H ¥ NTB

. . Interstaatliche Hochschule
fiir Technik Buchs

FHO Fachhochschule Ostschweiz

Systemtechnik BS
Lab 10 et

_ _ . _ MSE MachLe
Dimensionality Reduction WURC

Lernziele/Kompetenzen

® You know the main motivations and applications and drawbacks of dimensionality reduction
of a high dimensional dataset.

® You can explain by an example what is meant by the term curse of dimensionality and the
consequences of this fact.

® You can apply Principal Component Analysis (PCA) to high dimensional datasets and ex-
plain how PCA works. You know different versions of PCA like incremental PCA, vanilla
PCA, randomized PCA and kernel PCA. You can explain the differences between these
methods and know to apply them accordingly using scikit learn.

® You know the kernel trick, it’s advantages and when it can be applied to a given techni-
que. You can list at least four different kernels k(z,z’) that are frequently used in Machine
Learning.

® You know the four axioms that define a metrics and can name four different metrices that
are commonly used in Machine Learning.

® You know the manifold hypothesis and different manifold techniques like MDS (Multidi-
mensional scaling), LLE (local linear embedding), t-SNE (t-distributed stochastic neighbor
embedding) and Isomap (Isometric mapping) and can apply them to high dimensional da-
tasets in scikit learn.

® You can successfully apply dimensionality reduction techniques for the wvisualization of high
dimensional datasets, for noise reduction in datasets and for the elimination of meaningless
features used for classification.

1. Applications of dimensionality reduction techniques [A,l]

a) What are the main motivations for reducing a dataset’s dimensionality?
b) What are the main applications of dimensionality reduction techniques?

c) What are the main drawbacks of dimensionality reduction techniques?



2. Curse of Dimensionality [A, ]
What is the curse of dimensionality? Can you explain this with an example?

3. General questions [A,ll]

a) Once a dataset’s dimensionality has been reduced, is it possible to reverse the operation?
If so, how? If not, why?

b) Can PCA be used to reduce the dimensionality of a highly nonlinear dataset? Which
methods can alternatively be used?

c) How can you evaluate the performance of a dimensionality reduction algorithm?
d) Does it make sense to chain two different dimensionality reduction algorithms?

e) In which cases would you use incremental PCA, randomized PCA or kernel PCA?

4. PCA and scaling importance [A,ll]

Feature scaling through standardization (or Z-score normalization) can be an important prepro-
cessing step for many machine learning algorithms. Many algorithms such as SVM, K-nearest
neighbors, and logistic regression and PCA require features to be normalized. In PCA we are
interested in the components that maximize the variance. If one component (e.g. human height)
varies less than another (e.g. weight) because of their respective scales (meters vs. kilos), PCA
might determine that the direction of maximal variance more closely corresponds with the
weight axis, if those features are not scaled.

The dataset used is the Wine Dataset available at UCI https://archive.ics.uci.edu/ml/
datasets/wine. This dataset has continuous features that are heterogeneous in scale due to
differing properties that they measure. It is the outcome of a chemical analysis wines grown
in the same region in Italy but derived from three different cultivars. The analysis determined
the quantities of 13 constituents (i.e alcohol content, and malic acid) found in each of the three
types of wines.

a) Open the Jupyter notebook PCA_ScalingImportance_Wine. jpynb. We import the follo-
wing modules:

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

from sklearn.naive_bayes import GaussianlNB

from sklearn import metrics

import matplotlib.pyplot as plt

from sklearn.datasets import load_wine

from sklearn.pipeline import make_pipeline

b) Split the data into a training dataset (70%) and a test dat set (30%) using train_test_split
from sklearn.model selection.

c) Create a pipeline called unscaled_clf with make_pipeline using the following two ope-
rations:

1. PCA using only two components: PCA(n_components=2)

2. Naive Bayes Classifier (GaussianNB) for the different wine types (target).



d) Fit the model using the .fit method. Estimate the cultivar (target) using the .predict
method on the test data and print the accuracy score on the test data using
metrics.accuracy_score.

