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V11: Generative Modeling with Neural Nets

Brief overview of neural networks

Generative Adversarial Nets

Use case: image inpainting

With material from 

• Stuart Russell, UC Berkeley

• Arthur Juliani’s and Brandon Amos’s blog posts

• Ian Goodfellow, UC Berkeley COMPSCI 294 guest lecture
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Educational objectives

• Have a basic understanding of the architecture and working of

neural networks

• Know the general idea behind Generative Adversarial Nets (GANs)

• Understand the training process (and inherent difficulties) for 

GANs

• Be able to start working on open source GAN code
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1. BRIEF OVERVIEW OF NEURAL NETWORKS
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Neurons

Biological model

• 1011 neurons of > 20 types

• 1014 synapses

• 1ms – 10ms cycle time

• Signals are noisy “spike trains" of 

electrical potential

• Organized in layers to form a brain

McColloch-Pitts “unit” (1943)

• Output is a thresholded linear function 

of the inputs: 𝑎𝑖 = 𝑔 𝑖𝑛𝑖 = 𝑔 σ𝑗𝑊𝑗,𝑖 ⋅ 𝑎𝑗
• Changing the bias weight 𝑊0,𝑖moves the 

threshold location

• A gross oversimplification of real 

neurons!

• Purpose: develop understanding of what 

networks of simple units can do
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Feed-forward network example

FNN: a parameterized family of nonlinear functions
• 𝑎5 = 𝑔 𝑊3,5 ⋅ 𝑎3 +𝑊4,5 ⋅ 𝑎4

= 𝑔 𝑊3,5 ⋅ 𝑔 𝑊1,3 ⋅ 𝑎1 +𝑊2,3 ⋅ 𝑎2 +𝑊4,5 ⋅ 𝑔 𝑊1,4 ⋅ 𝑎1 +𝑊2,4 ⋅ 𝑎2

• Adjusting weights changes the function: learning works this way!
( see appendix for first ideas)

Expressiveness of multilayer networks (multilayer perceptrons)
• All continuous functions w/ 2 layers, all functions w/ 3 layers

• Combine two opposite-facing threshold functions to make a ridge

• Combine two perpendicular ridges to make a bump

• Add bumps of various sizes and locations to fit any surface
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What is the effect of weight adjustment?

Neuron

Features (e.g. pixels)

Adjustable parameters

Decision

(threshold)

Result (e.g. «1» for «car»)

𝑦
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What is the effect of weight adjustment?

Neuron Neural Network
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How are the weights adjusted? 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)

• Error measure: 𝐿 𝑾 =
1

𝑁
σ𝑖=1
𝑁 𝑓𝑾 𝑥𝑖 − 𝑦𝑖

2

Average of quadratic difference on all 

images (loss function)

𝐿 𝑾 =
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑾 𝑥𝑖 − 𝑦𝑖
2

Average (of all 

examples)

Difference prediction

– ground truth (error)

Overproportional

penalty for large 

errors
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)

• Error measure: 𝐿 𝑾 =
1

𝑁
σ𝑖=1
𝑁 𝑓𝑾 𝑥𝑖 − 𝑦𝑖

2

Average of quadratic difference on all 

images (loss function)

 error «landscape»

𝑤2
𝑤1

𝐿(𝑤1, 𝑤2)
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)

• Error measure: 𝐿 𝑾 =
1

𝑁
σ𝑖=1
𝑁 𝑓𝑾 𝑥𝑖 − 𝑦𝑖

2

Average of quadratic difference on all 

images (loss function)

 error «landscape»

𝑤2
𝑤1

𝐿(𝑤1, 𝑤2)

Likelihood [%] of certain event

Car                  Bike                  Cat             Sunflower
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)

• Error measure: 𝐿 𝑾 =
1

𝑁
σ𝑖=1
𝑁 𝑓𝑾 𝑥𝑖 − 𝑦𝑖

2

Average of quadratic difference on all 

images (loss function)

 error «landscape»

𝑤2
𝑤1

𝐿(𝑤1, 𝑤2)

