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Essentially, all models are wrong, but some are useful.
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After this unit, ...

Lernziele/Kompetenzen

• you know the principle of maximum likelihood (ML) and and maximum a posteriori probability
(MAP) and you know their difference.

• you know (K1), that both the conditionals p(x|y) and the marginals p(x) of a joint Gaussian
p(x, y) are again Gaussian.

• you know (K1) that aGaussian process GP(µ, k) is a generalization of a multivariate Gaussian
distribution to infinitely many variables. A Gaussian process is a prior over functions p(f)
which can be used for Bayesian regression. Sampling from a Gaussian process means sampling
functions (instead of samples of a random variable) out of a pool of functions characterized
by a mean function µ and a covariance function k(x, x′).

• you know (K1), that every model relies on (explicit or implicit) assumptions. We discriminate
knowledge, assumptions and simplifying assumptions. In Bayesian reasoning, assumptions are
formulated as prior distribution p(θ) over the parameters θ of a model. Using Bayes rule,
one can calculate the posterior parameter distribution p(θ|x, y) given the data (x, y) and the
model assumptions.

posterior = p(θ|x, y) = p(y|x, θ) · p(θ)∫
θ
p(y|x, θ) · p(θ)dθ = likelihood · prior

marginal (1)

• your are able to formulate probabilitstic models that use priors to express knowlege (or beliefs)
about aspects of the model. You can formulate a probabilistic model for a process f(x, θ) with
additive Gaussian noise ε. You can derive the likelihood function p(y|x, ε, θ) for this model
given the parameters θ.

• you are able (K3) to sample functions from a Gaussian Process GP(µ, k) with given mean
µ(x) and covariance function k(x, x′) using the GaussianProcessRegressor of the class
sklearn.gaussian_process.
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• you are able (K3) to fit n-dimensional data using a Gaussian Process, i.e. you are able to
infer hyperparameters of the model from given data using the GaussianProcessRegressor
of the class sklearn.gaussian_process.

• you are able (K3) to make predictions using the GaussianProcessRegressor of the class
sklearn.gaussian_process.

• you know (K1) that the predictive distribution which is used for making predictions for
unknown data (x∗, y∗) can be calculated by marginalizing (integrating or averaging) over the
parameter distribution.

p(y∗|x∗, x, y) =
∫
θ

p(y∗|x∗, x, y, θ) · p(θ|x, y)dθ (2)

• you know (K1) the most important covariance functions (kernels) k(x, x′), namely the con-
stant kernel, the Gaussian kernel, the RBF -kernel (radial basis function), the Dot-Product
kernel and the sine-exponential kernel.

• you are able (K3) to apply kernel operations (namely sum and product) in order to construct
a probabilistic model adapted to a given dataset.

1. Medical Inference (Bayes Theorem) [M,I]
Breast cancer facts:

• 1 % of scanned women have breast cancer
• 80 % of women with breast cancer get positive mammography scans
• 9.6 % of women without breast cancer also get positive mammography scans

Question: A woman gets a scan, and it is positive. what is the probability that she has breast
cancer?

Welche der folgenden Aussagen sind wahr und welche falsch? wahr falsch

a) less than 1 % � �

b) less than 10 % � �

c) around 80 % � �

d) around 90 % � �
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2. Likelihood function, MAP and linear regression [L,II]

a) The emphlikelihood is the probability of each datapoint yi given the model and its para-
meters.

p(Y|X, θ) (3)

The probability of one datapoint yi given the model ŷ(θ, xi) for a Gaussian noise ε is:

p(yi|xi, θ) ∼ N
(
yi|ŷ, σ2

n

)
(4)

= 1√
2πσ2

n

exp
{
− 1

2σ2
n

(yi − ŷ(xi, θ))2
}

(5)

= 1√
2πσ2

n

exp
{
− 1

2σ2
n

(yi − f(xi|θ))2
}

(6)

The likelihood of all data points is the product of the probabilities of each datapoint
(xi, yi):

p(Y|X, θ) =
N∏
i=1

p(yi|xi, θ) (7)

= 1
(2πσ2

n)N/2 · exp
{
− 1

2σ2
n

N∑
i=1

(yi − f(xi|θ))2

}
(8)

= 1
(2πσ2

n)N/2 · exp
{
− 1

2σ2
n

‖Y − f(X|θ)‖2
}

(9)

b) By taking the natural logarithm of (7), the result immediately follows:

log [p (Y|X, θ)] = − 1
2σ2

n

N∑
i=1

(yi − f(xi|θ))2 − N

2 · log
(
2πσ2

n

)
(10)

= − 1
2σ2

n

‖Y − f(X|θ)‖2 − N

2 · log
(
2πσ2

n

)
(11)

= − 1
2σ2

n

SSE(θ)− N

2 · log
(
2πσ2

n

)
(12)

c) In case of a linear model, we can write the sum of the squared error SSE(θ) in matrix
form:

SSE(θ) = ‖Y − f(X|θ)‖2 (13)
= (Y − f(X|θ))T · (Y − f(X|θ)) (14)
= (Y − Φ · θ)T · (Y − Φ · θ) (15)

The square norm can always be written in form of a scalar product, so it is sufficient to
consider only one term of the scalar product:

(Y − f(X|θ)) =


y1 − (θ1 + θ2x1)
y2 − (θ1 + θ2x2)

...
yN − (θ1 + θ2xN)

 (16)
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=
(

Y − [1N X]
(
θ1
θ2

))
(17)

= (Y − Φ · θ) (18)

d) The two following results from matrix calculus are useful. For column vectors θ and x of
the same length, the following statement is valid:

∇θ(aTθ) = ∇θ(θTa) = a (19)

For a column vector θ and matrix A, the following identity holds:

∇θ(θTAθ) = (A + AT )θ (20)

Especially, if A is symmetric:

∇θ(θTAθ) = 2Aθ (21)

To find the maximum likelihood solution, we set the gradient of the log likelihood function
to zero:

0 = ∇θ log [p (Y|X, θ)] (22)

= − 1
2σ2

n

∇θ ‖Y − f(X|θ)‖2 (23)

= − 1
2σ2

n

∇θ
[
(Φθ −Y)T · (Φθ −Y)

]
(24)

= − 1
2σ2

n

∇θ
[
θTΦTΦθ − θTΦTY −YTΦθ −YTY

]
(25)

= − 1
2σ2

n

[
∇θθTΦTΦθ − 2∇θθTΦTY − 0

]
(26)

= − 1
2σ2

n

[
2ΦTΦθ − 2ΦY

]
(27)

This leads to the definition of the Least Squares Normal Equations:

ΦY = ΦTΦθ (28)

The Least Squares estimate θ̂ML of the parameters θ is then given by:

θ̂ML = (ΦTΦ)−1ΦTY (29)

3. Prior samples and posterior distributions from differnt kernels of a GP [A,II]
The solution Juypter notebook can be found on moodle:
Lab9b_A3_plot_gpr_prior_posterior.ipynb

4. Model fitting, prediction and noise estimation using a GP [A,II]
The solution Juypter notebook can be found on moodle:
Lab9b_A4_FitGPModel_NoiseEstimation_solution.ipynb
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