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Machine Learning

V02: Formulating learning problems

Ingredients to learning

Machine learning from scratch

With material from Andrew Y. Ng, Coursera
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Educational objectives

• Name the parts that make up a machine learning solution as well 

as concrete instances of each 

• Understand the linear regression with stochastic gradient 

descent algorithm from scratch

• Implement a simple machine learning algorithm from scratch
(that is, from its mathematical description)



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

3

1. INGREDIENTS TO LEARNING
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Recap

What is a well-posed learning problem (according to [Mitchell, 1997])?

T:

P:

E:

There are literally thousands of learning algorithms; how can we 

characterize them?

•

•
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Designing a learning solution

Task training ExperiencePerformance measureHigh-level view:

Practitioner’s 

view:

E.g., 

• learn playing Tic-Tac-Toe

E.g., 

• #games won against 

project team

E.g., 

• games played against itself

Optimization: 
Regime to search ℋ

Evaluation: 
Loss (objective) function

Representation: 
ℋ, features

E.g., 

• Full board state as string of 

X/-/O chars

• Table mapping strings to 

winning probability; 

or neural network?

E.g., 

• Sparse rewards: +1 for win, 

0 for draw or loss

E.g., 

• TD(1) reinforcement learning

Non-trivial: Use prior 

knowledge / experience 

on what works under 

which conditions.

Non-trivial: What 

features to use? Then 

pre-processing takes 

80% of the time.

Not so trivial: Often 

not the standard 

loss function of your 

favourite ML library.
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Examples for practical components
From [Domingos, 2012]

(Not all possible tuples of < 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 > exist / make sense)

How to select? (we come back to this question often…)

• Remember V01: No generally best solution available (no free lunch)
 see V03 and V06 for best practices on model selection

• Guide: «What prior knowledge is easily expressed in certain features & models?»

• Relieve: Good & compact features are more important than model choice 

Ask yourself: «Do I see 

the sought patterns in

these features alone?»

In a nutshell: Use experience

(own or read), experiment a 

lot, constrain solutions
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Formulating a machine learning solution
Quizzy 1/5

Suppose we feed a learning algorithm a lot of historical weather data, 

and have it learn to predict weather. In this setting, what is it’s training 

experience E?

 None of these

 The probability of it correctly predicting a future date’s weather

 The process of the algorithm examining a large amount of historical 

weather data

 The weather prediction task
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Formulating a machine learning solution
Quizzy 2/5

Suppose we are working on weather prediction, and use a learning 

algorithm to predict tomorrow's temperature (in degrees Celsius). 

Would you treat this as a classification or a regression problem?

 Classification

 Regression
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Formulating a machine learning solution
Quizzy 3/5

Suppose we are working on stock market prediction, and we would like 

to predict whether or not a particular stock's price will be higher

tomorrow than it is today. You want to use a learning algorithm for this. 

Would you treat this as a classification or a regression problem?

 Classification

 Regression
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Formulating a machine learning solution
Quizzy 4/5

Some of the problems below are best addressed using a supervised 

learning algorithm, and the others with an unsupervised algorithm. 

Which of the following would you apply supervised learning to? 

 Examine a web page, and classify whether the content on the web page 

should be considered “child friendly” (e.g., non-pornographic etc.) or ”adult”

 Examine a large collection of emails that are known to be spam email, to 

discover if there are sub-types of spam mail

 In farming, given data on crop yields over the last 50 years, learn to predict 

next year’s crop yields

 Take a collection of 1’000 essays written on the Swiss economy, and find a 

way to automatically group these essay into a small number of groups that 

are somehow “similar” or “related”
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Formulating a machine learning solution
Quizzy 5/5

Many substances that can burn…
…(such as gasoline and alcohol) have a chemical structure based on carbon 

atoms. For this reason they are called hydrocarbons. A chemist wants to 

understand how the number of carbon atoms in a molecule affects how 

much energy is released when that molecule combusts (meaning that it is 

burned). The chemist obtained the dataset below. In the column on the right, 

"kJ/mol" is the unit measuring the amount of energy released.

 Is it classification or regression?

 What is 𝑋, 𝑌 (the training data)?

