Machine Learning V03: Model Assessment & Selection

Data handling for model evaluation Measures for model performance Selecting among competing models

Based on (slides of):

Witten, Frank, «Data Mining (2nd Ed.)», 2005, Ch. 5 Duda et al., «Pattern Classification (2nd Ed.)», 2000, Ch. 9 Mitchell, «Machine Learning», 1997, Ch. 5-6 Javier Béjar, BarcelonaTech Murphy, «MLAPP», 2012, Ch. 5.3

Educational objectives

- Understand the need to use the available data wisely and know how to do it correctly
- Explain the influence of bias and variance on a model's performance
- Remember prevalent figures of merit to document model
 performance
- Use sound experimental setup to evaluate and choose among models

1. DATA HANDLING FOR MODEL EVALUATION

How to learn and evaluate algorithms based on *limited data?* How to *deduce true error* from training error?

Model assessment & selection

Zurich University of Applied Sciences

Model Assessment: evaluating a model's performance (→ next 2 sections)

Model Selection: selecting among competing models one with a proper level of flexibility

Competition on two levels: different parameters (θ) and different hypothesis spaces (\mathcal{H})

How to make the most of (small) data

Training & evaluating hypotheses with limited data

For big data (especially w/ deep learning) scenarios, see note on Ng's talk @ NIPS 2016 in V06

Zurich University of Applied Sciences

How to make the most of (small) data

Training & evaluating hypotheses with limited data

For big data (especially w/ deep learning) scenarios, see note on Ng's talk @ NIPS 2016 in V06

Zurich University of Applied Sciences

How to make the most of (small) data

Training & evaluating hypotheses with limited data

For big data (especially w/ deep learning) scenarios, see note on Ng's talk @ NIPS 2016 in V06

Zurich University of Applied Sciences

How to make the most of (small) data

Training & evaluating hypotheses with limited data

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Attention: this concrete formulation is for **classification**, not regression.

Zurich University of Applied Sciences

Observable and unobservable errors

Or: why we need to estimate the true error

True error E_D

- Probability that *h* will misclassify a random instance from **complete domain** *D*
- Unobservable

Empirical / test error E_{emp}

- Proportion of examples from **sample** $S \in D$ misclassified by h
- Estimate for true error, gets better with more data

Training error: proportion of training data misclassified -> hopelessly optimistic estimate

How good is the estimate?

- Assumption: training and test data are representative of underlying distribution of D
- S and h are usually not chosen independently → Test error is optimistically biased
- Test error usually varies for different $S \in D \rightarrow$ It has higher variance than the true error

\rightarrow Confidence intervals give bounds depending on the test set size (\rightarrow see appendix)

Sources of error

The bias-variance trade-off

- Very helpful in comparing & evaluating learning algorithms (\rightarrow more in V06)
- Generally, for a **more complex**/capable model: \downarrow **bias**, \uparrow **variance** ٠
 - It's a trade-off: Only way to reduce both is to increase the size of the sample

Zurich University of Applied Sciences

2. MEASURES FOR MODEL PERFORMANCE

A quick overview

Evaluating class predictions Two types of error and their cost

What if different (wrong) predictions have different costs attached?

- Example Terrorist profiling: "Not a terrorist" correct 99.99% of the time ٠
- Classification with costs (\rightarrow see appendix): ٠
 - Attach costs to each cell in the matrix above («cost matrix»)
 - Replace sum of errors with sum of costs per actual prediction ٠

Measures based on contingency tables Evaluating *fixed points* in the parameter continuum

- Accuracy $\frac{TP+TN}{TP+TN+FP+FN}$: Standard measure that doesn't regard different «costs» of errors
- Kappa statistic for inter-rater agreement: Useful to show relative improvement over random predictor •
- From information retrieval domain (used far beyond!) ٠
 - Recall $\frac{TP}{TP+FN}$: How many of the *relevant* documents (i.e., y = 1) have been *returned* (i.e., $\hat{y} = 1$)?
 - Precision $\frac{TP}{TP+FP}$: How many of the *returned* documents are actually *relevant*
 - F-measure $\frac{2 \cdot recall \cdot precision}{recall + precision}$: Combination of recall & precision via their harmonic mean •
 - There's a trade-off between recall and precision because they show the two different types of error ٠
- From medical domain ٠
 - Sensitivity (=true positive rate, recall) $\frac{TP}{TP+FN}$
 - Specificity (=true negative rate) $\frac{TN}{TN+FP}$
- Taking all possible operating points between the two errors into account (\rightarrow see next slide) ٠
 - AUC: Area under ROC curve
 - For recall-precision curves, the farther away from a straight line they are, the better ٠