Method: adapt weights of 𝑓 in the direction

of the steepest descent (downwards) of 𝐿

Likelihood [%] of certain event

Car                  Bike                  Cat             Sunflower
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)
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1
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σ𝑖=1
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2
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Likelihood [%] of certain event

Car                  Bike                  Cat             Sunflower
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)
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Car                  Bike                  Cat             Sunflower
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)
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How are the weights adjusted? (contd.) 
First intuition

• Our example neural network: 𝑓𝑾 𝑥 = 𝑦
with image 𝑥, ground truth 𝑦 und parameters 𝑾
(𝑾 = {𝑤1, 𝑤2, … } initialized randomly)

• Error measure: 𝐿 𝑾 =
1
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How are the weights adjusted? 
Neural network training ideas
 see also https://stdm.github.io/downloads/papers/ADS_2019_DeepLearning.pdf

Trained by gradient descent (complete network is differentiable)

• Forward pass: calculation of loss function 𝐿 for a mini batch of training examples

• Backward pass: calculation of 
𝜕𝐿

𝜕𝑊𝑙,𝑖
for each weight 𝑊𝑙,𝑖 on overall loss

• Efficiently computable by layer-wise application of chain rule (backpropagation algorithm)

Many details to be considered for training to work in practice
• Weight initialization: choose random initial weights according to the magnitude of the inputs

• Gradient flow: secure sufficient gradient magnitude for fast training convergence via batchnorm

• Learning rate: choose adaptive learning rates, e.g. using the ADADELTA optimizer

• Batch composition: care for sufficient randomness in the presentation order

• Regularization: use dropout to overcome the problem of more parameters then input data

=
¶ f

¶y

Illustration: 

http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf

https://stdm.github.io/downloads/papers/ADS_2019_DeepLearning.pdf
http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf
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What does a neural network «see»?
A hierarchy of progressively complex features, visualized

Source: http://vision03.csail.mit.edu/cnn_art/data/single_layer.png

http://vision03.csail.mit.edu/cnn_art/data/single_layer.png
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Convolutional Neural Networks

Intuition: cp. https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050

Goal: fewer free parameters  eases learning

Idea: exploit 2D-correlated local structure in (image) input data

 inspired by mammal visual cortex

Principle
• A “filter” moves over every input pixel and calculates

a feature that describes the pixel’s local context 

 map result to same spatial location

 filter weights (i.e., feature meaning) is trainable

• Have several such “filters” to encode different features

• After each filtering layer, sub-sample result to reduce spatial 

resolution and increase “field of vision”

https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
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2. GENERATIVE ADVERSARIAL NETS
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Recap: Probability distributions as generative 

models

What does a pdf tell about a set of data?
 For data coming from some stochastic 

processes, the pdf tells everything there 

is to know about the data

 Allows for sampling data from the 

underlying distribution

A Gaussian as base generative model
• Recovering a known, parametric pdf: 

The univariate Gaussian

Maximum likelihood 

estimate 𝑝(𝑥) with 

parameters mean 𝜇 and 

standard deviation 𝜎

Given data 

points 𝑥𝑖;
Assumption: 

𝑥𝑖~𝑝(𝑥; 𝜃) =
𝑁(𝑥; 𝜇, 𝜎)

Terminology: its probability density function 

(pdf) is one way to describe a distribution.

Source: Brandon Amos, «Image Completion with Deep

Learning in TensorFlow», 2016, 

https://bamos.github.io/2016/08/09/deep-completion/

Example of a multimodal (but univariate) distribution, approximated by a GMM 

with 3 mixtures.

https://bamos.github.io/2016/08/09/deep-completion/
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Adversarial nets
Bootstrapping implicit generative representations

Train 2 models simultaneously [1]
• G: Generator

 learns to generate data 

• D: Discriminator

 learns 𝑝(𝑥 𝑛𝑜𝑡 𝑏𝑒𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)