 What could be the relationship?

How to gain first insight?

Name of 

molecule

Number of carbon 

atoms in molecule 

Heat released when

burned (kJ/mol)

Methane 1 -890

Ethene 2 -1411

Ethane 2 -1560

Propane 3 -2220

Cyclopropane 3 -2091

Butane 4 -2878

Pentane 5 -3537

Benzene 6 -3268

Cycloexane 6 -3920

Hexane 6 -4163

Octane 8 -5471

Napthalene 10 -5157
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Getting first insights
Example: Quizzy 5/5

Low-hanging fruits
• Exploratory data analysis (visualization)  this and next slide

• Trying simpler models first  next section

import matplotlib.pyplot as plt

import pandas as pd

data_frame = pd.read_excel("hydrocarbons.xlsx")

plt.scatter(data_frame['nr_molecules'], 

data_frame['heat_release'])

plt.title("Scatter Plot X vs. Y")

plt.xlabel(data_frame.columns[1])

plt.ylabel(data_frame.columns[2])

plt.show()
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The Machine Learning development process
Exploration & experimentation

Necessity of a distinct conceptual approach
• Modeling data ≠ {software dev., business process mngmt., data base design, stat. analysis, …}

In a nutshell
• Focus on systematic experimentation and rigorous evaluation  automatized

• Best implemented by (a pipeline of) scripts  UNIX command line approach

• Data exploration and rapid prototyping is key  IPython /Jupyter (see appendix of V03)
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2. MACHINE LEARNING FROM SCRATCH
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Carbon and combustion
Continuous example for this section

We need a solid understanding of < 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛, 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 >

Thus, this section explores
• …a «straight line fit» as a simplistic model

• …all the details of how to train it

• …to get a feeling of ML apart from libraries

Observations
• The data shows a linear trend

• The gradient is roughly 
−2500+2600

2−4
= −50

Conclusions
• Labeled data available  supervised learning

• Contiuous valued output  regression

• Reasonable straight line fit  linear regression could be a first try

ca. -2600

ca. -2500
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How to represent ℎ?
..in the case of univariate linear regression

ℎ 𝑥, Ԧ𝜃 = 𝜃0 + 𝜃1𝑥

• 𝜃0 = intercept, 𝜃1 = gradient

How to choose parameters 𝜃0, 𝜃1?
• Parameters correspond with different fits

Training Set

Learning Algorithm (optimizer)

h
x: carbon portion in 

molecule

y: estimated fuel 

value

ca. -2600

ca. -2500

x =

y
=

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3
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Cost function 𝐽
Driver of the optimization

Idea
• Choose 𝜽𝟎, 𝜽𝟏 so that 𝒉(𝒙) is close to 𝒚 for the training examples (𝑥, 𝑦)
• Let a function 𝑱(𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔) number the cost of errors made for specific parameters

𝐽 𝜃0, 𝜃1 =
1

2𝑁


𝑖=1

𝑁

ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖
2

Precise objective
• Minimize 𝑱 w.r.t. 𝜃0, 𝜃1
• In terms of V01: 

• 𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2 is the squared error loss function

• 𝐽 𝜃0, 𝜃1, ℎ, 𝑋, 𝑌, 𝐿 = 𝐸𝑒𝑚𝑝 ℎ 𝜃 , 𝑋, 𝑌, 𝐿 =
1

2𝑁
σ𝑖=1
𝑁 𝐿 ℎ 𝑥𝑖, 𝜃 , 𝑦𝑖 , is the cost of error with explicit

respect to all parameters: Measured in terms of the empirical error over the training set (𝑋, 𝑌)
according to the squared error loss function 𝐿 for a particular hypothesis ℎ

ℎ 𝑥, Ԧ𝜃 = 𝜃0 + 𝜃1𝑥

squared error

Aliases: loss function, objective function ∗ (−1)

average over all 

𝑁 examples

/2 for mathematical 

“beauty” (i.e., ease)…

We didn’t mention a few parameters 

here  see below for complete list
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Simplified version to gain intuition
Fixed intercept at (0,0)