Measures based on contingency tables (contd.) Grasping the *trade-off* between type-I and type-II error

	Domain & content	Plot	Computation
Lift chart → see appendix	Marketing TP vs. subset size	1000 8 600 400 0 0 0 20% 40% 50% 50% 50% 50% 50% 50% 50% 5	TP N (ordered by predicted probability of being pos.)
ROC curve → see next slide	Communications TP rate vs. FP rate	100% True 80% 60% 40% 20% 0 20% 40% 60% 80% 100%	$\frac{TP}{TP + FN}$ $\frac{FP}{FP + TN}$
Recall-precision curve	Information retrieval recall vs. precision	P75 009 008 009 009 009 009 009 009	$\frac{TP}{TP + FN}$ $\frac{TP}{TP + FP}$

Zurich University of Applied Sciences

ROC curves Receiver operating characteristic

History

 Used in signal detection to show trade-off between hit rate and false alarm rate over noisy channel

0 1/2

20%

Construction

- y axis shows percentage of true positives in sample
- x axis shows percentage of false positives in sample
- Train different models, **varying** the parameter(s) that control the **«strictness»** of the method; for each parameter value, draw a point

Interpretation

- Straight line indicates a random process
- Jagged curve: created with one set of test data
- Smooth curve: created using averages from cross validation

40%

60%

False positives

80%

100%

Evaluating numeric predictions

Zurich University

Same strategies as for classification (i.e., independent test set, cross-validation, etc.)

Different error measures

- Given: Actual target values ("labels") $y_1, y_2, ..., y_N$, predicted values $\hat{y_1}, \hat{y_2}, ..., \hat{y_N}$
- **Most popular** measure: Mean-squared error $E_{MSE} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i y_i)^2$ (why? \rightarrow see appendix of V02)
- Root mean-squared error: $E_{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i y_i)^2}$
- Less sensitive to outliers: Mean absolute error $E_{MAE} = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i y_i|$
- Many more: relative errors (e.g., 10% for predicting 500 and being 50 off), correlation coefficient, ...

Example

- Algorithm D is best, C is 2nd
- A, B arguable

Root mean-squared error Mean absolute error Root rel squared error Relative absolute error Correlation coefficient

Α	В	С	D
67.8	91.7	63.3	57.4
41.3	38.5	33.4	29.2
42.2%	57.2%	39.4%	35.8%
43.1%	40.1%	34.8%	30.4%
0.88	0.88	0.89	0.91

→ Choice of measure doesn't matter too much in practice, but ideally use all

Evaluating clusterings Just some pointers

Without labels

- Silhouette coefficient: Measure for cluster validity/consistency
- Visual inspection of dendrograms: Shows distances and balancing in hierarchical clusterings
- Visual comparison of dimension reduction on feature vectors (e.g., t-SNE, SOM)

With ground truth available

t-SNE plots of different speaker embedding layers; from [Lukic et al., MLSP 2016].

- Purity: a simple & transparent measure of correctness of clustering
- Rand index: compares two clusterings (e.g., own scheme with random partition)
- Missclassification rate: $MR = \frac{1}{N} \sum_{j=1}^{C} e_j$ (*N* number of samples, *C* number of true clusters, e_j number of wrongly assigned samples of true cluster *j*, i.e. spread to multiple clusters or mixed in not pure clusters)
- Recall/precision etc. also apply

Dendrogram of utterances of 5 speakers, colored by speaker id; from [Lukic et al., MLSP 2016].

Zurich University

InIT Institute of Applied Information Technology (stdm)

ing

3. SELECTING AMONG COMPETING MODELS

What basis is available to *favor one algorithm* over another? How probable is it that the chosen method is *truly significantly better*? No, but a theoretically optimal *classification* via the Bayes optimal classifier \rightarrow see appendix on "Bayesian learning"

Zurich University of Applied Sciences

Is there a best algorithm? Theory & practice agree

Recap: No free lunch

• The no free lunch theorem (NFL) tells there's no universally best learner (across problems)

Empirical study [Caruana et al., 2006]

- **Confirmation** of NFL: «Even the best models sometimes perform poorly, and models with poor average performance occasionally perform exceptionally well»
- Mild take home message: Ensembles and SVMs are good out of the box methods
- But: Naïve Bayes is great in SPAM filtering; boosted decision stumps are ultimate in face detection etc.

