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Essentially, all models are wrong, but some are useful.
George E.T. Box

After this unit, ...

Lernziele/Kompetenzen

• you know the principle of maximum likelihood (ML) and and maximum a posteriori probability
(MAP) and you know their difference.

• you know (K1), that both the conditionals p(x|y) and the marginals p(x) of a joint Gaussian
p(x, y) are again Gaussian.

• you know (K1) that aGaussian process GP(µ, k) is a generalization of a multivariate Gaussian
distribution to infinitely many variables. A Gaussian process is a prior over functions p(f)
which can be used for Bayesian regression. Sampling from a Gaussian process means sampling
functions (instead of samples of a random variable) out of a pool of functions characterized
by a mean function µ and a covariance function k(x, x′).

• you know (K1), that every model relies on (explicit or implicit) assumptions. We discriminate
knowledge, assumptions and simplifying assumptions. In Bayesian reasoning, assumptions are
formulated as prior distribution p(θ) over the parameters θ of a model. Using Bayes rule,
one can calculate the posterior parameter distribution p(θ|x, y) given the data (x, y) and the
model assumptions.

posterior = p(θ|x, y) = p(y|x, θ) · p(θ)∫
θ
p(y|x, θ) · p(θ)dθ = likelihood · prior

marginal (1)

• your are able to formulate probabilitstic models that use priors to express knowlege (or beliefs)
about aspects of the model. You can formulate a probabilistic model for a process f(x, θ) with
additive Gaussian noise ε. You can derive the likelihood function p(y|x, ε, θ) for this model
given the parameters θ.

• you are able (K3) to sample functions from a Gaussian Process GP(µ, k) with given mean
µ(x) and covariance function k(x, x′) using the GaussianProcessRegressor of the class
sklearn.gaussian_process.
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• you are able (K3) to fit n-dimensional data using a Gaussian Process, i.e. you are able to
infer hyperparameters of the model from given data using the GaussianProcessRegressor
of the class sklearn.gaussian_process.

• you are able (K3) to make predictions using the GaussianProcessRegressor of the class
sklearn.gaussian_process.

• you know (K1) that the predictive distribution which is used for making predictions for
unknown data (x∗, y∗) can be calculated by marginalizing (integrating or averaging) over the
parameter distribution.

p(y∗|x∗, x, y) =
∫
θ

p(y∗|x∗, x, y, θ) · p(θ|x, y)dθ (2)

• you know (K1) the most important covariance functions (kernels) k(x, x′), namely the con-
stant kernel, the Gaussian kernel, the RBF -kernel (radial basis function), the Dot-Product
kernel and the sine-exponential kernel.

• you are able (K3) to apply kernel operations (namely sum and product) in order to construct
a probabilistic model adapted to a given dataset.

1. Medical Inference (Bayes Theorem) [M,I]
Breast cancer facts:

• 1 % of scanned women have breast cancer
• 80 % of women with breast cancer get positive mammography scans
• 9.6 % of women without breast cancer also get positive mammography scans

Question: A woman gets a scan, and it is positive. what is the probability that she has breast
cancer?

Welche der folgenden Aussagen sind wahr und welche falsch? wahr falsch

a) less than 1 % � �

b) less than 10 % � �

c) around 80 % � �

d) around 90 % � �
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2. Likelihood function, MAP and linear regression [L,II]
Assume a linear model y = θ1 + θ2 · x for observed data ppoints X,Y = {xi, yi} (i = 1 . . . N)
superposed by Gaussian noise ε with zero mean value and variance σ2

n. The parameters θ =
{θ1, θ2} of the model are the offset θ1 and the slope θ2 and

y = f(x|θ) + ε

y = θ1 + θ2 · x+ ε

ε ∼ N (0, σ2
n)

a) Write down the likelihood function p(Y|X, θ).

b) Show that the log-likelihood takes the form of the sum of the squared errors SSE(θ) between
the model and the data points.

log [p (Y|X, θ)] = − 1
2σ2

n

N∑
i=1

(yi − f(xi|θ))2 −N2 · log
(
2πσ2

n

)
(3)

= − 1
2σ2

n

‖Y − f(X|θ)‖2 −N2 · log
(
2πσ2

n

)
(4)

= − 1
2σ2

n

SSE(θ) −N2 · log
(
2πσ2

n

)
(5)

c) Show that in the case of a linear model in the parameter θ, we can write the sum of
squared error SSE(θ) in matrix form:

SSE(θ) = (Y − f(X|θ))T · (Y − f(X|θ))
= (Y − Φ · θ)T · (Y − Φ · θ)

where

θ =
(
θ1
θ2

)
Φ =


1 x1
1 x2
... ...
1 xN

 = (1N X) (6)

d) To calculate the model parameters θ̂ML that maximize the likelihood function, we could
set the derivative of the likelihood function p(Y|X, θ) with respect to θ to zero and solve
for θ. But instead of calculating the derivative of the likelihood function, it is easier to
calculate the derivative of the log-likelihood function. The logarithm is monotonous, so
the postitions of the extrema are not changed. Since the loglikelihood is proporitonal to
the negative sum of squared errors, SSE(θ), we can also look for a minimum in SSE(θ).

