Machine Learning V02: Formulating learning problems

Ingredients to learning Machine learning from scratch

zh aw

With material from Andrew Y. Ng, Coursera

Educational objectives

- Name the parts that make up a machine learning solution as well as concrete instances of each
- Understand the linear regression with stochastic gradient descent algorithm from scratch
- **Implement** a simple machine **learning algorithm from scratch** (that is, from its mathematical description)

Zurich University of Applied Sciences

1. INGREDIENTS TO LEARNING

Recap

Zurich University of Applied Sciences

What is a well-posed learning problem (according to [Mitchell, 1997])?

T: P: E:

There are literally thousands of learning algorithms; how can we characterize them?

- •
- •

4

Designing a learning solution

Examples for practical components From [Domingos, 2012]

(Not all possible tuples of < *representation*, *evaluation*, *optimization* > exist / make sense)

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs		Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

In a nutshell: Use **experience** (own or read), **experiment** a lot, **constrain** solutions

How to select? (we come back to this question often...)

- Remember V01: No generally best solution available (no free lunch)
 → see V03 and V06 for best practices on model selection
- Guide: «What prior knowledge is easily expressed in certain features & models?»
- Relieve: Good & compact features are more important than model choice

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

Ask yourself: «**Do I see** the sought **patterns in** these **features** alone?»

Suppose we feed a learning algorithm a lot of historical weather data, and have it **learn to predict weather**. In this setting, **what is** it's training experience *E*?

□ None of these

- □ The probability of it correctly predicting a future date's weather
- The process of the algorithm examining a large amount of historical weather data
- □ The weather prediction task

Ś

Formulating a machine learning solution Quizzy 2/5

zh aw

Zurich University of Applied Sciences

Suppose we are working on weather prediction, and use a learning algorithm to **predict tomorrow's temperature** (in degrees Celsius). Would you treat this as a **classification or** a **regression** problem?

□ Classification

□ Regression

Ś

Suppose we are working on stock market prediction, and we would like to **predict whether** or not a particular **stock's price will be higher** tomorrow than it is today. You want to use a learning algorithm for this. Would you treat this as a **classification or a regression** problem?

Formulating a machine learning solution

□ Classification

□ Regression

Quizzy 3/5

Formulating a machine learning solution Quizzy 4/5

Some of the problems below are best addressed using a supervised learning algorithm, and the others with an unsupervised algorithm. **Which** of the following **would you apply supervised learning** to?

- □ Examine a web page, and classify whether the content on the web page should be considered "child friendly" (e.g., non-pornographic etc.) or "adult"
- Examine a large collection of emails that are known to be spam email, to discover if there are sub-types of spam mail
- In farming, given data on crop yields over the last 50 years, learn to predict next year's crop yields
- Take a collection of 1'000 essays written on the Swiss economy, and find a way to automatically group these essay into a small number of groups that are somehow "similar" or "related"

10

Many substances that can burn...

Quizzy 5/5

...(such as gasoline and alcohol) have a chemical structure based on carbon atoms. For this reason they are called hydrocarbons. A chemist wants to **understand how the number of carbon atoms in a molecule affects how much energy is released** when that molecule combusts (meaning that it is burned). The chemist obtained the dataset below. In the column on the right, "kJ/mol" is the unit measuring the amount of energy released.

Formulating a machine learning solution

- Is it classification or regression?
 What is *X*, *Y* (the training data)?
- What could be the relationship? How to gain first insight?

Name of molecule	Number of carbon atoms in molecule	Heat released when burned (kJ/mol)	
Methane	1	-890	
Ethene	2	-1411	
Ethane	2	-1560	
Propane	3	-2220	
Cyclopropane	3	-2091	
Butane	4	-2878	
Pentane	5	-3537	
Benzene	6	-3268	(
Cycloexane	6	-3920	
Hexane	6	-4163	
Octane	8	-5471	
Napthalene	10	-5157	

Getting first insights Example: Quizzy 5/5

import matplotlib.pyplot as plt import pandas as pd		
<pre>data_frame = pd.read_excel("hydrocarbons.xlsx")</pre>		
<pre>plt.scatter(data frame['nr molecules'],</pre>		
data frame['heat release'])		
plt.title("Scatter Plot X vs. Y")		
<pre>plt.xlabel(data_frame.columns[1])</pre>		
<pre>plt.ylabel(data_frame.columns[2])</pre>		
plt.show()		

Low-hanging fruits

- Exploratory data analysis (visualization) → this and next slide
- Trying simpler models first \rightarrow next section