	MODEL	1st	2nd	3rd	4TH	5TH	6тн	$7 \mathrm{TH}$	8TH	9TH	10тн
Boosted decision tree	DOT DT	0 500	0.998	0.160	0.022	0.000	0.000	0.000	0.000	0.000	0.000
Random forest	BST-DT DF	0.380	0.228 0.525	0.160	0.023	0.009	0.000	0.000	0.000	0.000	0.000
Bagged decision tree	BAG-DT	0.030	0.232	0.571	0.001 0.150	0.017	0.000	0.000	0.000	0.000	0.000
Support vector machine	SVM	0.000	0.008	0.148	0.574	0.240	0.029	0.001	0.000	0.000	0.000
Neural network	ANN	0.000	0.007	0.035	0.230	0.606	0.122	0.000	0.000	0.000	0.000
k nearest neighbor	KNN	0.000	0.000	0.000	0.009	0.114	0.592	0.245	0.038	0.002	0.000
Boosted decision stump	BST-STMP	0.000	0.000	0.002	0.013	0.014	0.257	0.710	0.004	0.000	0.000
Decision tree	DT	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.616	0.291	0.089
Logistic regression	LOGREG	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.312	0.423	0.225
Naïve Bayes	-NB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.030	0.284	0.686

Overall rank by mean performance across 11 learning tasks and 8 metrics; from [Caruana & Niculesu-Mizil, ICML 2006]. Classifiers have been calibrated to emit class probabilities; data sets span a wide range from nominal attributes to pattern recognition.

Maximum likelihood (ML) model comparison Simplistic model selection

Often, parameters of some $h \in \mathcal{H}$ are estimated via ML (using CV)

• Find parameters $\hat{\theta}$ such that the likelihood $p(X|h(X,\hat{\theta}))$ of the training data X is maximized

Maximum a posteriori (MAP) hypothesis via Bayes' theorem

- $p(h|X) = \frac{p(X|h) \cdot p(h)}{p(X)}$, where
 - p(X|h) is the likelihood of the data, given the model \rightarrow called the evidence for h
 - p(X) is the a priori likelihood of the training data $X \rightarrow$ this normalization factor is rarely needed/used
 - p(h) is the a priori likelihood of the hypothesis $h \rightarrow$ often neglected in practice due to dominance of evidence
 - → $p(h|X) \approx p(X|h)$

→ Given competing $h_i \in \mathcal{H}_j$, one can

- Find ML parameter estimates
- **Calculate** the **likelihood** $p(X|h_i)$
- Select best $\hat{h} = \max_{h_i} p(X|h_i)$

Rev. Thomas Bayes, 1701-1761

Model selection criteria (→ see more in appendix) Guided by Ockham's Razor

Goal: Compromise between model complexity and accuracy on validation data Idea: A good model is a simple model that achieves high accuracy on the given data

> ≠ often used version «Given 2 models with the same training error, the simpler should be preferred because it is likely to have lower
> generalization error» is not generally true → see [Domingos, 1998]

Philosophical backup

- Ockham's Razor (axiom in ML!): «Given 2 models with the same empirical (test) error, the simpler [i.e., more comprehensible] one should be preferred because simplicity is desirable in itself»
- Albert Einstein: «Make things as simple as possible but not simpler»
- Vladimir Vapnik: «Don't solve a more complex problem than necessary»
- Reasoning: For a simple hypothesis the probability of it having unnecessary conditions is reduced

History

- William of Ockham, born in the village of Ockham in Surrey (England) about 1285, was the most influential philosopher of the 14th century and a controversial theologian
- The original sentence *«Entities should not be multiplied beyond necessity»* was a critique of scholastic philosophy
- For a **comprehensive treatment** of Ockham's razor for Machine Learning, see Pedro Domingos' 1998 paper on «Occam's Two Razors The Sharp and the Blunt»

History: William Gosset (wrote under the name "Student") invented the t-test to handle small samples for quality control in brewing.

22

Is the best classifier *really* better than others? Using hypothesis tests to show *significant* predominance

In practice

• **10-fold CV often enough** (we don't care if the best method isn't *really* better)

Comparing two learners: is \mathcal{L}_A on average better than \mathcal{L}_B ?

