
Lab 9a
Probabilistic Reasoning -
Gaussian distribution and
Bayes Theorem

TSM MachLe MSE
FS 2019

Machine Learning
WÜRC

The central paradigm of probabilistic reasoning is to identify all relevant variables x1, . . . , xN

in the environment,and make a probabilistic model p(x1, . . . , xN) of their interaction. Reaso-
ning (inference) is then performed by introducing evidence that sets variables in known states,
and subsequently computing probabilities of interest, conditioned on this evidence. The rules
of probability, combined with Bayes’ rule make a reasoning system complete.

After this unit, ...

Lernziele/Kompetenzen

• you have repeated the basic rules of probability theory.

• you know the difference between a joint and a conditional probability distribution.

• you know how to apply Bayes Theorem to calculate the posterior probability distribution
for simple discrete examples. You can name the prior probability distribution, the likelihood
function, the evidence, and you know how to marginalize over a joint probability distribution.

• you know the basic properties of a multivariate Gaussian probability distribution. You can
plot a 2D Gaussian probability distribution given the mean vector µ and the covariance
matrix Σ.

• you can sample data points from a given multivariate gaussian distribution.

• you can explain the naïve Bayes classifier to your classmates and to your teacher.
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1. Supervised Bayesian Learining [M,II]
The table below contains the result of a market survey for a promotion for different items
such as a magazine, a watch and a life insurance and a credit card insurance. 10 people were
interviewed and asked whether they would by such items.
Use this count table for supervised Bayesian learning. The output attribute is sex with possible
values male and female. Consider an individual who has said no to the life insurance promotion,
yes to the magazine promotion, yes to the watch promotion and yes to the credit card insurance.
Use the values in the table together with the Naive Bayes classifier to determine which of a,b,c
or d represents the probability that this individual is male. p(E) is the marginal distribution.

Magazine Watch Life Insurance Credit Card
male female male female male female male female

yes 4 3 2 2 2 3 2 1
no 2 1 4 2 4 1 4 3

Welche der folgenden Aussagen sind wahr und welche falsch? wahr falsch

a) p(sex = male|...) = 4
6 ·

2
6 ·

2
6 ·

2
6 ·

6
10 ·

1
p(E) � �

b) p(sex = male|...) = 4
6 ·

2
6 ·

3
4 ·

2
6 ·

3
4 ·

1
p(E) � �

c) p(sex = male|...) = 4
6 ·

4
6 ·

2
6 ·

2
6 ·

6
10 ·

1
p(E) � �

d) p(sex = male|...) = 2
6 ·

4
6 ·

4
6 ·

2
6 ·

4
10 ·

1
p(E) � �

2. Hamburger and Bayes Rule [A,II]

Consider the following fictitious scientic information: Doctors find that people with Kreuzfeld-
Jacob disease (KJ) almost invariably ate hamburgers (Hamburger Eater, HE) , thus p(HE|KJ) =
0.9. The probability of an individual having KJ is currently rather low, about one in 100′000.
a) Assuming eating lots of hamburgers is rather widespread, say p(HE) = 0.5, what is the

probability that a hamburger eater will have Kreuzfeld-Jacob disease? Determine the prior,
the likelihood function and the posterior probability.

b) If the fraction of people eating hamburgers was rather small, p(HE) = 0, 001, what is the
probability that a regular hamburger eater will have Kreuzfeld-Jacob disease?

3. Naïve Bayes Classifier [A,II]

In order to reduce my email load, I decide to implement a machine learning algorithm to decide
whether or not I should read an email, or simply file it away instead. To train my model, I
obtain the following data set of binary-valued features about each email, including whether I
know the author or not, whether the email is long or short, and whether it has any of several
key words, along with my final decision about whether to read it ( y = +1 for ’read’, y = −1
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for ’discard’).

x1 x2 x3 x4 x5 y

know author? is long? has research has grade has lottery =⇒ read?
0 0 1 1 0 -1
1 1 0 1 0 -1
0 1 1 1 1 -1
1 1 1 1 0 -1
0 1 0 0 0 -1
1 0 1 1 1 +1
0 0 1 0 0 +1
1 0 0 0 0 +1
1 0 1 1 0 +1
1 1 1 1 1 -1

a) Compute all the probabilities necessary for a naïve Bayes classifier, i.e. the class probability
p(y) and all the individual feature probabilities p(xi|y), for each class y and feature xi.

b) Which class would be predicted for x = {00000}?
What about for x = {11010}?

c) Compute the posterior probability that y = +1 given the observation x = {00000}. Also
compute the posterior probability that y = +1 given the observation x = {11010}.

d) Why should we probably not use a ’joint’ Bayes classifier (using the joint probability of
the features x, as opposed to the conditional independencies assumed by naïve Bayes) for
these data?

e) Suppose that before we make our predictions, we lose access to my address book, so that
we cannot tell whether the email author is known. Do we need to re-train the model to
classify based solely on the other four features? If so, how? Hint: How do the parameters
of a naïve Bayes model over only features x2, . . . , x5 differ?

4. Passenger Scanner [A,II]
A secret government agency has developed a scanner which determines whether a person is a
terrorist. The scanner is fairly reliable: 95% of all scanned terrorists are identied as terrorists,
and 95% of all upstanding citizens are identied as such (i.e. as non-terrorists). An informant
tells the agency that exactly one passenger of 100 aboard an aeroplane in which you are seated
is a terrorist. The police haul off the plane the first person for which the scanner tests positive.
What is the probability that this person is a terrorist?