Necessity of a distinct conceptual approach

Exploration & experimentation

• Modeling data \neq {software dev., business process mngmt., data base design, stat. analysis, ...}

In a nutshell

- Focus on systematic experimentation and rigorous evaluation → automatized
- Best implemented by (a **pipeline of**) scripts → UNIX command line approach

The Machine Learning development process

• Data exploration and rapid prototyping is key \rightarrow IPython /Jupyter (see appendix of V03)

2. MACHINE LEARNING FROM SCRATCH

Carbon and combustion Continuous example for this section

We need a solid understanding of < *Representation*, *Evaluation*, *Optimization* >

- Labeled data available \rightarrow supervised learning
- Contiuous valued output → regression
- Reasonable straight line fit → linear regression could be a first try

4 6 nr molecules

Scatter Plot X vs. Y

Figure 1

-1000

-2000

-3000

-4000

-5000

-6000

🟠 🔕 🕂 🚅 👼 🔚 🗹

.. in the case of univariate linear regression

- $h(x, \vec{\theta}) = \theta_0 + \theta_1 x$ θ_0 = intercept, θ_1 = gradient

How to represent *h*?

How to choose parameters θ_0, θ_1 ?

- 0 ×

Zurich University of Applied Sciences

10

12

8

Cost function / Driver of the optimization

Idea

- **Choose** θ_0 , θ_1 so that h(x) is close to y for the training examples (x, y)
- Let a function *I*(*parameters*) number the cost of errors made for specific parameters •

- In terms of V01:
 - $L(\hat{y}, y) = (\hat{y} y)^2$ is the squared error loss function
 - $J(\theta_0, \theta_1, h, X, Y, L) = E_{emp}\left(h(\vec{\theta}), X, Y, L\right) = \frac{1}{2N}\sum_{i=1}^{N} L\left(h\left(x_i, \vec{\theta}\right), y_i\right)$ is the **cost of error** with **explicit** respect to all parameters: Measured in terms of the empirical error over the training set (X, Y) according to the squared error loss function L for a particular hypothesis h

Simplified version to gain intuition Fixed intercept at (0,0)

- Hypothesis: $h(x, \theta_1) = 0 + \theta_1 x$
- Parameter: θ_1
- Cost: $J(\theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h(x_i, \theta_1) y_i)^2$
- Goal: minimize $J(\theta_1)$

Example values of J

•
$$J(1) = \frac{1}{6} \sum_{i=1}^{3} (h(x_i, 1) - y_i)^2$$

$$= \frac{1}{6} \sum_{i=1}^{3} (x_i - y_i)^2$$

$$= \frac{1}{6} ((1 - 1)^2 + (2 - 2)^2 + (3 - 3)^2) = 0$$

•
$$J\left(\frac{1}{2}\right) = \dots = \frac{1}{6} \left(\left(\frac{1}{2} - 1\right)^2 + (1 - 2)^2 + \left(\frac{3}{2} - 3\right)^2\right)$$

$$= \frac{1}{6} \cdot \frac{7}{2} \approx 0.58$$

•
$$J(0) = \dots = \frac{1}{6} (1^2 + 2^2 + 3^2) = \frac{1}{6} \cdot 14 \approx 2.33$$

•
$$\dots$$

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Back to two parameters

Example: Housing prices (y) per size (x)

600

- Hypothesis: $h(x, \vec{\theta}) = \theta_0 + \theta_1 x$ • \rightarrow For fixed $\vec{\theta}$, this is a function of x
- Parameters: θ_0, θ_1 ٠

• $h(x, \vec{\theta})$

Back to two parameters contd.

Example: Housing prices (y) per size (x)

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Optimization by gradient descent Numerical optimization

Have: Some function $J(\theta_0, \theta_1)$ Want: minimize $J(\theta_0, \theta_1)$ Algorithm

- Start with some θ_0, θ_1 (e.g., (0,0))
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ \rightarrow Direction: steepest descent
- End: Hopefully at a minimum

Observations

- Small changes in starting point result in different local minima
- Assumption: cost surface is smooth, local minima are ok

Zurich University of Applied Sciences

Gradient descent algorithm

Pseudo code for gradient descent

- $\frac{\partial}{\partial \theta_i} J(\theta_o, \theta_1)$ is the partial derivative of J w.r.t. θ_j
- $\alpha > 0$ is called the learning rate (it is a data-dependent hyperparameter of the algorithm)
- Important: simultaneous update!