- Student's t-test tells whether the means of two samples differ significantly
- Our samples are...
 - CV: error estimates on *m* different independently drawn data sets per learner
 (→ paired t-test: tight bounds, but assumes vast data supply for the *m* sets)
 - Bootstrapping: *m* different error estimates run on (re-samplings of) the same data
 (→ corrected resampled t-test: corrects for spurious differences when reusing the data *m*-fold)

Generally

Difference of means µ_{L_A} and µ_{L_B} of the obtained cross validation error estimates follows a Student's distribution with m − 1 degrees of freedom
 → see appendix and [Wasserman, "All of statistics", 2004, ch. 10]

Other things to consider for choosing models

...regarding data set composition

Is the number of features p large in comparison to the number of instances N?

- Also called p >> N
 - → Select appropriate methods, e.g. **boosting** or **SVM** (→ see V05/V04)

Is the data set severely imbalanced (i.e., probability of classes highly non-uniform)?

- E.g. for SPAM filtering in Email, anomaly-detection in sensor signals
 - → Consider **non-standard loss functions** that take the class distribution into account
 - → Consider **Bayesian methods** and appropriate prior probabilities (→ see appendix)

Zurich University of Applied Sciences

Review

How meaningful are the measured errors?

- Usually use **10-fold cross validation** to **estimate** the test error
- Use the **test error** as an **estimate** of the **true error**
- Never let any optimization algorithm "see" any test / validation data (this sometimes comes in very subtly → see [ESL, ch. 7.10.2])

What to measure?

- Measure error / mean squared error for supervised learning
- Measure the Silhouette coefficient or Rand index for clusterings
- For a complete, **cost-aware picture**, make **ROC curves** for different settings

Which model to chose?

- The one with best CV score
- Use Student's t-test to show that an improvement is significant (for publications)
- Ockham's razor: prefer simpler models in absence of other evidence

→ Model selection is an empirical science.

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

P04.1: Analyzing bias and variance in (LOO)-CV

Work through P04.1:

- Follow the IPython notebook Analyzing CV.ipynb ٠
- Get used to IPython ٠ (For a quick intro to IPython \rightarrow see appendix)
- Understand the bias-variance trade-off for evaluation • methods

learn

Get to know the k-fold CV API of scikit-learn ٠

APPENDIX

Complementary material *Bayesian* learning Quick introduction to *IPython*

COMPLEMENTARY MATERIAL

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

More on cross validation (CV)

But don't assign subsequences of time series to different subsets

Process

- **1. Randomly split** (training) data into *k* subsets of equal size (Probably do this with stratification to preserve class distribution in each fold: sample individually from each class, proportional to its share in the population)
- 2. For each fold *j*: use remaining k 1 folds for training, compute error E_{emp_i} on fold *j*
- 3. The final error is averaged: $E_{emp} = \frac{1}{k} \sum_{j=1}^{k} E_{emp_j}$

Best practice

• (stratified) 10-fold CV (probably repeated 10 times and averaged)

Alternatives

- Leave-one-out CV (LOOCV): uses k = N (i.e., only one record for validation)
- Bootstrap: Draw *N* random samples *with replacement* for training; use unused samples for validation
 - Training data will contain ca. 63.2% of the original training instances $\rightarrow E_{validation}$ is very pessimistic
 - $E_{emp} = 0.632 \cdot E_{validation} + 0.368 \cdot E_{training}$, average several trials \rightarrow best for very small data sets

Confidence intervals for E_{emp}

What E_{emp} tells about the true error

Foundation

- *E_{emp}* is a random variable following a **Binomial distribution** (Bernoulli process)
- Can be **approximated with** a **Gaussian** distribution, given enough test data (i.e. $|S| \ge 100$)

Determining confidence intervals

- Approximately with probability $c, E_D(h) \approx E_{emp}(h) \pm z_c \cdot \sqrt{2}$
- ...where values for z_c are given in the table below

С	0.50	0.68	0.80	0.90	0.95	0.98	0.99
Z _C	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Larger test sets give better bounds Annual has to be taken with a gree

→ Anyway, bound has to be taken with a grain of salt

 $E_{emp}(h) \cdot (1 - E_{emp}(h))$

|S|

Bias-variance trade-off: An example Cross validation in the light of bias & variance

Zurich University of Applied Sciences

Advantages of *k*-fold CV over LOOCV

- Computational advantages: k N less training runs
- Usually also more accurate estimates of *E_{emp}*