 Both differentiable functions D&G learn while competing

 The latent space Z serves as a source of variation 

to generate different data points

 Only D has access to real data

[1] Schmidhuber, «Learning Factorial Codes by Predictability Minimization», 1992

Sources: https://deeplearning4j.org/generative-adversarial-network; 

http://www.dpkingma.com/sgvb_mnist_demo/demo.html

(    )

(Z)

(1)

(0)

https://deeplearning4j.org/generative-adversarial-network
http://www.dpkingma.com/sgvb_mnist_demo/demo.html
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No weenies allowed! How SpongeBob helps..
…to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides 

on entry: for tough guys only

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, 

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk
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No weenies allowed! How SpongeBob helps..
…to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides 

on entry: for tough guys only

SpongeBob (G) wants to 

appear tough to be admitted 

(i.e., synthesizes behavior)

In the beginning, D focuses on 

obvious things to discriminate: 

e.g., physical strength

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, 
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No weenies allowed! How SpongeBob helps..
…to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides 

on entry: for tough guys only

SpongeBob (G) wants to 

appear tough to be admitted 

(i.e., synthesizes behavior)

In the beginning, D focuses on 

obvious things to discriminate: 

e.g., physical strength

So G tries to imitate that, but 

fails

By observation, G discovers 

more detailed features of 

tough guys: e.g., fighting

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, 

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk
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No weenies allowed! How SpongeBob helps..
…to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides 

on entry: for tough guys only

SpongeBob (G) wants to 

appear tough to be admitted 

(i.e., synthesizes behavior)

In the beginning, D focuses on 

obvious things to discriminate: 

e.g., physical strength

So G tries to imitate that, but 

fails

By observation, G discovers 

more detailed features of 

tough guys: e.g., fighting

So G learns to imitate that 

as well

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, 

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk
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No weenies allowed! How SpongeBob helps..
…to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides 

on entry: for tough guys only

SpongeBob (G) wants to 

appear tough to be admitted 

(i.e., synthesizes behavior)

In the beginning, D focuses on 

obvious things to discriminate: 

e.g., physical strength

So G tries to imitate that, but 

fails

By observation, G discovers 

more detailed features of 

tough guys: e.g., fighting

So G learns to imitate that 

as well
…and eventually tricks D.

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, 

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk
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GAN model formulation (improved)
Deep convolutional generative adversarial nets [2]

Implement both G and D as deep convnets (DCGAN)
• No pooling, only fractionally-strided convolutions (G) and strided convolutions (D)

• No fully connected hidden layers for deeper architectures

• Apply batchnorm in both

• ReLU activation in G (output layer: tanh)

• LeakyReLU activation in D (all layers)

[2] Radford, Metz, Chintala, «Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks», 2016
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Model training [5]

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

Usually 

𝑘 = 1
(or ½)
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Model training [5]

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

Usually 

𝑘 = 1
(or ½)

change 𝜃𝑫 to maximize
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Model training [5]

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

Usually 

𝑘 = 1
(or ½)

average
log likelihood of 𝑥
being real  0

log likelihood 𝐺(𝑧)
not being real  0

change 𝜃𝑫 to maximize
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Model training [5]

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

Usually 

𝑘 = 1
(or ½)

average
log likelihood of 𝑥
being real  0

log likelihood 𝐺(𝑧)
not being real  0

change 𝜃𝑫 to maximize

change 𝜃𝑮 to minimize
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Model training [5]

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

Usually 

𝑘 = 1
(or ½)

average
log likelihood of 𝑥
being real  0

log likelihood 𝐺(𝑧)
not being real  0

change 𝜃𝑫 to maximize

change 𝜃𝑮 to minimize

G just get’s gradients on how well 

it can fool D (no direct training 

labels)
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Based on material from Brandon Amos, 

«Image Completion with Deep Learning in TensorFlow», 2016

https://bamos.github.io/2016/08/09/deep-completion/

3. USE CASE: IMAGE INPAINTING

https://bamos.github.io/2016/08/09/deep-completion/
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Image inpainting as a sampling problem
…approached by machine learning

Yeh et al., «Semantic Image Inpainting with 

Perceptual and Contextual Losses», 2016

Training: Regard images as samples of some underlying probability distribution 𝒑𝑮
1. Learn to represent this distribution using a GAN setup (G and D)

