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The central paradigm of probabilistic reasoning is to identify all relevant variables x1, . . . , xN
in the environment,and make a probabilistic model p(x1, . . . , xN) of their interaction. Reaso-
ning (inference) is then performed by introducing evidence that sets variables in known states,
and subsequently computing probabilities of interest, conditioned on this evidence. The rules
of probability, combined with Bayes’ rule make a reasoning system complete.

After this unit, ...

Lernziele/Kompetenzen

• you have repeated the basic rules of probability theory.

• you know the difference between a joint and a conditional probability distribution.

• you know how to apply Bayes Theorem to calculate the posterior probability distribution
for simple discrete examples. You can name the prior probability distribution, the likelihood
function, the evidence, and you know how to marginalize over a joint probability distribution.

• you know the basic properties of a multivariate Gaussian probability distribution. You can
plot a 2D Gaussian probability distribution given the mean vector µ and the covariance
matrix Σ.

• you can sample data points from a given multivariate gaussian distribution.

• you can explain the naïve Bayes classifier to your classmates and to your teacher.
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1. Supervised Bayesian Learining [M,II]
The table below contains the result of a market survey for a promotion for different items
such as a magazine, a watch and a life insurance and a credit card insurance. 10 people were
interviewed and asked whether they would by such items.
Use this count table for supervised Bayesian learning. The output attribute is sex with possible
values male and female. Consider an individual who has said no to the life insurance promotion,
yes to the magazine promotion, yes to the watch promotion and yes to the credit card insurance.
Use the values in the table together with the Naive Bayes classifier to determine which of a,b,c
or d represents the probability that this individual is male. p(E) is the marginal distribution.

Magazine Watch Life Insurance Credit Card
male female male female male female male female

yes 4 3 2 2 2 3 2 1
no 2 1 4 2 4 1 4 3

Welche der folgenden Aussagen sind wahr und welche falsch? wahr falsch

a) p(sex = male|...) = 4
6 ·

2
6 ·

2
6 ·

2
6 ·

6
10 ·

1
p(E) � �

b) p(sex = male|...) = 4
6 ·

2
6 ·

3
4 ·

2
6 ·

3
4 ·

1
p(E) � �

c) p(sex = male|...) = 4
6 ·

4
6 ·

2
6 ·

2
6 ·

6
10 ·

1
p(E) � �

d) p(sex = male|...) = 2
6 ·

4
6 ·

4
6 ·

2
6 ·

4
10 ·

1
p(E) � �

2. Hamburger and Bayes Rule [A,II]

a) The probability that a hamburger eater HE will have Kreuzfeld-Jacob disease given the
prior p(KJ) and the marginal p(HE) =

∑
KJ p(HE|KJ) · p(KJ) is:

p(KJ|HE) = p(HE,KJ)
p(HE) = p(HE|KJ) · p(KJ)

p(HE) (1)

= p(HE|KJ) · p(KJ)∑
KJ p(HE|KJ) · p(KJ) =

9
10 ·

1
100000
1
2

≈ 1.8 · 10−5 (2)

b) If the fraction of people eating hamburgers was rather small, p(HE) = 0, 001, what is the
probability that a regular hamburger eater will have Kreuzfeld-Jacob disease?
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3. Naïve Bayes Classifier [A,II]

a) Python Code: Naive Bayes prior and likelihoods

p_y = 4.0/10; # p(y) = 4/10
# p(xi=1 | y=-1)
p_x1_y0 = 3.0/6;
p_x2_y0 = 5.0/6;
p_x3_y0 = 4.0/6;
p_x4_y0 = 5.0/6;
p_x5_y0 = 2.0/6;

