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• You know the main motivations and applications and drawbacks of dimensionality reduction
of a high dimensional dataset.

• You can explain by an example what is meant by the term curse of dimensionality and the
consequences of this fact.

• You can apply Principal Component Analysis (PCA) to high dimensional datasets and ex-
plain how PCA works. You know different versions of PCA like incremental PCA, vanilla
PCA, randomized PCA and kernel PCA. You can explain the differences between these
methods and know to apply them accordingly using scikit learn.

• You know the kernel trick, it’s advantages and when it can be applied to a given techni-
que. You can list at least four different kernels k(x, x′) that are frequently used in Machine
Learning.

• You know the four axioms that define a metrics and can name four different metrices that
are commonly used in Machine Learning.

• You know the manifold hypothesis and different manifold techniques like MDS (Multidi-
mensional scaling), LLE (local linear embedding), t-SNE (t-distributed stochastic neighbor
embedding) and Isomap (Isometric mapping) and can apply them to high dimensional da-
tasets in scikit learn.

• You can successfully apply dimensionality reduction techniques for the visualization of high
dimensional datasets, for noise reduction in datasets and for the elimination of meaningless
features used for classification.

1. Applications of dimensionality reduction techniques [A,I]

a) The main motivations for dimensionality reduction are:
• To speed up a subsequent training algorithm (in some cases it may even remove noise

and redundant features, making the training algorithm perform better).
• To visualize the data and gain insights on the most important features.
• Simply to save space (compression).
• To reduce noise.
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b) The main applications are:
• removal of noise and redundant features for classification tasks
• visualization of high dimensional data
• data compression
• noise reduction, removal

c) The main drawbacks are:
• Some information is lost, possibly degrading the performance of subsequent training

algorithms.
• It can be computationally intensive.
• It adds some complexity to your Machine Learning pipelines.
• Transformed features are often hard to interpret.

2. Curse of Dimensionality [A,I]
The curse of dimensionality refers to the fact that many problems that do not exist in low-
dimensional space arise in high-dimensional space. In Machine Learning, one common mani-
festation is the fact that randomly sampled highdimensional vectors are generally very sparse,
increasing the risk of overfitting and making it very difficult to identify patterns in the data
without having plenty of training data.

3. General questions [A,II]

a) Once a dataset’s dimensionality has been reduced using one of the algorithms we discussed,
it is almost always impossible to perfectly reverse the operation, because some information
gets lost during dimensionality reduction. Moreover, while some algorithms (such as PCA)
have a simple reverse transformation procedure that can reconstruct a dataset relatively
similar to the original, other algorithms (such as t-SNE) do not.

b) For dimensionality reduction of high dimensional, nonlinear datasets, mainfold methods
that use the local structure of the dataset should be used:

• Kernel PCA is generally well suited in reducing the dimensionality of high dimensional,
nonlinear datasets. By applying the kernel trick, a nonlinear mapping is applied to
the input data, actually increasing the dimensionality even more. The kernel however
can be evaluated in dataspace. The problem complexity is given by the number of
data points.

• Local Linear Embedding (LLE) reduces dimensionality while trying to preserve the
distances between close instances only.

• Isomap creates a graph by connecting each instance to its nearest neighbors, then
reduces dimensionality while trying to preserve the geodesic distances between the
instances.

• t-Distributed Stochastic Neighbor Embedding (t-SNE) reduces dimensionality while
trying to keep similar instances close and dissimilar instances apart. It is mostly used
for visualization, in particular to visualize clusters of instances in high-dimensional
space (e.g., to visualize the MNIST images in 2D).
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• Linear Discriminant Analysis (LDA) is actually a classification algorithm. During
training it learns the most discriminative axes between the classes. These axes can be
used to define a hyperplane onto which to project the data. The projection will keep
classes as far apart as possible, so LDA is a good technique to reduce dimensionality
before running another classification algorithm such as an SVM classifier.

c) Intuitively, a dimensionality reduction algorithm performs well if it eliminates a lot of
dimensions from the dataset without losing too much information. One way to measure
this is to apply the reverse transformation and measure the reconstruction error. However,
not all dimensionality reduction algorithms provide a reverse transformation.