• Hypothesis: ℎ 𝑥, 𝜃1 = 0 + 𝜃1𝑥
• Parameter: 𝜃1
• Cost: 𝐽 𝜃1 =

1

2𝑁
σ𝑖=1
𝑁 ℎ 𝑥𝑖 , 𝜃1 − 𝑦𝑖

2

• Goal: minimize
𝜃1

𝐽(𝜃1)

Example values of 𝐽
• 𝐽 1 =

1

6
σ𝑖=1
3 ℎ 𝑥𝑖 , 1 − 𝑦𝑖

2

=
1

6
σ𝑖=1
3 𝑥𝑖 − 𝑦𝑖

2

=
1

6
1 − 1 2 + 2 − 2 2 + 3 − 3 2 = 0

• 𝐽
1

2
= ⋯ =

1

6

1

2
− 1

2
+ 1 − 2 2 +

3

2
− 3

2

=
1

6
∙
7

2
≈ 0.58

• 𝐽 0 = ⋯=
1

6
(12 + 22 + 32) =

1

6
∙ 14 ≈ 2.33

• …

• ℎ 𝑥, 𝜃1

• 𝐽 𝜃1

0

1

2

3

0 1 2 3

𝑥

𝑦

ℎ 𝑥, 1

0

1

2

3

-0.5 0 0.5 1 1.5 2 2.5

x

𝐽 1

ℎ 𝑥,
1

2

x
𝐽
1

2

x

𝐽 0

ℎ 𝑥, 0
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Back to two parameters

• Hypothesis: ℎ 𝑥, Ԧ𝜃 = 𝜃0 + 𝜃1𝑥

 For fixed Ԧ𝜃, this is a function of 𝒙

• Parameters: 𝜃0, 𝜃1

• Cost: 𝐽 𝜃0, 𝜃1 =
1

2𝑁
σ𝑖=1
𝑁 ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖

2

 For fixed 𝑥, this is a function of 𝜽

• Goal: minimize
𝜃0,𝜃1

𝐽(𝜃0, 𝜃1)

Example: Housing prices (𝑦) per size (𝑥)

• ℎ 𝑥, Ԧ𝜃

• 𝐽 𝜃0, 𝜃1

𝑥

𝑦

ℎ
(𝑥
,8
0
0
,−
1
.5
)

𝐽 is a convex (bowl-

shaped) function of 

2 variables  3D

…and its 2D 

visualization as a 

contour plot
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Back to two parameters
contd.

Example: Housing prices (𝑦) per size (𝑥)

• ℎ 𝑥, Ԧ𝜃

• 𝐽 𝜃0, 𝜃1

𝑥

𝑦

ℎ
(𝑥
,8
0
0
,−
1
.5
)

ℎ
(𝑥
,3
6
0
,0
)

ℎ
(𝑥
,1
0
0
,0
.1
4
)

ℎ
(𝑥
,5
0
0
,−
0
.0
2
5
)
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Optimization by gradient descent
Numerical optimization

Have: Some function 𝐽 𝜃0, 𝜃1
Want: minimize

𝜃0,𝜃1
𝐽(𝜃0, 𝜃1)

Algorithm
• Start with some 𝜃0, 𝜃1 (e.g., (0,0))
• Keep changing 𝜃0, 𝜃1 to reduce 𝐽 𝜃0, 𝜃1
 Direction: steepest descent

• End: Hopefully at a minimum

Observations
• Small changes in starting point result in 

different local minima

• Assumption: cost surface is smooth, local 

minima are ok

1
0

𝐽(𝜃0, 𝜃1)
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Gradient descent algorithm

Pseudo code for gradient descent
• _ 

•
𝜕

𝜕𝜃𝑗
𝐽 𝜃𝑜, 𝜃1 is the partial derivative of 𝐽 w.r.t. 𝜃𝑗

• 𝛼 > 0 is called the learning rate (it is a data-dependent hyperparameter of the algorithm)

• Important: simultaneous update!

