
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Artificial Intelligence

V09: Ensemble Learning

Ensembles of classifiers

Boosting

A pattern recognition example

Based on material by

• Jin Tian, Iowa State University

• Cheng Li, Northeastern University

• Jason Brownlee, Machine Learning Mastery

• Yu Wen, Tatung University

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

2

Educational objectives

• Remember the AdaBoost algorithm and its distinction from

Bagging

• Explain how Boosting can be seen as a form of gradient descent

and what benefit this viewpoint has

• Use current implementations of decision tree ensembles (e.g.,

Random Forest®, XGBoost) for machine learning tasks

„In which we see that combining many weak agents

can result in a very strong one.“

 Reading: AIMA, ch. 18.10-18.12

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

1. ENSEMBLES OF CLASSIFIERS

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

4

Ensembles
Combining many weak agents to form a strong one

Ensembles in a nutshell
• Goal: Combining multiple complementary classifiers to increase performance

• Idea: Build different “experts”, and let them vote

Pros & cons
 Very effective in practice

 Good theoretical guarantees

 Easy to implement, not too much parameter tuning

 The result is not so transparent (black box)

 Not a compact representation

Formal problem description
• Given 𝑇 binary classification hypotheses (ℎ1,…,ℎ𝑇), find a combined classifier with better

performance of the form

෠ℎ 𝑥 = 𝑠𝑔𝑛 ෍

𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

same or different ℋ

individual weightmajority voteassuming classes -1/+1

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

Why do they work?
Three fundamental reasons why ensembles may be beneficial

Statistical
• Given finite amount of data, many hypothesis typically appear equally good

• Averaging may be a better approximation to the true 𝑓

Computational
• Search for ℎ is heuristic due to interesting ℋ’s being huge/infinite

• Strategy to avoid local minima:

repeat with random restarts, construct an ensemble

Representational
• The desired target function may not be realizable using individual

classifiers from ℋ
• It may be approximated by ensemble averaging

We cannot know the best  so we average

We may not find the best  so we average

We cannot find the best  so we average

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

Example: Bagging
Majority vote over bootstrapped training data

Bootstrap Aggregating [Breiman, 1996]

• Idea: Design the ensemble to be as diverse as possible
 Assert that this ensures complementary learners

• Almost always improves results if base learner is unstable
(i.e., classification changes with slightly different training data)

Algorithm
• The process is remarkably simple (also to implement)

• Usually, the more ensemble members, the better

for 𝑡: = 1. .number of ensemble members 𝑇
𝑋𝑡 ≔ sample i.i.d. from training data 𝑋 with replacement #bootstrap samples

ℎ𝑡 ≔ train any algorithm on 𝑋𝑡
return ෠ℎ ≔ 𝑠𝑔𝑛 σ𝑡=1

𝑇 1 ∙ ℎ𝑡(𝑥) #majority vote

Statistical reasoning: “If the [training data] is a good approximation of the

population, the bootstrap method will provide a good approximation of the

sampling distribution [~variability of a statistic in different samples from

population]”.  see R. Vitillo, https://robertovitillo.com/2015/03/, 2015

https://robertovitillo.com/2015/03/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Random Forest®
A brief description

Build a majority-voting ensemble of decision trees; for each tree,
• Choose a stratified training set of 𝑛 out of 𝑁 instances by sampling with replacement

• At every level,
• choose a random feature set (with replacement) of 𝑚 out the 𝑝 attributes

• choose the best split among those attributes

• No pruning of the branches takes place

Advantages
• Fast training, parallelizable application

• High independence of base classifiers  nearly no overfitting

• Few hyper parameters

• Applicable to large quantities of 𝑁, 𝑝 and #classes

 Very good out-of-the-box method

Further reading
• [Breiman 2001]: «Random Forests». Machine Learning 45 (1), 5-32

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

2. BOOSTING

1983: BI 2016: Data Science

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

9

Foundations of boosting

General idea
• Boost the performance of weak learners (error slightly >chance)