Reason

- Bias
 - LOOCV introduces nearly no (selection) bias because the training set is as large as possible
 - *k*-fold CV introduces more bias, but still many times less then validation set approach
 Small advantage for LOOCV
- Variance
 - LOOCV averages N highly correlated models (because training sets differ by only 1 sample)
 - k-fold CV averages models with less overlap in training data (training sets differ by $\frac{N}{k}$ samples)
 - Mean of highly correlated quantities has higher variance
 - ➔ Comparatively bigger disadvantage for LOOCV
- \rightarrow There's a bias-variance trade-off involved in the choice of k
- \rightarrow CV with k = 5 or k = 10 works best empirically

More on cost-sensitive training & prediction

Training

- Most learning schemes do not perform cost-sensitive learning
- Simple methods for cost-sensitive learning:
 - Resampling of instances according to costs
 - Weighting of instances according to costs, e.g. AdaBoost (→ see V05)
 - Some schemes can take costs into account by varying a parameter, e.g. naïve Bayes

Prediction

- Given: predicted class probabilities
- Basic idea: only predict high-cost class when very confident about prediction
- Make the prediction that minimizes the expected cost (instead predicting most likely class)
 - Expected cost: dot product of vector of class probabilities and appropriate column in cost matrix
 - Choose column (class) that minimizes expected cost

Practice

- Costs are rarely known → decisions are usually made by comparing possible scenarios
- A lift chart allows a visual comparison (\rightarrow see next slide)

Generating lift charts

Lift charts

• Sort instances according to predicted probability of being positive

	Predicted probability	Actual class
1	0.95	Yes
2	0.93	Yes
3	0.93	No
4	0.88	Yes

Comparing alternatives in marketing

• X axis is sample size, y axis is number of true positives

Example

- Promotional mail to 1'000'000 households
- Mail to all; 0.1% respond (1'000)
- Improvement 1: subset of 100'000 most promising,
 0.4% of these respond (400) (→ 40% of responses for 10% of cost)
- Improvement 2: subset of 400'000 most promising,
 0.2% respond (800) (→ 80% of responses for 40% of cost)
- → Which is better? The lift chart allows a **visual comparison**

ROC curves and choice of classifier

Example

- For a small, focused sample, use method A
- For a larger one, use method B
- In between, choose between A and B with appropriate probabilities

The convex hull

- Given two learning schemes we can achieve any point on the convex hull!
- Example:
 - Let TP and FP rates for scheme A and B be t_A , f_A , t_B , f_B
 - If method A is used to predict $100 \cdot q\%$ of the cases and method B for the rest, then
 - $t_{A\cup B} = q \cdot t_A + (1-q) \cdot t_B$
 - $f_{A\cup B} = q \cdot f_A + (1-q) \cdot f_B$

→ See also: Scott et al., «Realisable Classifiers: Improving Operating Performance on Variable Cost Problems», 1998

Information criteria Combining ML and complexity penalties

Classic information criteria

- Akaike information criterion (AIC)
 - Choose $\hat{h} = \max_{h_i} \ln p(X|h_i(X|\theta)) \#\theta$, where $\#\theta$ is the number of tunable parameters in h
- Bayesian information criterion (BIC)
 - Choose $\hat{h} = \max_{h_i} \ln p(X|h_i(X|\theta)) \frac{1}{2} \#\theta \ln N$
- \rightarrow They do not take uncertainty in θ into account
- → Therefore usually prefer too simple models

X-axis shows all possible data sets (ordered by complexity); y-axis shows likelihood of the data given a model. Broader applicable (i.e., **more complex**) **models have lower likelihoods because of overall same probability mass**. Here, model *M*₂ is optimal. From [Murphy, MLAPP, ch. 5.3.1]

Bayesian model selection

- Remember the MAP hypothesis $p(h|X) = \frac{p(X|h) \cdot p(h)}{p(X)}$ (\rightarrow see slide 16)
- The evidence for the model *h* is **correctly computed** via the marginalized likelihood: $p(X|h) = \int p(X|\theta)p(\theta|h)d\theta$ ("summing" over all possible parameters)
- → The integrating out of the ML parameters compensates for model complexity (see figure)
- → Bayesian model selection performs the same as CV with less training runs

The MDL principle Minimum description length for model selection

Definition

- Space required to describe a theory + space required to describe the theory's mistakes
- For classification: "Theory" is the classifier, "mistakes" are the errors on the validation data
 → Goal: Classifier with minimal DL