--

Testing: Draw a suitable sample from 𝑝𝐺 by…

1. Fixing parameters 𝜣𝑮 and Θ𝐷 of G and D, respectively

2. Finding input ො𝒛 to G such that G( Ƹ𝑧) fits two constraints:
a) Contextual: Output has to match the known parts of the image that needs inpainting

b) Perceptual: Output has to look generally «real» according to D’s judgment

3. …by using gradient-based optimization on ො𝒛

Powerful idea: application of trained ML 

model may again involve optimization!
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Reconstruction formulation

Given
• Uncomplete/corrupted image 𝑥𝑐𝑜𝑟𝑟𝑝𝑢𝑡𝑒𝑑
• Binary mask 𝑀 (same size as 𝑥𝑐𝑜𝑟𝑟𝑝𝑢𝑡𝑒𝑑, 0 for missing/corrupted pixels)

• Generator network 𝐺(), discriminator network 𝐷()

Problem
• Find Ƹ𝑧 such that 𝑥𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = 𝑀⨀𝑥𝑐𝑜𝑟𝑟𝑝𝑢𝑡𝑒𝑑 + (1 −𝑀)⨀𝐺( Ƹ𝑧) 

(⨀ is the element-wise product of two matrices)

Solution
• Define contextual and perceptual loss as follows:

𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙(𝑧) = 𝑀⨀𝐺 𝑧 −𝑀⨀𝑥𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 1
(distance between known parts of image and reconstruction)

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑧 = log 1 − 𝐷 𝐺 𝑧 (as before: log-likelihood of 𝐺(𝑧) not being real according to D)

𝐿 𝑧 = 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑧 + 𝜆 ⋅ 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙(𝑧) (combined loss)

 Optimize Ƹ𝑧 = arg min
𝑧

𝐿 𝑧
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Results

See it move: https://github.com/bamos/dcgan-completion.tensorflow

https://github.com/bamos/dcgan-completion.tensorflow
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Where’s the intelligence?
Man vs. machine

• Learning smooth approximations of complex probability density functions (PDF) enables 

us to sample previously unseen examples

• That is, we can create new images, new music, …

• But isn’t creativity more the power to surprise, i.e., (technically speaking) the power to 

come up with new yet reasonable PDFs instead of new instantiations 

from a given PDF?
• That would mean that to create does not mean to know the PDF of «things», 

but the PDF of the «reasonableness of things». As this is unknown for novel 

things, it needs to be continually explored.

Source: https://nerdist.com/nvidia-ai-headshots-fake-celebrities/. 

https://nerdist.com/nvidia-ai-headshots-fake-celebrities/
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Review

• Neural networks with at least one hidden layer are general function 

approximators, trained by gradient descent

• GANs have been shown to produce realistic output on a wide range of (still 

smallish) image, audio and text generation tasks

• Finding Nash equilibria in high-dimensional, continuous, non-convex games 

is an important open research problem

• Image inpainting works by optimizing the output of a fully trained 

generator to fit the given context & realism criteria, using again gradient 

descent

 Applying machine learned models might involve optimization (~training) steps again

 This is in line with human learning: Once trained to draw, hand-copying 

a painting involves “optimization” on the part of the painter

Further reading: Goodfellow, «NIPS 2016 Tutorial: Generative Adversarial Networks», 2016



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

45

APPENDIX
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Recap: basic idea of deep learning
Add depth (layers  capability) to learn features automatically

(0.2, 0.4, …)

container ship

tiger

Classic computer 

vision

(0.4, 0.3, …)

Feature extraction

(SIFT, SURF, LBP, HOG, etc.)

container ship

tiger

Convolutional 

neural networks 

(CNNs)

Takes raw pixels as input, learns 

good features automatically!

Classification

(SVM, neuronal net, etc.)