Alternatively, if you are using dimensionality reduction as a preprocessing step before ano-
ther Machine Learning algorithm (e.g., a Random Forest classifier), then you can simply
measure the performance of that second algorithm; if dimensionality reduction did not
lose too much information, then the algorithm should perform just as well as when using
the original dataset.

d) It can absolutely make sense to chain two different dimensionality reduction algorithms. A
common example is using PCA to quickly get rid of a large number of useless dimensions,
then applying another much slower dimensionality reduction algorithm, such as LLE.
This two-step approach will likely yield the same performance as using LLE only, but in
a fraction of the time.

e) In which cases would you use incremental PCA, randomized PCA or kernel PCA?
• Regular PCA is the default, but it works only if the dataset fits in memory.
• Incremental PCA is useful for large datasets that don’t fit in memory, but it is slower

than regular PCA, so if the dataset fits in memory you should prefer regular PCA.
Incremental PCA is also useful for online tasks, when you need to apply PCA on the
fly, every time a new instance arrives.

• Randomized PCA is useful when you want to considerably reduce dimensionality and
the dataset fits in memory; in this case, it is much faster than regular PCA. Finally,
Kernel PCA is useful for nonlinear datasets.

4. PCA and scaling importance [A,II]
The Jupyter notebook solution can be found on moodle:
Lab10_A4_PCA_ScalingImportance_Wine_solution.ipynb

5. Stochastic Neighbour Embedding [A,II]
The Jupyter notebook solution can be found on moodle:
Lab10_A5_MNIST_tSNE_solution.ipynb

6. Feature Engineering using PCA [A,II]
The Jupyter notebook solution can be found on moodle:
Lab10_A6_MNIST_tSNE_solution.ipynb
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7. Kernels and the Kernel Trick [A,II]

a) The kernel trick avoids the explicit mapping that is needed to get linear learning algorithms
to learn a nonlinear function or decision boundary. For all x and x′ in the input space
X , certain functions k(x,x′) can be expressed as an inner product in another space V .
The function k : X × X → R is often referred to as a kernel or a kernel function. The
word ’kernel’ is used in mathematics to denote a weighting function for a weighted sum
or integral.
Certain problems in machine learning have additional structure than an arbitrary weigh-
ting function k. The computation is made much simpler if the kernel can be written in
the form of a ’feature map’ ϕ : X → V which satisfies

k (x,x′) = 〈ϕ(x), ϕ(x′)〉V (1)

The key restriction is that 〈·, ·〉V must be a proper inner product. On the other hand,
an explicit representation for ϕ is not necessary, as long as V is an inner product space.
The alternative follows from Mercer’s theorem: an implicitly defined function ϕ exists
whenever the space X can be equipped with a suitable measure ensuring the function
k satisfies Mercer’s condition. Mercer’s theorem is similar to a generalization of the
result from linear algebra that associates an inner product to any positive-definite matrix.
Some algorithms that depend on arbitrary relationships in the native space X would, in
fact, have a linear interpretation in a different setting: the range space of ϕ. The linear
interpretation gives us insight about the algorithm. Furthermore, there is often no need
to compute ϕ directly during computation, as is the case with support vector machines.
Some cite this running time shortcut as the primary benefit. Researchers also use it to
justify the meanings and properties of existing algorithms.

b) The most common kernels in Machine Learning are:

Gaussian : k(x,x′) = exp
(
−β · ‖x− x′‖2)

Laplacian : k(x,x′) = exp (−γ · |x− x′|1)
Polynomial : k(x,x′) =

(
1 + x · xT

)p

Sigmoid : k(x,x′) = tanh
(
αx · xT + δ

)
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