Example: elegance vs. errors

- Theory 1: very simple & elegant → explains the data almost perfectly E.g., Kepler's three laws on planetary motion
- Theory 2: significantly more complex → reproduces the data without mistakes E.g., Copernicus's latest refinement of the Ptolemaic theory of epicycles
 - Theory 1 is probably preferable (even though Copernicus's theory is more accurate than Kepler's on limited data)

MDL and data compression

- The **best theory** is the one that **compresses the data the most** (i.e., to compress a data set, generate & store (a) a model and (b) its mistakes)
- → Computing size of error is easy (information loss)
- → Computing size of model needs appropriate encoding method

MDL examples

MDL for clustering

- Computing the description length of the encoded clustering:
 - Model := bits needed to encode the cluster centers
 - Data := distance to cluster center (i.e., encode cluster membership and position relative to cluster)
- → Works if coding scheme uses less code space for small numbers than for large ones

MDL for binary classification

- Bits necessary for encoding the two «theories»:
 - A: 2 floats (θ_0, θ_1) + relative errors
 - B: 11 floats + relative errors

MDL and MAP estimates Maximum a posteriori (MAP) probabilities

Finding the MAP theory corresponds to finding the MDL theory

- Difficulty in applying MAP principle: determining the prior probability p(h) of the model
- **Difficulty** in applying **MDL** principle: finding a **coding scheme** for the model
- → if we know a priori that a particular model is more likely, we need fewer bits to encode it

Disadvantages of MDL

- Appropriate coding schemes / prior probabilities for models are crucial
- No guarantee that the MDL model is the one which minimizes the expected error
- → Epicurus's principle of multiple explanations: «keep all theories being consistent with the data»

Performing the t-test usually on m repetitions of k-fold CV on same data

Test statistic t

• Corrected resampled (for practice): $t = \frac{\mu_d}{\sqrt{\left(\frac{1}{mk} + \frac{k}{k^2 - k}\right)\sigma_d^2}}$ where *N* is the number of instances in the training set used *m* til

where *N* is the number of instances in the training set, used *m* times with *k*-fold CV to produce *mk* error estimates per learner; the *mean* of their differences is $\mu_d = \frac{1}{mk} \sum_{i=1}^{mk} E_{val}(h_{\mathcal{L}_A}, X_i) - E_{val}(h_{\mathcal{L}_B}, X_i)$; the variance of these differences is σ_d^2

• Paired (for unlimited data): $t = \frac{\mu_d}{\sqrt{\frac{\sigma_d^2}{mk}}}$

Process

- Compute the *t* statistic (w.r.t. the applicable version of the t-test)
- Fix a significance level *α* (usually 0.01 or 0.05)
- Look up *z* corresponding to $\frac{\alpha}{2}$ in the Student's distribution table for km 1 degrees of freedom
- Significant (with prob. 1 − α) difference of the CV error estimates ⇔ t ≤ −z or t ≥ z

Degrees of freedom	p = 0.1	p = 0.05	p = 0.02	p = 0.01	p = 0.002	p = 0.00*
1	6.314	12.706	31.821	63.657	318.310	636.620
2	2.920	4.303	6.965	9.925	22.327	31.598
3	2.353	3.182	4.541	5.841	10.214	12.924
4	2.132	2.776	3.747	4.604	7.173	8.610
5	2.015	2.571	3.365	4.032	5.893	6.869
6	1.943	2.447	3.143	3.707	5.208	5.959
7	1.895	2.365	2.998	3.499	4.785	5.408
8	1.860	2.306	2.896	3.355	4.501	5.041
9	1.833	2.262	2.821	3.250	4.297	4.781
10	1.812	2.228	2.764	3.169	4.144	4.587
11	1.796	2.201	2.718	3.106	4.025	4.437
12	1.782	2.179	2.681	3.055	3.930	4.318
13	1.771	2.160	2.650	3.012	3.852	4.221
14	1.761	2.145	2.624	2.977	3.787	4.140
15	1.753	2.131	2.602	2.947	3.733	4.073
16	1,746	2,120	2.583	2.921	3.686	4.015
17	1.740	2.110	2.567	2.898	3.646	3.965
18	1.734	2.101	2.552	2.878	3.610	3.922
19	1.729	2.093	2.539	2.861	3.579	3.883
20	1.725	2.086	2.528	2.845	3.552	3.850
21	1.721	2.080	2.518	2.831	3.527	3.819
22	1.717	2.074	2.508	2.819	3.505	3.792
23	1.714	2.069	2.500	2.807	3.485	3.767
24	1.711	2.064	2.492	2.797	3.467	3.745
25	1.708	2.060	2.485	2.787	3.450	3.725
26	1.706	2.056	2.479	2.779	3.435	3.707
27	1.703	2.052	2.473	2.771	3.421	3.690
28	1.701	2.048	2.467	2.763	3.408	3.674
29	1.699	2.045	2.462	2.756	3.396	3.659
30	1.697	2.042	2.457	2.750	3.385	3.646
40	1.684	2.021	2.423	2.704	3.307	3.551
60	1.671	2.000	2.390	2.660	3.232	3.460
120	1 658	1 980	2 358	2 617	3 160	3 373