e) Change the PCA to 4 components, fit the model using the .fit method. Estimate cultivar
(target) using the .predict method on the test data and print the accuracy score on the
test data using
metrics.accuracy_score.

f) Create a new pipeline called scaled_clf using the following operations:
1. StandardScaler ()
2. PCA using only two components: PCA(n_components=2)
3. Naive Bayes Classifier (GaussianNB) for the different wine types (target).
g) Fit the model using the .fit method. Estimate the wine type (target) using the .predict

method on the test data and print the accuracy score on the test data using
metrics.accuracy_score.

h) Plot the transformed data as a scatter plot in the new coordinate system of the two
principal components, once using the scaler and once without the scaler. Use differnt
symbols and markers for each target (cultivar).

fig, (axl, ax2) = plt.subplots(ncols=2, figsize=FIG_SIZE)

for 1, ¢, m in

zip(range (0, 3), (’blue’, ’red’, ’green’), (°~7, ’s’, ’0’)):
axl.scatter (Xtrain_PCA_unscaled[y_train == 1, 0],
Xtrain_PCA_unscaled[y_train == 1, 1],

color=c, label=’class %s’ % 1, alpha=0.5, marker=m)

for 1, ¢, m in

zip(range (0, 3), (’blue’, ’red’, ’green’), (77, ’s’, ’07)):
ax2.scatter (Xtrain_PCA_scaled[y_train == 1, 0],
Xtrain_PCA_scaled[y_train == 1, 1],

color=c, label=’class %s’ % 1, alpha=0.5, marker=m)

Note: Naive Bayes methods are a set of supervised learning algorithms based on applying
Bayes’ theorem with the naive assumption of independence between every pair of features. In spi-
te of their apparently over-simplified assumptions, naive Bayes classifiers have worked quite well
in many real-world situations, famously document classification and spam filtering. They requi-
re a small amount of training data to estimate the necessary parameters. Naive Bayes learners
and classifiers can be extremely fast compared to more sophisticated methods. The decoupling
of the class conditional feature distributions means that each distribution can be independently
estimated as a one dimensional distribution. This in turn helps to alleviate problems stemming
from the curse of dimensionality. However, although naive Bayes is known as a decent classifier,
it is known to be a bad estimator, so the probability outputs from predict_proba are not to be
taken too seriously.



5. Stochastic Neighbour Embedding [A,Il]

a) Use t-SNE to reduce the MNIST dataset down to two dimensions and plot the result using
Matplotlib. You can use a scatterplot using 10 different colors to represent each image’s
target class.

b) Write colored digits at the location of each instance, or even plot scaled-down versions of
the digit images themselves (if you plot all digits, the visualization will be too cluttered,
so you should either draw a random sample or plot an instance only if no other instance
has already been plotted at a close distance). You should get a nice visualization with
well-separated clusters of digits.

c) Try using other dimensionality reduction algorithms such as PCA, LLE, or MDS and
compare the resulting visualizations.

6. Feature Engineering using PCA [A,Il]

a) Load the MNIST dataset and split it into a training set and a test set (take the first 60’000
instances for training, and the remaining 10’000 for testing).

b) Train a Random Forest classifier on the dataset and time how long it takes, then evaluate
the resulting model on the test set.

c) Next, use PCA to reduce the dataset’s dimensionality, with an explained variance ratio
of 95%. Train a new Random Forest classifier on the reduced dataset and see how long it
takes. How much faster was the training on your machine?

d) Next evaluate the classifier on the test set: how does it compare to the previous classifier?

7. Kernels and the Kernel Trick [A,ll]

a) Explain what a kernel is.
b) List four commonly used kernels k(x, z’) in Machine Learning,.

c) Show, that the RBS-kernel is symmetric and positive semi-definite.