…

…
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Pros and cons of generative models

Flavors of generative models 
• Statistical models that directly model the pdf (e.g., GMM, hidden Markov model HMM)

• Graphical models with latent variables (e.g., Boltzmann machines RBM/DBM, deep belief 

networks DBN)

• Autoencoders (e.g. Kingma & Welling, “Autoencoding Variational Bayes”, 2013)

Promises
• Help learning about high-dimensional, complicated probability distributions (even if pdf 

is not represented explicitly)

• Simulate possible futures for planning or simulated RL

• Handle missing data (in particular, semi-supervised learning)

• Some applications actually require generation (e.g. sound synthesis, identikit pictures, content 

reconstruction)

Common drawbacks
• Statistical models suffer severely from the curse of dimensionality

• Approximations needed for intractable probabilistic computations during ML estimation

• Unbacked assumptions (e.g., Gaussianity) and averaging e.g. in VAEs
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Strided what? Convolutional arithmetic [3]
NN wiring to save weights while exploiting local structure

Fractionally-strided conv. in G
• Performing transposed convolution

• Used to «up-sample» from input (blue) to 

output (green)

Strided convolutions in D
• Stride (stepsize) = 2

• Used instead of (max) pooling [4]

[3] Dumoulin, Visin, «A guide to convolution arithmetic for deep learning », 2016

[4] Springenberg, Dosovitsiy, Brox, Riedmiller, «Striving for simplicity: The all convolutional net», 2014
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Visualizing the training process

Observations
• G starts with producing random noise

• Quickly arrives at what seems to be 

pencil strokes

• It takes a while for the network to 

produce different images for different 𝑧
• It takes nearly to the end before the 

synthesized images per 𝑧 stabilize at 

certain digits

 Possible improvements?

6x6 samples 𝐺(𝑧) from fixed 𝑧’s every 2 mini batches (for 50k 

iterations). See https://dublin.zhaw.ch/~stdm/?p=400.

https://dublin.zhaw.ch/~stdm/?p=400
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Features of (DC)GANs

Learn semantically meaningful latent space
• Examples of 𝒛-space vector arithmetic from 

DCGAN paper [2]:

Training is not guaranteed to converge
• 𝐷 and 𝐺 play a game-theoretic game against

each other (in terms of slide 12: minimax)

• Gradient descent isn’t meant to find the 

corresponding Nash Equilibria (saddle point of 

joint loss function, corresponding to minima of both 

player’s costs)  [6]

• How to sync D’s and G’s training is experimental (if G is trained too much, it may collapse all of 

𝑧’s variety to a single convincing output)

• The improvements of [2] and [7] make them stable enough for first practical applications

• Research on adversarial training of neural networks is still in its infancy

[6] Goodfellow, Courville, Bengio, «Deep Learning», ch. 20.10.4, 2016

[7] Salimans, Goodfellow, Zaremba, Cheung, «Improved Techniques for Training GANs», 2016

The 𝑧 vectors in the left 3 columns have been averaged, then arithmetic has been 

performed. The middle image on the right is the output of 𝐺(𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑧 𝑣𝑒𝑐𝑡𝑜𝑟). The 

other 8 pictures are the result of adding noise to the resulting 𝑧 vector (showing that 

smooth transitions in input space result in smooth transitions in output space).
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GAN use cases

Research is gaining momentum very quickly; see appendix for more!

• Generate images from text
Reed et al., «Generative Adversarial Text to Image Synthesis», 2016

• Segment images into semantically meaningful parts
Luc et al., «Semantic Segmentation using Adversarial 

Networks», 2016

• Complete missing parts in images
Yeh et al., «Semantic Image Inpainting with Perceptual and

Contextual Losses», 2016

 see next slides
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The GAN zoo as of April 2017
Avinash Hindupur’s list at https://github.com/hindupuravinash