• Make currently misclassified examples more important, then combine hypotheses
 Each stage (additively) corrects shortcomings of previous stage by reweighting, then majority vote

• Origins in computer science: [Kearns & Valiant, 1988] (as opposed to Bagging: statistics)

Adaptive Boosting algorithm [Freund & Schapire, 1997]

• Weak learner: decision stump (=decision tree of height 1; but generalizable to others)

 Important: weak learners have skill but remain weak (to not lose the ensemble effect)

initialize weights: 𝑤𝑖 ≔
1

𝑁
#each sample gets same weight

for 𝑡: = 1. . 𝑇
ℎ𝑡 ≔ train decision stump on the 𝑥𝑖, weighted by the 𝑤𝑖

𝜀𝑡 ≔
σ𝑖=1
𝑁 𝑤𝑖∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖

σ𝑖=1
𝑁 𝑤𝑖

#compute error; 𝐼() is the identity function

𝛼𝑡 ≔ log
1−𝜀𝑡

𝜀𝑡
#compute influence of weak learner

𝑤𝑖 ≔ 𝑤𝑖 ∙ 𝑒
𝛼𝑡∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖 #increase weight by exp(influence) in case of error

return ෠ℎ ≔ 𝑠𝑔𝑛 σ𝑡=1
𝑇 𝛼𝑡 ∙ ℎ𝑡(𝑥) #weighted majority vote

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

Pros & cons
 Very little code

 Improves capacity of weak (base) learner (thus combating underfitting)

 Still learns when others overfit  margin optimization

 Sensitive to noise and outliers

AdaBoost in practice
Based on Seni & Elder, «From Trees to Forests and Rule Sets – A Unified

Overview of Ensemble Methods», KDD 2007

AdaBoost’s classifications

(colors) and weights (size) after

1 iteration  still looks like a

single decision tree with

rectangular decision boundary

3 iterations

20 iterations

Goal

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

From AdaBoost to gradient boosting

Recall: In AdaBoost, ”shortcomings" are identified by high-weight data points

A brief history of modern boosting (selective, shortened)

1. Invention: AdaBoost, the first successful boosting algorithm

[Freund et al., 1996], [Freund & Schapire, 1997]

2. Translation: Formulation as gradient descent with special loss function ( compare V04)

[Breiman et al., 1998], [Breiman, 1999]

3. Generalization: Gradient boosting in order to handle a variety of loss functions

[Friedman et al., 2000], [Friedman, 2001]

 For a great example of cross-disciplinary fertilization, see

Breiman, “Arcing classifiers (with discussion and a rejoinder by the author)”, 1998

In gradient boosting, “shortcomings" are identified by gradients
• Gradients of what? Why?  see next slides

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Intuition for gradient boosting

Setup
• For ease of discussion we change the setting from (binary)

classification to regression (i.e., real-valued labels)

• Results are again applicable to classification
(but not intuitively as straight-forward)

Let’s play a game
• You are given data 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁) and the task to fit model ෠ℎ(𝑥)

 minimize squared loss ℓ 𝑦, ℎ 𝑥 =
1

2
𝑦 − ℎ(𝑥) 2

• Suppose a friend helps by giving you an initial model 𝐹 𝑥 (a regression tree)

 You check his model and find the model is good but not perfect (e.g. 𝐹 𝑥1 = 0.8 while 𝑦1 = 0.9)

• Rule: 𝐹 𝑥 must not be changed in any way, but another model might be added
 i.e. ෠ℎ 𝑥 = 𝐹 𝑥 + ℎ 𝑥

• How to train ℎ 𝑥 ?

𝐹1 𝑥1 + ℎ 𝑥1 = 𝑦1  ℎ 𝑥1 = 𝑦1 − 𝐹 𝑥1
⋮

𝐹 𝑥𝑁 + ℎ 𝑥𝑁 = 𝑦𝑁  ℎ 𝑥𝑁 = 𝑦𝑁 − 𝐹 𝑥𝑁

We want this to be true Equivalently, we can fit the new regression tree ℎ to:

𝑥

𝑦

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

Intuition for gradient boosting (contd.)