# p(xi=1 | y=+1)
p_x1_y1 = 3.0/4;
p_x2_y1 = 0.0/4;
p_x3_y1 = 3.0/4;
p_x4_y1 = 2.0/4;
p_x5_y1 = 1.0/4;

b) Python Code: Naive Bayes classification decisions

f_y1_00000 = p_y*(1- p_x1_y1 )*(1- p_x2_y1 )*(1- p_x3_y1 )*
(1- p_x4_y1 )*(1- p_x5_y1 )

print (" f_y1_00000 = ",f_y1_00000 )

f_y0_00000 = (1-p_y)*(1- p_x1_y0 )*(1- p_x2_y0 )*(1- p_x3_y0 )*
(1- p_x4_y0 )*(1- p_x5_y0 )

print (" f_y0_00000 = " , f_y0_00000 )

if ( f_y1_00000 > f_y0_00000 ):
print (" Predict class +1")

else:
print (" Predict class -1")

print ("\n")

f_y1_11010 = p_y*( p_x1_y1 )*( p_x2_y1 )*(1- p_x3_y1 )*
( p_x4_y1 )*(1- p_x5_y1 )

print (" f_y1_11010 = ",f_y1_11010 )

f_y0_11010 = (1-p_y)*( p_x1_y0 )*( p_x2_y0 )*(1- p_x3_y0 )*
( p_x4_y0 )*(1- p_x5_y0 )

print (" f_y0_11010 = ",f_y0_11010 )

if ( f_y1_11010 > f_y0_11010 ):
print (" Predict class +1")

else:
print (" Predict class -1")

The numerical solution x = {00000} is:

f(y = +1|00000) = 0.009375000000000001
f(y = −1|00000) = 0.0018518518518518515
f(y = +1|00000) > f(y = −1|00000) =⇒ ŷ = +1
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The numerical solution for x = {11010} is:

f(y = +1|11010) = 0.0
f(y = −1|11010) = 0.046296296296296315
f(y = +1|11010) < f(y = −1|11010) =⇒ ŷ = −1

c) Python Code: Naive Bayes posterior probabilities

# p(y=1|00000) =
print ("p(y=1|00000) =", f_y1_00000 / ( f_y1_00000 + f_y0_00000 ))

# p(y=1|11010) =
print ("p(y=1|11010) =", f_y1_11010 / ( f_y1_11010 + f_y0_11010 ))

The Naive Bayes posterior probabilities are:

p(y = 1|00000) = 0.8350515463917526
p(y = 1|11010) = 0.0

d) A Bayes classifier using a joint distribution model for p(x1, . . . , x5|y = c) would have
25− 1 = 31 degrees of freedom (independent probabilities) to estimate. But here, we have
only 6 data points from class y = −1, and 4 data points from class y = +1. Thus these
models would assign zero probability to many feature combinations, and would probably
not generalize well to new data.

e) No, we do not need to re-train the model by estimating new probabilities. Due to the
conditional independence assumptions of naïve Bayes, it is optimal to simply ignore p(x1|y)
, and use the previously estimated probabilities of the other four features when computing
p(y|x2, x3, x4, x5). If you did recompute p(xi|y) using the formulas above, it is easy to verify
that the values would not change.

4. Passenger Scanner [A,II]
The detector is such tat 95% of all terrorists are identified as terrorists

p(label = true | terr = true) = 0.95 (3)

We can infer from the former that only 5% of terrorists got mislabeled as good people (false
negative):

p(label = false | terr = true) = 0.05 (4)

Furthermore 95% of all upstanding citizens are identified as such (non terrorists). Therefore,
the false positive rate is:

p(label = true | terr = false) = 0.05 (5)

Assuming that the informant is correct:

p(terr = true) = 1
100 (6)

4



We can then infer that 99
100 are not terrorists:

p(terr = false) = 99
100 (7)

We can find out the probability that the person picked is a terrorist using Bayes’ Rule:

p(terr = true | label = true) = p(label = true | terr = true)p(terr = true)
p(label = true) (8)

To find out the denominator, we can marginalize over the joint distribution of p(label = true)
and p(terr):

p(label = true) =
∑
t

p(label = true, terr = t)

=
∑
t

p(label = true | terr = t) · p(terr = t)

We make the summation explicit:

p(label = true) = p(label = true | terr = true)p(terr = true)+
p(label = true | terr = false)p(terr = false)
= 0.95 · 0.01 + 0.05 · 0.99 = 0.059