1.645

1,960

2.326

2.576

Zurich University

3.291

3.090

BAYESIAN LEARNING

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Bayesian reasoning & learning based on [Mitchell, 1997], ch. 6

There's a long-standing controversy pro/con Bayesianism in statistics → see e.g. <u>http://lesswrong.com/lw/1to/what_is_bayesianism/</u>

Bayesian reasoning

- Built upon Bayes' theorem to convert prior probabilities into posteriors
- Quantities of interest are governed by probability distributions
- Optimal decisions are made by taking them plus observed data into account

Pro

- Provides explicit probabilities for hypotheses
- Helps to understand/analyze algorithms that don't emit probabilities (e.g., why to minimize sum of squares; what the inductive bias of decision trees is)
- Everything done probabilistically

(e.g., every training instance contributes to the final hypothesis according to its prior probability; **prior knowledge** can be incorporated as prior probabilities for candidate hypotheses or distributions over training data; predictions can be easily combined)

zh aw

Con

- Many needed **probabilities** are **unknown** in practice (approximations like sampling needed)
- Direct application of Bayes theorem often computationally intractable

The Bayes optimal classifier Classification's *«gold standard»*

Theoretically optimal (=most probable) classification

• Combine predictions of all hypotheses, weighted by their posterior probabilities:

$$\underset{y_j \in Y}{\operatorname{argmax}} \sum_{h_i \in \mathcal{H}} p(y_j | h_i) p(h_i | X)$$

(where y_j is a label from the set *Y* of classes, h_i is a specific hypothesis out of the hypothesis space \mathcal{H} , and $p(h_i|X)$ is the posterior of h_i given the data *X*)

• No other method using the same \mathcal{H} and X can do better on average

Pro

- In particular **outperforms** simply taking the classification of the **MAP hypothesis** Example: Let 3 classifiers predict tomorrows weather as $h_1(x) = sunny$, $h_2(x) = rainy$, $h_3(x) = rainy$ with posterior probabilities of .5, .4 and .1, respectively; let the true weather tomorrow be *rainy*. The MAP hypothesis h_1 wrongly predicts *sunny* weather; the Bayes classifier truly predicts *rainy*.
- Enforces the idea of ensemble learning (\rightarrow see V05)

Con

• Computationally intractable (linear in $|\mathcal{H}| \rightarrow \text{see } \underline{\text{http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf}$)

Other forms of Bayesian learning The Naïve Bayes classifier

Basic idea

- The straightforward way of applying Bayes' theorem to yield a MAP hypothesis is intractable (too many conditional probability terms need to be estimated)
- **Simplification**: Assume **conditional independence** among features given target value $h(x_i) = \frac{argmax}{y_j \in Y} P(y_j | x_{i1}, x_{i2}, \dots, x_{iD}) = \frac{argmax}{y_j \in Y} P(x_{i1}, x_{i2}, \dots, x_{iD} | y_j) \cdot P(y_j) = \frac{argmax}{y_j \in Y} P(y_j) \cdot \prod_{d=1..D} P(x_{id} | y_j)$
- → Very successful in text classification (e.g., SPAM filtering, news classification)

Example (from https://alexn.org/blog/2012/02/09/howto-build-naive-bayes-classifier.html)

- Imagine 74 emails: 30 are SPAM; 51 contain "penis" (of which 20 are SPAM); 25 contain "Viagra" (24 are SPAM)
- Bayes classifier: $p(SPAM|\text{penis, viagra}) = \frac{p(penis(SPAM) \cdot p(agra), p(viagra), p(viagra), p(sPAM))}{p(penis(viagra), p(viagra), p(viagra))} = \cdots$
 - → intractable with more words because of cond. prob. terms also get numerically small
- Naïve Bayes classifier: $p(SPAM|\text{penis}, \text{viagra}) = \frac{p(penis|SPAM) \cdot p(viagra|SPAM) \cdot p(SPAM)}{p(penis) \cdot p(viagra)} = \frac{\frac{20}{30} \cdot \frac{24}{30} \cdot \frac{30}{74}}{\frac{51}{74} \cdot \frac{25}{74}} = 9.928$