Simple ensemble solution
• The 𝑦𝑖 − 𝐹 𝑥𝑖 ’s are called residuals

 These are the parts that the initial model 𝐹 cannot do well

 The role of ℎ is to compensate the shortcomings of 𝐹

• If the new model 𝐹 + ℎ is still not satisfactory, we can add another regression tree...

How is this related to gradient descent?
• Gradient Descent in general: minimize a function 𝐽 by moving into opposite direction of gradient

𝜃𝑖
𝑛𝑒𝑤 = 𝜃𝑖

𝑜𝑙𝑑 − 𝛼
𝜕𝐽

𝜕𝜃𝑖
𝑜𝑙𝑑

• Earlier: wanted to minimize loss function L = σ𝑖=1
𝑁 ℓ 𝑦𝑖 , 𝐹 𝑥𝑖 = σ𝑖=1

𝑁 1

2
𝑦𝑖 − 𝐹 𝑥𝑖

2

 𝐹 𝑥𝑖 is the parameter of 𝐿, so we take derivatives w.r.t. 𝐹 𝑥𝑖 :

𝜕𝐿

𝜕𝐹 𝑥𝑖
=
𝜕ℓ 𝑦𝑖 , 𝐹 𝑥𝑖

𝜕𝐹 𝑥𝑖
= 𝐹 𝑥𝑖 − 𝑦𝑖

• That is: We can interpret residuals for ℎ 𝑥 as negative gradients for improving 𝐹 𝑥𝑖

 𝑦𝑖 − 𝐹 𝑥𝑖 = −
𝜕𝐿

𝜕𝐹 𝑥𝑖

w.r.t 𝐽’s parameters 𝜃

i.e., 𝐽 = 𝐿

assuming mean squared error loss,

the standard for regression

Improving 𝐹 𝑥𝑖 with ℎ 𝑥𝑖 or by

gradient descent on its parameters is

equivalent  doing many iterations of

gradient descent is equivalent to many

rounds of boosting as well.

compare 𝐹𝑛𝑒𝑤 𝑥𝑖 = 𝐹𝑜𝑙𝑑 𝑥𝑖 + ℎ 𝑥𝑖
= 𝐹𝑜𝑙𝑑 𝑥𝑖 + 𝑦𝑖 − 𝐹𝑜𝑙𝑑 𝑥𝑖

= 𝐹𝑜𝑙𝑑 𝑥𝑖 − 1 ∙
𝜕𝐿

𝜕𝐹𝑜𝑙𝑑 𝑥𝑖

with: 𝜃𝑖
𝑛𝑒𝑤 = 𝜃𝑖

𝑜𝑙𝑑 − 𝛼
𝜕𝐽

𝜕𝜃𝑖
𝑜𝑙𝑑

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

Gradient boosting of regression trees
(Multiclass classification  see appendix)

Algorithm
• Gradient boosting for regression

True for ℓ = squared loss
• Residual ⇔ negative gradient

• Fit ℎ𝑖 to residual ⇔ fit ℎ𝑖 to negative gradient

• Update ℎ𝑖 based on residual ⇔ update ℎ𝑖 based on negative gradient

 So we are actually updating our model using gradient descent!

Advantage of gradient descent formulation
• Allows considering other loss functions (e.g. more outlier-robust, domain-specific, …)

 Derive the corresponding algorithms in the same way

Start with an initial model, e.g. 𝐹 =
σ𝑖=1
𝑁 𝑦𝑖

𝑁
(always predict mean value)

repeat until convergence

−𝑔 𝑥𝑖 = −
𝜕ℓ 𝑦𝑖,𝐹 𝑥𝑖

𝜕𝐹(𝑥𝑖)

fit regression tree ℎ to −𝑔 𝑥𝑖
𝐹 ≔ 𝐹 + 𝛼ℎ #𝛼 is a tunable learning rate, e.g. = 1