Why not solving it analytical? 
• Numerical optimization scales better to larger data sets

• Gradient descent also works for ℎ’s without analytical solution (e.g., neural networks)

repeat until convergence:

for j:=0..1:

𝜽𝒋 ≔ 𝜽𝒋 − 𝜶 ∙
𝝏

𝝏𝜽𝒋
𝑱 𝜽𝒐, 𝜽𝟏

for j:=0..1:

𝜽𝒋 ≔ 𝜽𝒋

tmp_0 := 𝜽𝟎 − 𝜶 ∙
𝝏

𝝏𝜽𝟎
𝑱 𝜽𝒐, 𝜽𝟏

tmp_1 := 𝜽𝟏 − 𝜶 ∙
𝝏

𝝏𝜽𝟏
𝑱 𝜽𝒐, 𝜽𝟏

𝜽𝟎 ≔ tmp_0

𝜽𝟏 ≔ tmp_1

𝜽𝟎 ≔ 𝜽𝟎 − 𝜶 ∙
𝝏

𝝏𝜽𝟎
𝑱 𝜽𝒐, 𝜽𝟏

𝜽𝟏 := 𝜽𝟏 − 𝜶 ∙
𝝏

𝝏𝜽𝟏
𝑱 𝜽𝒐, 𝜽𝟏

 

Problem: changed 𝜽𝟎 is already 

used to estimate new 𝜽𝟏
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Intuition behind gradient descent formulae (II)
Effect of the learning rate 𝜶

• 𝛼 too small

 gradient descent is slow

• 𝛼 too large

 gradient descent overshoots minimum

 no convergence or even divergence!

𝐽(𝜃)

𝜃

𝐽(𝜃)

𝜃

x

x

x
x
x
x
x

xxxxx
xx

x
x

xx
x
x
x

x
x

x
x

x

x

x

x

x

x

x

x
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Gradient descent for univariate linear regression
Formal overview

Ingredients
• Representation

• ℎ 𝑥, Ԧ𝜃 = 𝜃0 + 𝜃1𝑥

• Evaluation

• 𝐽 𝜃0, 𝜃1 =
1

2𝑁
σ𝑖=1
𝑁 ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖

2

•
𝜕

𝜕𝜃0
𝐽 𝜃0, 𝜃1 =

1

𝑁
σ𝑖=1
𝑁 ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖 ∙

𝜕

𝜕𝜃0
ℎ 𝑥𝑖 , Ԧ𝜃

•
𝜕

𝜕𝜃1
𝐽 𝜃0, 𝜃1 =

1

𝑁
σ𝑖=1
𝑁 ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖 ∙

𝜕

𝜕𝜃1
ℎ 𝑥𝑖 , Ԧ𝜃

• Optimization

• _repeat until convergence:
for j:=0..1:

𝜽𝒋 ≔ 𝜽𝒋 − 𝜶 ∙
𝝏

𝝏𝜽𝒋
𝑱 𝜽𝒐, 𝜽𝟏

for j:=0..1:

𝜽𝒋 ≔ 𝜽𝒋

How to take the derivative: 

 see appendix

repeat until convergence:

𝜽𝟎 ≔ 𝜽𝟎 −𝜶 ∙
𝟏
𝑵
σ𝒊=𝟏
𝑵 𝒉 𝒙𝒊, 𝜽 − 𝒚𝒊

𝜽𝟏 ≔ 𝜽𝟏 −𝜶 ∙
𝟏
𝑵
σ𝒊=𝟏
𝑵 𝒉 𝒙𝒊, 𝜽 − 𝒚𝒊 ∙ 𝒙𝒊

𝜽𝟎 ≔ 𝜽𝟎
𝜽𝟏 ≔ 𝜽𝟏

Batch gradient descent: uses all 

training examples at once (as 

opposed to stochastic gradient 

descent, which uses small 

chunks called “mini-batches”…)

= 1

= 𝑥𝑖
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Review

• A learning solution needs a representation, an evaluation

function and an optimizer

• These can be derived from the formulation of a well-posed learning 

problem as task, performance measure and training experience

• There is no general solution to deriving these concrete methods. It 

is problem (data-) dependent and relies on prior knowledge

• Valid guides are the characteristics of methods (inductive bias, 

VC theory), experience / best practices and prior knowledge

• Gradient descent is a general-purpose optimizer; implementation 

details (simultaneous updates) and hyperparameters are 

practically very relevant
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P02.1: Implementing ML from scratch

Work through exercise P02.1: 

• Implement the algorithms derived in this chapter just 

using the given formal descriptions (i.e., slide 24)

• Reflect on the methods: How transferable are 

experiences from one data set to the next?