Substituting all the values into Bayes’ Rule, we find out that even though the detector is
’reliable’ we still get a low posterior probability that the person suspected of being a terrorist
is actually a terrorist:

p(terr = true | label = true) = p(label = true | terr = true)p(terr = true)
p(label = true)

= 0.95(0.01)
0.059 = 0.1610169492

5. Weather in London [A,II]

a) Assuming that the prior probability it rained yesterday is 0.5, what is the probability that
it was raining yesterday given that it’s sunny today?

p(yesterday = rain) = 50%

I infer from this that the probability of being sunny yesterday is also 50%:

p(yesterday = sun) = 50%

p(yesterday = rain | today = sun)

= p(today = sun | yesterday = rain)p(yesterday = rain)
p(today = sun)
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p(today = sun) =
∑
y

p(today = sun, yesterday = y)

=
∑
y

p(today = sun | yesterday = y)p(yesterday = y)

= p(today = sun | yesterday = sun) · p(yesterday = sun)
+ p(today = sun | yesterday = rain) · p(yesterday = rain)
= 0.40 · 0.5 + 0.30 · 0.50 = 0.20 + 0.15 = 0.35

Thus, the probability of raining yesterday given that today is sunny:

p(yesterday = rain | today = sun) = 0.15
0.35 = 42.86%

b) If the weather follows the same pattern as above, day after day, what is the probability
that it will rain on any day (based on an effectively infinite number of days of observing
the weather)?
On any day, not considering whether it rained or not the day before, the probability of
raining is:

p(today = rain) =
∑
y

p(today = rain, yesterday = y)

=
∑
y

p(today = rain | yesterday = y)p(yesterday = y)

= p(today = rain | yesterday = rain)p(yesterday = rain)
+ p(today = rain | yesterday = sun)p(yesterday = sun)
= 0.7 · 0.5 + 0.6 · 0.5 = 0.65

c) Use the result from b) above as a new prior probability of rain yesterday and recompute
the probability that it was raining yesterday given that it’s sunny today.

p(yesterday = rain) = 0.65

Therefore:

p(yesterday = sun) = 0.35

p(yesterday = rain | today = sun) = p(today = sun | yesterday = rain)p(yesterday = rain)
p(today = sun)

p(today = sun) =
∑
y

p(today = sun, yesterday = y)

=
∑
y

p(today = sun | yesterday = y)p(yesterday = y)

= p(today = sun | yesterday = sun)p(yesterday = sun)
+ p(today = sun | yesterday = rain)p(yesterday = rain)
= 0.40 · 0.35 + 0.30 · 0.65
= 0.14 + 0.195 = 0.335
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p(yesterday = rain | today = sun) = 0.30 · 0.65
0.335 = 58.21%

Very interesting. The probability of raining has increased a little bit after updating the
prior probabilities. Since it was likely that it rained yesterday, it’s slightly more likely that
it will rain today.

6. Inspector Clouseau [A,II]

a) Using b for the two states of B and m for the two states of M ,

p(B|K) =
∑
m

p(B,m|K) =
∑
m

p(B,m,K)
p(K) = p(B)

∑
m p(K|B,m)p(m)∑

b p(b)
∑

m p(K|b,m)p(m)

Plugging in the values we have

p(B = murderer|knife used) =
6
10

( 2
10 ·

1
10 + 8

10 ·
6
10

)
6
10

( 2
10 ·

1
10 + 8

10 ·
6
10

)
+ 4

10

( 2
10 ·

2
10 + 8

10 ·
3
10

)
= 300

412 ≈ 0.73

Remark: The role of p(knife used) in the Inspector Clouseau example can cause some
confusion. In the above, p(knife used) is computed to be 0.412.

p(knife used) =
∑
b

p(b) ·
∑
m

p(knife used|b,m) · p(m) ≈ 0.412 (9)

But surely, p(knife used) = 1, since this is given in the question! Note that the quantity
p(knife used) relates to the prior probability the model assigns to the knife being used (in
the absence of any other information). If we know that the knife is used, then the posterior
p(knife used) = 1.

