian kernel

𝐾 𝑥𝑖 , 𝑥𝑖′ = exp −𝛾෍

𝑗=1

𝑝

𝑥𝑖𝑗 − 𝑥𝑖′𝑗
2

Consider a space with one or more clusters per class
• A classifier might place a Gaussian around each cluster

• This separates the clusters from the remaining space of non-class members

• Can be accomplished with the Gaussian kernel:

Place a Gaussian with a width 𝛾 =
1

2𝜎2
over each support vector in the training set
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2

Zoom of plot on the right
Attention: the plots show the effect of sigma, i.e. ~

1

𝛾
: 

small sigma  big 𝛾  small kernels around each SV 

 very “wiggly” decision surface  high 

capacity/complex model
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2

Zoom of plot on the right
Attention: the plots show the effect of sigma, i.e. ~

1

𝛾
: 

small sigma  big 𝛾  small kernels around each SV 

 very “wiggly” decision surface  high 

capacity/complex model



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

33

Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

45

Visualizing the effect of the 𝛄 parameter
Width of the Gaussian kernel 𝛾 = 1

2𝜎2
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4. MORE THAN TWO CLASSES
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Multiclass classification with SVM

One vs. rest (or one vs. all) classification
• SVM is a binary classifier can only separate two classes

• More than 2 classes?  #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 times 'one vs. rest‘

 has highest positive distance (confidence) in green case will be classified as green

Feature 𝑥1

F
e

a
tu

re
𝑥
2

Feature 𝑥1

F
e

a
tu

re
𝑥
2

Feature 𝑥1

F
e

a
tu

re
𝑥
2

vs. vs. vs.

Distance of to single class ~ − 3 Distance of to single class ~ − 2 Distance of to single class ~2

: Unknown test instance
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Multiclass classification with SVM (contd.)

One vs. one classification
• Assume 𝑘 classes

• Learn all
𝑘 𝑘−1

2
pairwise comparisons 

• Classify unknown instance by majority vote among all pairwise comparisons

Other extensions
• …from the binary case exist

• Most commonly, “one vs. one” or “one vs. rest” is used

Which method to use?
• One vs. one has fatter margins, but longer training time

(see S. Herrero, “Multiclass Classification using Massively Threaded Multiprocessors” on SlideShare)

One vs. one One vs. all
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Review

• Support vector machine (SVM) is one of the best off-the-shelf 

classifiers

• SVM can be used for classification (seen here), regression and 

novelty detection ( see appendix for a picture)

• SVM optimization is mathematically very complex, the application

and basic ideas are remarkably simple ( see appendix for ℎ formula)

• SVM builds upon the ideas of support vector classifiers (no 

kernels) and maximal margin classifiers (no 𝐶), all using 

separating hyperplanes 

• Feature space transformations via kernels allow non-linear 

decision boundaries

• Parameters 𝑪 and 𝜸 (with Gaussian kernel) allow to adjust the 

flexibility of SVM (bias-variance trade-off)

More 𝑪 less capacity for misclassification  more variance, less margin

More 𝜸 tighter Gaussian kernels  more non-linear decision surface
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P04.2: Simple SVM example

Execute the IPython notebook SVM_Simple.ipynb
• Further explore scikit-learn syntax

• Play around with SVM parameters

 Additional notebook source: https://github.com/oduerr/ml-

playground/blob/master/python/SVM/SVM_Simple.ipynb

https://github.com/oduerr/ml-playground/blob/master/python/SVM/SVM_Simple.ipynb
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APPENDIX
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SVM classification function

ℎ 𝑥 = 𝛽0 +෍

𝑖∈𝑆

𝛼𝑖 ∙ 𝐾 𝑥, 𝑥𝑖

Where
• 𝑆 is the set of support vectors 𝑥𝑖 from training

• 𝛽0 and 𝛼𝑖 are the optimized parameters from training

• 𝑥 is a test instance

• 𝐾(. ) is a kernel function

A polynomial (𝑑 = 3) kernel (left) and a Gaussian (radial) kernel (right) capturing 

the non-linear decision boundary in different ways (figure 9.9 of [ISL, 2014, p. 353]).
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Geometry of SVM

Formulation
• < 𝒘, 𝒙 > +𝑏 = ±1 for SV

 Objective: minimize | 𝑾 |
• After minimization:

𝒘 =෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝒙𝑖

෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0

Interesting quantities
• Components of W (importance of feature)

• Fraction of support vectors (how much SVs 

depends on examples)

• Which observations are SVs (i.e. have an 

𝛼 ≠ 0)

𝑥1

𝑥2

Support Vectors 
𝛼𝑖 ≠ 0

Sketch of a SVM

W

b

Observations
2𝑀
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Note on the number of tunable parameters
• Non-linear SVM has several parameters (through the kernel), linear one has (almost) none

 If 𝑁 ≪ 𝑝, linear SVM is sufficient due to high dimensionality (low point density see V06)

How the kernel works

Variable (or: input) space

Feature 𝑏

Feature 𝑎

Variable 𝑥1

Variable 𝑥2

Feature space

Feature mapping

Specified by a kernel
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Advanced Topics

Possible extensions
• Handling of categorical variables

• Outlier Detection with one-class SVM ( see plot)

• SVM Regression

• ROC-Analysis with SVM