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

XGBoost: A scalable tree boosting system
[Chen & Guestrin, 2016]

A skillfully engineered, highly optimized implementation
• Used by 17/29 winning teams on Kaggle 2015

• Open source (Python, R, Spark, …): https://github.com/dmlc/xgboost

• Scalable: 10 × faster than usual implementations, scales to ~109 training points

• Massive use of parallelization/distribution (e.g. on Hadoop/Spark, but also on desktop)

Algorithmic novelties
• Distributed approximate best split finding („weighted quantile sketch“ using quantile statistics)

• Exploit sparsity (induced by missing values/one-hot encoding  via default directions for branching)

Parallelization Cache-aware access (for gradient statistics)

• Efficient out-of-core computation (i.e., computation on data not fitting into main memory)

General tricks for tree boosting
• Use aggressive sub-sampling (e.g., selecting only 50% of the data)

• Using column sub-sampling prevents over-fitting even more so than row sub-sampling

Both types of novelties purely increase the

computational performance, not learning in general

https://github.com/dmlc/xgboost

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

3. A PATTERN RECOGNITION EXAMPLE

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

AdaBoost for face detection
A detailed example of a boosted decision stumps application

Challenges
• Slide a window across image and evaluate a face model at every location & scale

 Sliding window detector must evaluate tens of thousands of location/scale combinations

• Faces are rare: 0–10 per image
• For computational efficiency, we should try spending as little time as possible on non-face windows

 A megapixel image has ~106 pixels and a comparable number of candidate face locations

• To avoid having a false positive in every image, the false positive rate has to be less than 𝟏𝟎−𝟔

The Viola-Jones face detector [Viola & Jones, 2001]

• A seminal approach to real-time object detection
Training is slow, but detection is very fast

• Key ideas
• Integral images for fast feature evaluation

• Boosting for feature selection amongst ~105 candidates

• Attentional cascade for fast & accurate rejection of non-face windows
 see appendix

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

Rectangular facial features

…and their efficient calculation via the integral image

Pixel-based features for face detection
• Reminiscent of Haar wavelets

• Simple sum of pixel intensities within rectangular regions resemble

typical shading patterns of faces

Integral images (𝑖𝑖)
• Let each pixel be the sum of all pixels left and above

Computing sums of pixels within a rectangle using 𝑖𝑖
• 𝑠𝑢𝑚 = 𝑖𝑖𝐴 − 𝑖𝑖𝐵 − 𝑖𝑖𝐶 + 𝑖𝑖𝐷
• Needs only 3 additions for any size of rectangle (constant time)

D B

C A

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle

feature on faces and non-faces.

Face Non-face

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle

feature on faces and non-faces.

Face Non-face

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle

feature on faces and non-faces.

Face Non-face

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle

feature on faces and non-faces.

Resulting weak classifier:

 Continue using AdaBoost

Face Non-face

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

Training the boosting classifier
Incorporating feature selection

Training set contains face and non-face examples
• 𝟓𝟎𝟎𝟎 faces (frontal, many variations among illumination/pose, rescaled to 24 × 24)

• 𝟑𝟎𝟎 million non-faces (extracted from 9’500 non-face images)

• Faces are normalized (scale, translation)

• Initially, all have equal weights

For each round of boosting:
• Evaluate each rectangle filter on each example, select best threshold

• Select best filter/threshold combination

• Reweight examples

Computational complexity: 𝑂(𝑟𝑜𝑢𝑛𝑑𝑠 × 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

Result
• A 200-feature classifier can yield 95% detection rate and a

false positive rate of 1 in 14084

 Not yet good enough for practice!