7. Factorization of a multivariate probability distribution [A,II]
A belief network (BN) is a distribution of the form

p(x1, . . . , xN) =
N∏
i=1

p(xi|pa(xi)) (10)

where pa(xi) represent the parental variables of variable xi. Represented as a directed graph,
with an arrow pointing from a parent variable to child variable, a belief network corresponds
to a Directed Acyclic Graph (DAG), with the ith node in the graph corresponding to the factor
p(xi|pa(xi)). In general, two different graphs may represent the same independence assumptions.
If one wishes to make independence assumptions, then the choice of factorisation becomes
significant.
The observation that any distribution may be written in the cascade form, gives an algorithm
for constructing a BN on variables x1, . . . , xn: write down the n−node cascade graph; label the
nodes with the variables in any order; now each successive independence statement corresponds
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to deleting one of the edges. More formally, this corresponds to an ordering of the variables
which, without loss of generality, we may write as x1, . . . , xn. Then, from Bayes’ rule, we have

p(x1, . . . , xN) = p(x1|x2, . . . , xN) · p(x2, . . . , xN) (11)
= p(x1|x2, . . . , xN) · p(x2|x3, . . . , xN) · p(x3, . . . , xN) (12)

= p(xn) ·
N−1∏
i=1

p(xi|xi+1, . . . , xN) (13)

The representation of any BN is therefore a Directed Acyclic Graph (DAG). Every probability
distribution can be written as a BN, even though it may correspond to a fully connected
’cascade’ DAG. The particular role of a BN is that the structure of the DAG corresponds
to a set of conditional independence assumptions, namely which ancestral parental variables
are sufficient to specify each conditional probability table. Note that this does not mean that
non-parental variables have no influence.

8. Conditional distribution of a bivariate Gaussian distribution [A,II]

• We start by calculating the precision matrix Λ = Σ−1, the inverse of the covariance matrix
Σ. We use the fact that the inverse of a 2× 2-matrix A is given by:

A =
(
a b
c d

)
(14)

A−1 = 1
ad− bc

(
d −b
−c a

)
(15)

In our case, we have

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(16)

Λ = Σ−1 = 1
1− ρ2

(
1
σ2

1
− ρ
σ1σ2

− ρ
σ1σ2

1
σ2

2

)
(17)

• Now, we concentrate only on the quadratic term 2 in the exponential without the factor
−1

2 which is given by:

2 = 1
1− ρ2

(
x1 − µ1
x2 − µ2

)T ( 1
σ2

1
− ρ
σ1σ2

− ρ
σ1σ2

1
σ2

2

)(
x1 − µ1
x2 − µ2

)
(18)

= 1
1− ρ2

(
x1 − µ1
x2 − µ2

)T
·

(
1
σ2

1
(x1 − µ1)− ρ

σ1σ2
(x2 − µ2)

1
σ2

2
(x2 − µ2)− ρ

σ1σ2
(x1 − µ1)

)
(19)

= 1
1− ρ2

{
1
σ2

1
(x2

1 − 2µ1x1 + µ2
1)−

ρ

σ1σ2
(x1x2 − x1µ2 − x2µ1 + µ1µ2)

}
(20)

+ 1
1− ρ2

{
1
σ2

2
(x2

2 − 2µ2x2 + µ2
2)−

ρ

σ1σ2
(x1x2 − x1µ2 − x2µ1 + µ1µ2)

}
(21)

• Now, we only consider terms quadratic and linear in x1 and get:

2 = 1
1− ρ2

{
x2

1
σ2

1
− x1 ·

(
2µ1

σ2
1

+ 2ρ
σ1σ2

(x2 − µ2)
)

+ . . .

}
(22)
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= 1
1− ρ2

1
σ2

1

{
x2

1 − x1 ·
(

2µ1 + 2ρσ2
1

σ1σ2
(x2 − µ2)

)
+ . . .

}
(23)

• By completing the square, we finally get:

2 = 1
1− ρ2

1
σ2

1

{(
x1 − (µ1 + ρσ1

σ2
(x2 − µ2))

)2

+ . . .