Why not solving it analytical?

- Numerical optimization scales better to larger data sets
- Gradient descent also works for h's without analytical solution (e.g., neural networks)

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Intuition behind gradient descent formulae (II) Effect of the learning rate α

- α too small •
 - → gradient descent is **slow**

- α too large •
 - → gradient descent overshoots minimum
 - → no convergence or even divergence!

Zurich University of Applied Sciences

Gradient descent for univariate linear regression Formal overview

Zurich University of Applied Sciences

Review

- A learning solution needs a representation, an evaluation function and an optimizer
- These can be derived from the formulation of a well-posed learning problem as task, performance measure and training experience
- There is **no general solution** to deriving these concrete methods. It is problem (data-) dependent and relies on prior knowledge
- Valid guides are the characteristics of methods (inductive bias, VC theory), experience / best practices and prior knowledge
- Gradient descent is a general-purpose optimizer; implementation details (simultaneous updates) and hyperparameters are practically very relevant

25

P02.1: Implementing ML from scratch

Zurich University

Work through exercise P02.1:

- Implement the algorithms derived in this chapter just using the given formal descriptions (i.e., slide 24)
- Reflect on the methods: How transferable are experiences from one data set to the next?
- Reflect on your implementation: What took you the most time? Which part was easy for you?

APPENDIX

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Remark: Different levels of inductive bias Are there more general forms of prior knowledge that universally guide learning?

• As we approach the minimum, steps automatically get smaller $\rightarrow \alpha$ may be fixed over time

Zurich University

Derivative of *J* w.r.t. θ_j

$$\frac{\partial}{\partial \theta_j} J(\theta_o, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2N} \sum_{i=1}^N \left(h\left(x_i, \vec{\theta}\right) - y_i \right)^2 = \sum_{i=1}^N \frac{\partial}{\partial \theta_j} \frac{1}{2N} \left(h\left(x_i, \vec{\theta}\right) - y_i \right)^2$$

Chain rule: $f(g(x))' = f'(g(x)) \cdot g'(x)$
$$= \sum_{i=1}^N \frac{2}{2N} \left(h\left(x_i, \vec{\theta}\right) - y_i \right) \cdot \frac{\partial}{\partial \theta_j} \left(h\left(x_i, \vec{\theta}\right) - y_i \right)$$

$$=\sum_{i=1}^{N}\frac{1}{N}\left(h\left(x_{i},\vec{\theta}\right)-y_{i}\right)\cdot\frac{\partial}{\partial\theta_{j}}h\left(x_{i},\vec{\theta}\right)$$

$$=\begin{cases} j=0 \quad \longrightarrow \quad \frac{1}{N} \sum_{i=1}^{N} \left(h\left(x_{i}, \vec{\theta}\right) - y_{i} \right) \cdot 1 \\ \\ j=1 \quad \longrightarrow \quad \frac{1}{N} \sum_{i=1}^{N} \left(h\left(x_{i}, \vec{\theta}\right) - y_{i} \right) \cdot x_{i} \end{cases}$$

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Ideal properties of a cost function

Choosing cost functions

- 1. Being easy to optimize \rightarrow should be a *convex* function
- 2. Assigning equal cost to far and very far off examples → makes it robust to outliers

Cost functions in practice

- MSE (mean-squared error) is almost always used for regression
 → it only exhibits property 1
- Making MSE level off would make the function non-convex
 → when using MSE, one has to care for outliers during pre-processing
- Cost function design is important (because the usual one might not capture the problem well)
- → ...but care has to be taken to make it mathematically sound!

Further reading

- Boyd & Vandenberghe, «*Convex Optimization*», 2004 \rightarrow ch. 3
- Bertsekas, «Convex Optimization Algorithms», 2015 → ch. 1
- Chu, «Machine Learning Done Wrong», 2015

Emti Khan, EPFL, at his introductory ML course during Zurich ML Meetup #18, 25.08.2015

 \rightarrow see appendix of V03

32

Examples of built-to-purpose cost functions from [Mitchell, 1997], chapter 6.5

Certain well-known cost functions can be justified theoretically using Bayesian reasoning by showing optimality under certain assumptions:

Minimizing squared error

Yields maximum likelihood (ML) hypothesis assuming Gaussian noise on the labels Example: Training *linear regression* to fit a straight line

Minimizing cross entropy

- Yields ML hypothesis assuming the labels are a ٠ probabilistic function of the training examples
- Example: Training a *neural network* to predict ٠ probabilities

instructive machine learning books.