Other forms of Bayesian learning The Bayes net (or Bayesian belief network)

Zurich University

In a nutshell

- Loosens naïve Bayes constraint: Assumes only conditional independence among certain sets of features
- Model of joint probability distribution of features (also unobserved ones):

 a directed acyclic graph for independence assumptions and local conditional probabilities
- Inference possible for any feature / target, based on any set of observed variables
 → has to be done approximately to be tractable (NP-hard)
- Use case: conveniently encode prior causal knowledge in form of conditional (in)dependencies

Example (from Goodman and Tenenbaum, "Probabilistic Models of Cognition", http://probmods.org)

- A simple Bayes net for medical diagnosis
- One node per random variable
 - ➔ Attached is a conditional probability table with the distribution of that node's values given its parents
- A Link between 2 nodes exists if there is a direct conditional (causal) dependence

The EM algorithm

A general-purpose, unsupervised learning algorithm

EM (expectation maximization)

- Iterative method to learn in the presence of unobserved variables → A typical hidden variable is some sort of group/cluster membership
- Good convergence guarantees (finds local maximum) ٠

Example

- A given dataset is known to be generated by either of 2 Gaussians (with equal probability)
- Only the data is observed ٠
 - → Which Gaussian generated a certain point is unobserved
 - → The Gaussians' parameters are unknown
- The means & variances of these Gaussians shall be learned •
 - → Needs an estimation of the membership probability of each point to either Gaussian

Delay

Source: https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization algorithm)

Zurich University of Applied Sciences

The EM algorithm (contd.)

Algorithm

1. Start with a random initial hypothesis

Example: **Pretend to know the parameters** μ , σ^2 of the 2 Gaussians (e.g., pick random values)

- 2. E-Step: Estimate expected values of unobserved variables. assuming the current hypothesis holds Example: **Compute probabilities** p_{ti} that feature vector x_t was produced by Gaussian i (i.e., $p_{ti} = p(G = i | x_t) = \frac{p(x_t | G = i)p(G = i)}{p(x_t)} \approx p(x_t | G = i) = g_i(x_t, \mu_i, \sigma_i)$ with g_i being the Gaussian pdf and G the unobserved random variable indicating membership to one of the Gaussians)
- M-Step: Calculate new Maximum Likelihood (ML) estimate of hypothesis, 3. assuming the expected values from (2) hold Example: **Calculate the** μ_i , σ_i^2 , given the currently assigned membership (i.e., using standard ML estimation: $\mu_i = \frac{1}{T} \sum_{t=1}^{T} p_{ti} \cdot x_t$, $\sigma_i^2 = \frac{1}{T} \sum_{t=1}^{T} p_{ti} \cdot (x_t - \mu_i)^2$)
- 4. Repeat with step 2 until convergence Always replacing old estimates with new ones

Zurich University of Applied Sciences

M-Step update hypothesis

(e.g., parameters)

E-Step

update variables

(e.g., memberships)

More on Bayesian learning

- <u>http://fastml.com/bayesian-machine-learning/</u>: Brief overview, explanations and references
- [Mitchell, 1997], ch. 6: Concise introduction to Bayesian learning
- <u>http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf</u>: New chapter for [Mitchell, 1997]
- [Murphy, 2012] and [Bishop, 2006]: Two text books embracing the Bayesian perspective
- Reynolds, Rose, «Robust Text-Independent Speaker Identification using Gaussian Mixture Speaker Models», 1995

QUICK INTRODUCTION TO IPYTHON

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

A quick introduction to IPython Web-based enhanced Python console for explorative analysis

Features

- Runs in the browser
- Code and markup (e.g., descriptions, explanations) in the same «file»
- Concept of «cells»
 - The code in a cell is run on demand («play» button on highlighted cell)
 - Results are directly rendered below (text output, plots, sound, videos, formulae, ...)
 - Order of execution is top-down (self-defined functions are possible)
- → Easy to follow (because of explanations), easy to manipulate
 → Often starting point for autonomous scripts

IP[y]: IPython Interactive Computing

How to operate an IPython notebook?