False alarm rate of 𝑂(10−5),
but 𝐎(𝟏𝟎−𝟔) needed

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

24

Final result of Viola-Jones face detection

After some more engineering…
• Attentional cascade for improved false positive rate ( see appendix)

• Variance normalization of pixel intensities to cope with different lighting

• Merging multiple detections

• Multi-scale detection by scaling the detector (factor of 1.25 yields good resolution)

Lasting effect
• Got applied to more visual detection problems

 facial feature localization, profile faces, male/female image classification, audio fingerprinting, …

• Solved the problem of face detection in real time (e.g. for digicams)

 available in OpenCV (http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html)

• One of the first mind-blowing computer vision applications before deep learning trend

http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

Where’s the intelligence?
Man vs. machine

• Boosting emerged as an answer for theoretical problems in computational learning theory
 solves the „function learning“ problem quite well!

• Trees still need hand-crafted feature engineering
 solved by deep learning models (on different kinds of data)

• Building strong agents by combining the „wisdom of a crowd“ of just barely useful agents

is again a powerful principle from real life, thus taken over to AI
 We see a pattern here: Single good (& simple) ideas are taken over as singletons, but are yet

disconnected

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Review

• Ensembles combine many weak learners (same or different ℋ) to a strong

classifier by weighted majority voting

• Bagging uses bootstrap resampling to construct diversity (~complementarity)

• Random Forest® uses bagging for row subsampling as well as columns (feature)

subsampling  very good out-of-the-box model, nearly parameter-free

• AdaBoost subsequently adds new models that focus on the harder

(previously misclassified) examples via reweighting
• A seminal example is the Viola-Jones face detector application using Boosting for

feature selection as well as the foundation for classification

• AdaBoost can be generalized to gradient boosting (a form of gradient descent)

• Intuition (in a regression setting) comes by deriving that the residuals (errors) of the last

round are equivalent to the negative gradient of the squared error loss function

• XGBoost is a computationally highly optimized & scalable implementation

• [Opinion] Ensembles make decision trees fashionable again in my eyes
(i.e., not just usable on BI-like problems)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

27

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

28

Gradient boosting extension to (multiclass)

classification

Model
• Each class 𝑐 has its own model 𝐹𝑐(𝑥) (binary classification tree, emitting 0/1)

• Use outputs to compute class probabilities: 𝑃𝑐 𝑥 =
𝑒𝐹𝑐(𝑥)

σ𝑖 𝑒
𝐹𝑖(𝑥)

(softmax)

 Final classification = class with highest probability

Loss function per data point
• Turn the label 𝑦𝑖 into a (true) probability distribution 𝑌𝑐(𝑥𝑖)
• Calculate predicted probability distribution 𝑃𝑐 𝑥𝑖

 Based on current models 𝐹𝑐(𝑥𝑖)

• Calculate difference between true and predicted probability distribution
 Use e.g. KL-divergence as loss

Overall objective
• Do gradient descent to make true and predicted distribution as close as possible ∀𝑥𝑖
• We achieve this goal by adjusting our models 𝐹𝑐

Example: Letter (A-Z) classification

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

29

Removing false alarms while retaining high

detection rate

Attentional Cascade
• Start with a simple classifier (2 features)

 Rejecting many of the negative sub-windows while detecting almost all positive sub-windows

• Positive response from the first classifier triggers the evaluation the next classifier, etc.
 Subsequent classifiers get more complex, hence longer runtime but lower false alarm rate

• A negative outcome at any point leads to the immediate rejection of the sub-window

• Training:
• Keep adding features to current stage until its target rates (TP, FP) have been met

• If overall FP is not low enough, then add another stage

• Use false positives from current stage as the negative training examples for the next stage

Detection rate (TP) vs. false alarm rate (FP) for chained classifiers
• Found by multiplying the respective rates of the individual stages

 TP of 𝟎. 𝟗 and FP of ~𝟏𝟎−𝟔 can be achieved with

a 𝟏𝟎-stage cascade: each stage having

- TP of 0.99 (0.9910 ≈ 0.9)

- FP of ~0.3 (0.310 ≈ 6 × 10−6)

Reject sub-window

1 2 3 4 5 6 7 8 38 Face

F F F F F F F F F

T T T T T T T T T

All sub-windows

2 features, reject 50% non-faces, detect 100% faces

10 features, reject 80% non-faces, detect 100% faces

25 features

50 features
6061 features