• Reflect on your implementation: What took you the most 

time? Which part was easy for you?
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APPENDIX
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Remark: Different levels of inductive bias
Are there more general forms of prior knowledge that 

universally guide learning?
a

p
p

lic
a

ti
o

n
 l
e

v
e

l
fu

n
d

a
m

e
n

ta
l 
le

v
e

l

there’s a linear 

relationship between 

inputs & outputs

learn sparse, 

distributed 

representations

the hypothesis space 

is smooth
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Intuition behind gradient descent formulae (I)
Signs and 𝜶 automatically care for proper descent

• 𝜃′′ ≔ 𝜃′ − 𝛼 ∙
𝜕

𝜕𝜃′
𝐽 𝜃′ • 𝜃′′ ≔ 𝜃′ − 𝛼 ∙

𝜕

𝜕𝜃′
𝐽 𝜃′

𝐽(𝜃)

𝜃𝜃′

𝜕

𝜕𝜃
𝐽(𝜃′)

x

𝜃′′

positive numbers negative slope

x

x
x

𝜃′′𝜃′

𝐽(𝜃)

𝜃

• As we approach the minimum, steps automatically get smaller  𝛼 may be fixed over time

current valuenext value



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

30

Derivative of 𝐽 w.r.t. 𝜃𝑗

𝜕

𝜕𝜃𝑗
𝐽 𝜃𝑜, 𝜃1 =

𝜕

𝜕𝜃𝒋

1

2𝑁


𝑖=1

𝑁

ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖
2
=

𝑖=1

𝑁
𝜕

𝜕𝜃𝒋

1

2𝑁
ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖

2

=

𝑖=1

𝑁
2

2𝑁
ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖 ∙

𝜕

𝜕𝜃𝒋
ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖

=

𝑖=1

𝑁
1

𝑁
ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖 ∙

𝜕

𝜕𝜃𝒋
ℎ 𝑥𝑖 , Ԧ𝜃

=

𝑗 = 0 ⟶
1

𝑁


𝑖=1

𝑁

ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖 ∙ 1

𝑗 = 1 ⟶
1

𝑁


𝑖=1

𝑁

ℎ 𝑥𝑖 , Ԧ𝜃 − 𝑦𝑖 ∙ 𝑥𝑖

Chain rule: 𝑓 𝑔 𝑥
′
= 𝑓′ 𝑔 𝑥 ∙ 𝑔′ 𝑥
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Choosing cost functions

Ideal properties of a cost function
1. Being easy to optimize  should be a convex function

2. Assigning equal cost to far and very far off examples  makes it robust to outliers

Cost functions in practice
• MSE (mean-squared error) is almost always used for regression
 it only exhibits property 1

• Making MSE level off would make the function non-convex
 when using MSE, one has to care for outliers during pre-processing

 Cost function design is important 
(because the usual one might not capture the problem well)

 …but care has to be taken to make it mathematically sound!

Further reading
• Boyd & Vandenberghe, «Convex Optimization», 2004  ch. 3

• Bertsekas, «Convex Optimization Algorithms», 2015  ch. 1

• Chu, «Machine Learning Done Wrong», 2015

Emti Khan, EPFL, at his introductory ML 

course during Zurich ML Meetup #18, 

25.08.2015
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Examples of built-to-purpose cost functions
from [Mitchell, 1997], chapter 6.5

Certain well-known cost functions can be justified theoretically using Bayesian 

reasoning by showing optimality under certain assumptions:

Minimizing squared error
• Yields maximum likelihood (ML) hypothesis assuming Gaussian noise on the labels 

Example: Training linear regression to fit a straight line

Minimizing cross entropy
• Yields ML hypothesis assuming the labels are a 

probabilistic function of the training examples

• Example: Training a neural network to predict 

probabilities

 see appendix of V03
CMU’s Tom Mitchell, author of one of the most 

instructive machine learning books.


