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P06.1 Sample Solution

1. Tracing the curse of dimensionality

1.1 On average, what fraction of the available observations will be used to make the
prediction (p = 1)?

= On average, 10%. For simplicity, cases where x < 0.05 and x > 0.95 are ig-
nored. Reasoning: The range considered around a test instance spans 10% of the
range of the data, and the data is evenly distributed.

Consider the “nearest neighbour interval” to have side length of 10% of
the range of the data
=>» there are 10 such non-overlapping intervals in [0,1]

1.2 On average, what fraction of the available observations will be used to make the
prediction (p = 2)?

=>» On average, 0.12 = 0.01 = 1%

Consider the square to have side length of 10% of the range of the data
=> there are 100 such non-overlapping squares in the interval [0,11x[0,1]

|

1.3 What fraction of the available observations will be used to make the prediction
(p = 100)?

= On average, 0.1190 = 107190 = 107980,

1.4 Using your answers to parts 1-3, argue that a drawback of KNN when pis large is
that there are very few training observations “near” any given test observation.

=> As p increases linearly, training observations that are geometrically near de-
crease exponentially.

1.5 Forp=1, 2, and 100, what is the length of each side of the hypercube?

Sp=1=1=01
>p=2=1=+01=032
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1
> p=3=1=0.15=046

)
2>p=N=1=0.1n

2. Applying learning curves
2.1-

2.2 The digits data is a set of images of digits, so it is rather complex. When more anal-
ysis reveals what is possible on this dataset with more flexible learning algorithms,
the ~17% error rate produced by Naive Bayes are rather poor and are dominated
by bias (compare the curve shape: both curves converge, but the error is rather

Learning Curve: Naive Bayes
Ecy(6): b e—e Training error
CV / test set error o8y e—e Cross-validation error
“I
$ small 0.8}

error

large (what is “large™? g"‘ \
- problem dependent) \

E“ ain (9) 02 \‘H“‘mﬂ"*m:::wm
training error P POBSDS S48
oo
N
o 200 400 600 800

1000 1200 1400 1600
Training examples

2.3 SVM with RBF kernel shows high variance symptoms and would maybe profit from
more data:

18 Learning Curve: RBF SVM
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It seems easier to just try a less flexible model like SVM with linear kernel before

collecting more data — this seems to work just fine (no distinguished bias or vari-
ance problem).
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a7 Learning Curve: Linear SVM
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2.4 The parameter n_estimators determines the number of trees in the random for-
est. One tree shows great bias and variance...

of Learning Curve: Random Forrest
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... but with more than 10 trees in the forest the performance is very good and keeps
slowly climbing:

Validation curve: Random Forrest ok Learning Curve: Random Forrest
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