5. Weather in London [A,II]

The weather in London can be summarised as: if it rains one day there’s a 70% chance it will
rain the following day; if it’s sunny one day there’s a 40% chance it will be sunny the following
day.

p(today = rain | yesterday = rain) = 70%
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p(today = sun | yesterday = sun) = 40%

From these likelihoods, we can infer the following:

p(today = sun | yesterday = rain) = 30%

p(today = rain | yesterday = sun) = 60%

a) Assuming that the prior probability it rained yesterday is 0.5, what is the probability that
it was raining yesterday given that it’s sunny today?

b) If the weather follows the same pattern as above, day after day, what is the probability
that it will rain on any day (based on an effectively infinte number of days of observing
the weather)?

c) Use the result from b) above as a new prior probability of rain yesterday and recompute
the proba- bility that it was raining yesterday given that it’s sunny today.

6. Inspector Clouseau [A,II]

Inspector Clouseau arrives at the scene of a crime. The victim lies dead in the room alongside
the possible murder weapon, a knife. The Butler (B) and Maid (M) are the inspector’s main
suspects and the inspector has a prior belief of 0.6 that the Butler is the murderer, and a
prior belief of 0.2 that the Maid is the murderer. These beliefs are independent in the sense
that p(B,M) = p(B)p(M). (It is possible that both the Butler and the Maid murdered the
victim or neither). The inspector’s prior criminal knowledge can be formulated mathematically
as follows:

dom(B) = dom(M) = {murderer, not murderer}
dom(K) = {knife used, knife not used}

p(B = murderer) = 0.6, p(M = murderer) = 0.2
p(knife used|B = not murderer, M = not murderer) = 0.3
p(knife used|B = not murderer, M = murderer) = 0.2
p(knife used|B = murderer, M = not murderer) = 0.6
p(knife used|B = murderer, M = murderer) = 0.1

In addition p(K,B,M) = p(K|B,M) · p(B) · p(M).
a) Assuming that the knife is the murder weapon, what is the probability that the Butler is

the murderer, i.e. what is p(B|K) ?
Hint: Remember that it might be that neither is the murderer. Use Bayes rule and
marginalize (sum) over the possible states of B and M with dom(B) = dom(M) =
{murderer, not murderer}).

7. Factorization of a multivariate probability distribution [A,II]

By using the definition of conditional probability, show that any multivariate joint distribution
of N random variables has the following trivial factorization:

p(x1, x2, . . . , xN) = p(x1 | x2, . . . , xN) · p(x2 | x3, . . . , xN) · · · · · p(xN) (1)
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8. Conditional distribution of a bivariate Gaussian distribution [A,II]

The bivariate normal distribution is given by:

N (x | µ,Σ) = 1√
(2π)N · |Σ|

· exp
[
−1

2(x− µ)TΣ−1(x− µ)
]

(2)

where:

x =
(
x1
x2

)
(3)

µ =
(
µ1
µ2

)
(4)

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(5)

The parameter ρ is called correlation coefficient. By using the definition of conditional proba-
bility, show that the conditional distribution p(x1 | x2) can be written as a normal distribution
of the form N(x1 | µ̃, σ̃) where

µ̃ = µ1 + ρ
σ1

σ2
· (x2 − µ2) (6)

σ̃ = (1− ρ2) · σ2
1 (7)

Hint: Only look first at the quadratic form in the exponential of the joint probability distribution
p(x1, x2) and make use of the fact that x2 is constant for the conditional probability distribution
p(x1 | x2). Sort out all terms with x1.

9. Bayesian inference for the Gaussian [A,II]

The maximum likelihood framework gives point estimates for the parameters µ and Σ. Now
we develop a Bayesian treatment by introducing prior distributions over these parameters. Let
us begin with a simple example in which we consider a single Gaussian random variable x. We
shall suppose that the variance σ2 is known, and we consider the task of inferring the mean µ
given a set of N observations X = {x1, . . . , xN}. The likelihood function, that is the probability
of the observed data given µ, viewed as a function of µ, is given by
Assume a Gaussian likelihood function of the follwing form with known variance σ.

p(X | µ) =
N∏

n=1

p(xn | µ) = 1
(2πσ2)N/2 exp

{
− 1

2σ2

N∑
n=1

(xn − µ)2

}
(8)

In this case, the posterior probability distribution will again be a Gaussian distribution N and
has the same form as the prior. The prior is then called a conjugate prior to the posterior.
Again we emphasize that the likelihood function p(X | µ) is not a probability distribution over
µ and is not normalized. We see that the likelihood function takes the form of the exponential
of a quadratic form in µ. Thus if we choose a prior p(µ) given by a Gaussian, it will be a
conjugate distribution for this likelihood function because the corresponding posterior will be
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a product of two exponentials of quadratic functions of µ and hence will also be Gaussian N .
We therefore take our prior distribution to be

p(µ) = N
(
µ | µ0, σ

2
0
)

(9)

And the posterior distribution is given by:

p(µ | X) ∝ p(X | µ) · p(µ) (10)

a) Using simple manipulation involving completing the square in the exponent, show that
the posterior distribution is given by:

p(µ | X) = N
(
µ | µN , σ

2
N

)
(11)

1
σ2

N

= N

σ2 + 1
σ2

0
(12)

µN = σ2

Nσ2
0 + σ2 · µ0 + Nσ2

0
Nσ2

0 + σ2 · µML (13)

in which µML is the maximum likelihood solution for µ given by the sample mean

µML = 1
N

N∑
n=1

xn (14)

b) Explain what happens, if we increase the number of observed data points.

Note: The product of the PDFs of two random variables X and Y will give the joint distribu-
tion of the vector-valued random variable (X, Y ) in the case that X and Y are independent.
Therefore, if X and Y are normally distributed independent random variables, the product of
their PDFs is bivariate normal with zero correlation.
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