Show that minimizing SSE(θ) leads - in case of a linear model - to the normal equations:

θ̂ML =
[
ΦTΦ

]−1 ΦTY (7)
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3. Prior samples and posterior distributions from differnt kernels of a GP [A,II]
Open the Jupyter notebook plot_gpr_prior_posterior.jpynb and execute the first cell. The
goal of this exercise is that you get familiar with the Gaussian process class
GaussianProcessRegressor and the implemented kernels from sckit-learn.
a) Analyze the code and try to understand what is done at each line. At which line is the

posterior distribution calculated for the given evidence (data). What is the prior used
for calculating the posterior?

b) Have a look at the samples drawn from the given Gaussian processes for each kernel: RBF,
Matern, RationalQuadratic, ExpSineSquared, DotProduct and ConstantKernel. Gi-
ve an example for data that could be described by these covariance functions.
Hint:

• Check the kernel cookbook from http://www.cs.toronto.edu/~duvenaud/cookbook/
index.html.

• Interested readers may have a look at the paper of Zoubin Ghahramani at http:
//www.cs.toronto.edu/~duvenaud/cookbook/index.html,

• or chapter 4 of C.E Rasmussens book available at http://www.gaussianprocess.
org/gpml/chapters/RW4.pdf.

c) How would you model a periodic process with noise?

d) How would you set up a model for a polynomial regression using a Gaussian process?

e) For which cases would you use a Matérn kernel?

4. Model fitting, prediction and noise estimation using a GP [A,II]
Open the Jupyter notebook FitGPModel_NoiseEstimation.jpynb and execute the first cell.
We generate a synthetic dataset of 300 samples that represent a noisy sine wave. The goal of
this problem is to find an appropriate model for the data, to estimate the hyperparameters of
the model using a Gaussian process, to make predictions and to get an estimate of the noise
level in the data.
a) Plot the data in a scatter plot using matplotlib.pyplot. Try to estimate the noise level

and the periodicity of the data. This will be used as staring point for the optimization of
the hyperparameters.

nSamples =300;
rng = np. random . RandomState (0)
X = rng. uniform (0, 5, nSamples )[:, np. newaxis ]
y = 0.5 * np.sin(3 * X[:, 0]) + rng. normal (0, 0.3, X.shape[0])

b) Generate a kernel for the covariance function of the Gaussian process as the sum of a RBF-
kernel and a WhiteKernel. Import the kernels from sklearn.gaussian_process. Select
appropriate length scales, noise levels and the corresponding lower and upper bounds for
the optimizer.
from sklearn . gaussian_process import kernels
kernel = 1.0 * kernels .RBF( length_scale =..., length_scale_bounds =(... ,

...)) \
+ kernels . WhiteKernel ( noise_level =..., noise_level_bounds =(... , ...))

c) Generate a Gaussian process gp as instance of the class GaussianProcessRegressor using
the above kernel and fit the model to the data using the .fit(X,y) method.
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gp = GaussianProcessRegressor ( kernel =kernel ,alpha=1e-5).fit(X, y)

d) Make predictions with the infered paramers of the model within the interval X∗ = [0, 10]
using the .predict method of the GaussianProcessRegressor.
Set the option return_cov=True to get the covariance matrix.

X_ = np. linspace (0, 10 , 100)
y_mean , y_cov = gp. predict (X_[:, np. newaxis ], return_cov =True)

e) Plot the mean of the estimated model in the interval X∗ = [0, 10] using the y_mean
output of the .predict method. Plot the confidence interval as ± one standard de-
viation from the mean value. The standard deviation can be obtained from y_cov by
stdv=np.sqrt(np.diag(y_cov)). If you like, you can use plt.fill_between to paint
the range within the standard deviation in gray. Explain how the model behaves in the
interval where there were no data points available. Check and print the values of the fitted
hyperparameters, especially the estimated noise level.
plt. fill_between (X_ , y_mean - np.sqrt(np.diag(y_cov)),
y_mean + np.sqrt(np.diag(y_cov)),
alpha=0.5, color=’k’)

f) Repeat now the same process using the ExpSineSquared kernel. It has an additional
parameter called periodicity that you have to specify including the lower and upper
bounds.
kernel = 0.5 * kernels . ExpSineSquared ( length_scale =..., periodicity =

...,
length_scale_bounds =(... , ...) ,
periodicity_bounds =(... , ...)) \
+ kernels . WhiteKernel ( noise_level =..., noise_level_bounds =(... , ...))

Repeat the above steps fro b) to e) using this kernel.
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