}
(24)

• By identifying the coefficient before the quadratic term as the inverse of the variance
˜sigma of the conditional probability p(x1|x2) and the shift as the mean µ̃ of the conditional

probability density, we find:

µ̃ = µ1 + ρ
σ1

σ2
· (x2 − µ2) (25)

σ̃ = (1− ρ2) · σ2
1 (26)

9. Bayesian inference for the Gaussian [A,II]

a) We consider only the terms in the exponentials and neglect the normalization factor. In
this case, we have:

exp
{
− 1

2σ2

N∑
n=1

(xn − µ)2

}
· exp

{
− 1

2σ2
0
(µ− µ0)2

}
(27)

Now, we only look at the quadratic term 2. The posterior probability distribution is a
function of µ. So we are interested only in the linear and quadratic terms in µ.

2 =
{
− 1

2σ2

N∑
n=1

(xn − µ)2 − 1
2σ2

0
(µ− µ0)2

}
(28)

=
{
− 1

2σ2

N∑
n=1

(x2
n + 2xnµ+ µ2)− 1

2σ2
0
(µ2 − 2µµ0 + µ2

0)
}

(29)

=
{
− 1

2σ2

(
N∑
n=1

x2
n + 2µ

N∑
n=1

xn + µ2

)
− 1

2σ2
0
(µ2 − 2µµ0 + µ2

0)
}

(30)

=
{
−µ2

(
1

2σ2
0

+ N

2σ2

)
+ 2µ

(∑N
n=1 xn
2σ2

0
+ µ0

2σ2
0

)
+ . . .

}
(31)

− 1
2


(

1
σ2

0
+ N

σ2

)µ−
∑

n xn

σ2 + µ0
σ2

0
1
σ2

0
+ N

σ2

2

+ . . .

 (32)

The term in front of the square bracket is the inverse variance:

1
σ2
N

= N

σ2 + 1
σ2

0
(33)

The shift term in the quare bracket is the mean µN :
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µN =

∑
n xn

σ2 + µ0
σ2

0
1
σ2

0
+ N

σ2

(34)

= σ2
0
∑

n xn + σ2
0µ0

σ2 +Nσ2
0

(35)

= σ2

σ2 +Nσ2
0
· µ0 + Nσ2

0
σ2 +Nσ2

0
· 1
N

∑
n

xn (36)

= σ2

σ2 +Nσ2
0
· µ0 + Nσ2

0
σ2 +Nσ2

0
· µML (37)

b) It is worth spending a moment studying the form of the posterior mean and variance.
Using simple manipulation involving completing the square in the exponent, you could
show that the posterior distribution is given by:

p(µ | X) = N
(
µ | µN , σ2

N

)
(38)

1
σ2
N

= N

σ2 + 1
σ2

0
(39)

µN = σ2

Nσ2
0 + σ2 · µ0 + Nσ2

0
Nσ2

0 + σ2 · µML (40)

in which µML is the maximum likelihood solution for µ given by the sample mean

µML = 1
N

N∑
n=1

xn (41)

First of all, we note that the mean of the posterior distribution given by 40 is a compromise
between the prior mean µ0 and the maximum likelihood solution µML. If the number of
observed data points N = 0, then 40 reduces to the prior mean as expected. For N →∞,
the posterior mean is given by the maximum likelihood solution.
Similarly, consider the result refVariancePosteriorA for the variance of the posterior dis-
tribution. We see that this is most naturally expressed in terms of the inverse variance,
which is called the precision. Furthermore, the precisions are additive, so that the precision
of the posterior is given by the precision of the prior plus one contribution of the data
precision from each of the observed data points. As we increase the number of observed
data points, the precision steadily increases, corresponding to a posterior distribution with
steadily decreasing variance. With no observed data points, we have the prior variance,
whereas if the number of data points N → ∞, the variance σ2

N goes to zero and the
posterior distribution becomes infinitely peaked around the maximum likelihood solution.
We therefore see that the maximum likelihood result of a point estimate for µ given by
41 is recovered precisely from the Bayesian formalism in the limit of an infinite number of
observations. Note also that for finite N , if we take the limit σ2

0 →∞ which the prior has
infinite variance then the posterior mean 40 reduces to the maximum likelihood result,
while the posterior variance is given by σ2

N = σ2/N .
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