GAN - Generative Adversarial Networks
3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial 
Modeling
AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs
AdaGAN - AdaGAN: Boosting Generative Models
AffGAN - Amortised MAP Inference for Image Super-resolution
AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
ALI -Adversarially Learned Inference
AMGAN - Generative Adversarial Nets with Labeled Data by Activation Maximization
AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker 
Discovery
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs
b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
Bayesian GAN - Deep and Hierarchical Implicit Models
BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
BiGAN - Adversarial Feature Learning
BS-GAN - Boundary-Seeking Generative Adversarial Networks
CGAN - Conditional Generative Adversarial Nets
CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial 
Networks
CoGAN - Coupled Generative Adversarial Networks
Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN —Unsupervised Cross-Domain Image Generation
DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial 
Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
EBGAN - Energy-based Generative Adversarial Network
f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild
GAWWN - Learning What and Where to Draw
GoGAN-Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
IAN -Neural Photo Editing with Introspective Adversarial Networks
iGAN-Generative Visual Manipulation on the Natural Image Manifold
IcGAN - Invertible Conditional GANs for image editing
ID-CGAN- Image De-raining Using a Conditional Generative Adversarial Network
Improved GAN -Improved Techniques for Training GANs
InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative 
Adversarial Nets
LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
LR-GAN - LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

LSGAN - Least Squares Generative Adversarial Networks
LS-GAN - Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
MGAN - Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MAGAN - MAGAN: Margin Adaptation for Generative Adversarial Networks
MAD-GAN - Multi-Agent Diverse Generative Adversarial Networks
MalGAN - Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
MARTA-GAN - Deep Unsupervised Representation Learning for Remote Sensing Images
McGAN - McGan: Mean and Covariance Feature Matching GAN
MedGAN - Generating Multi-label Discrete Electronic Health Records using Generative Adversarial 
Networks
MIX+GAN - Generalization and Equilibrium in Generative Adversarial Nets (GANs)
MPM-GAN - Message Passing Multi-Agent GANs
MV-BiGAN - Multi-view Generative Adversarial Networks
pix2pix -Image-to-Image Translation with Conditional Adversarial Networks
PPGN -Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
PrGAN - 3D Shape Induction from 2D Views of Multiple Objects
RenderGAN - RenderGAN: Generating Realistic Labeled Data
RTT-GAN - Recurrent Topic-Transition GAN for Visual Paragraph Generation
SGAN - Stacked Generative Adversarial Networks
SGAN - Texture Synthesis with Spatial Generative Adversarial Networks
SAD-GAN - SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks
SalGAN - SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SEGAN - SEGAN: Speech Enhancement Generative Adversarial Network
SeGAN - SeGAN: Segmenting and Generating the Invisible
SeqGAN - SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SketchGAN - Adversarial Training For Sketch Retrieval
SL-GAN - Semi-Latent GAN: Learning to generate and modify facial images from attributes
Softmax-GAN - Softmax GAN
SRGAN - Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
S^2GAN - Generative Image Modeling using Style and Structure Adversarial Networks
SSL-GAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
StackGAN - StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial 
Networks
TGAN - Temporal Generative Adversarial Nets
TAC-GAN - TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network
TP-GAN - Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity 
Preserving Frontal View Synthesis
Triple-GAN - Triple Generative Adversarial Nets
Unrolled GAN - Unrolled Generative Adversarial Networks
VGAN - Generating Videos with Scene Dynamics
VGAN - Generative Adversarial Networks as Variational Training of Energy Based Models
VAE-GAN - Autoencoding beyond pixels using a learned similarity metric
VariGAN - Multi-View Image Generation from a Single-View
ViGAN - Image Generation and Editing with Variational Info Generative Adversarial Networks
WGAN - Wasserstein GAN
WGAN-GP -Improved Training of Wasserstein GANs
WaterGAN - WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of 
Monocular Underwater Images

https://github.com/hindupuravinash
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https://arxiv.org/abs/1612.00215
https://arxiv.org/abs/1606.00704
http://arxiv.org/abs/1703.02000v1
http://arxiv.org/abs/1703.05921v1
https://arxiv.org/abs/1702.03410
https://openreview.net/pdf?id=S1JG13oee
https://arxiv.org/abs/1702.08896
http://arxiv.org/abs/1703.10717v2
http://arxiv.org/abs/1605.09782v7
http://arxiv.org/abs/1702.08431v1
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1611.06430v1
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http://arxiv.org/abs/1606.07536v2
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