
Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

Artificial Intelligence

V09: Ensemble Learning

Ensembles of classifiers

Boosting

A pattern recognition example

Based on material by 

• Jin Tian, Iowa State University 

• Cheng Li, Northeastern University

• Jason Brownlee, Machine Learning Mastery

• Yu Wen, Tatung University 



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

2

Educational objectives

• Remember the AdaBoost algorithm and its distinction from 

Bagging

• Explain how Boosting can be seen as a form of gradient descent 

and what benefit this viewpoint has

• Use current implementations of decision tree ensembles (e.g., 

Random Forest®, XGBoost) for machine learning tasks 

„In which we see that combining many weak agents 

can result in a very strong one.“

 Reading: AIMA, ch. 18.10-18.12
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1. ENSEMBLES OF CLASSIFIERS
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Ensembles
Combining many weak agents to form a strong one

Ensembles in a nutshell 
• Goal: Combining multiple complementary classifiers to increase performance

• Idea: Build different “experts”, and let them vote

Pros & cons
 Very effective in practice 

 Good theoretical guarantees 

 Easy to implement, not too much parameter tuning

 The result is not so transparent (black box)

 Not a compact representation

Formal problem description
• Given 𝑇 binary classification hypotheses (ℎ1,…,ℎ𝑇), find a combined classifier with better 

performance of the form

෠ℎ 𝑥 = 𝑠𝑔𝑛 ෍

𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

same or different ℋ

individual weightmajority voteassuming classes -1/+1
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Why do they work?
Three fundamental reasons why ensembles may be beneficial

Statistical
• Given finite amount of data, many hypothesis typically appear equally good

• Averaging may be a better approximation to the true 𝑓

Computational
• Search for ℎ is heuristic due to interesting ℋ’s being huge/infinite

• Strategy to avoid local minima: 

repeat with random restarts, construct an ensemble

Representational
• The desired target function may not be realizable using individual 

classifiers from ℋ
• It may be approximated by ensemble averaging

We cannot know the best  so we average

We may not find the best  so we average

We cannot find the best  so we average
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Example: Bagging
Majority vote over bootstrapped training data

Bootstrap Aggregating [Breiman, 1996]

• Idea: Design the ensemble to be as diverse as possible 
 Assert that this ensures complementary learners

• Almost always improves results if base learner is unstable
(i.e., classification changes with slightly different training data)

Algorithm
• The process is remarkably simple (also to implement)

• Usually, the more ensemble members, the better

for 𝑡: = 1. .number of ensemble members 𝑇
𝑋𝑡 ≔ sample i.i.d. from training data 𝑋 with replacement #bootstrap samples

ℎ𝑡 ≔ train any algorithm on 𝑋𝑡
return ෠ℎ ≔ 𝑠𝑔𝑛 σ𝑡=1

𝑇 1 ∙ ℎ𝑡(𝑥) #majority vote

Statistical reasoning: “If the [training data] is a good approximation of the 

population, the bootstrap method will provide a good approximation of the 

sampling distribution [~variability of a statistic in different samples from 

population]”.  see R. Vitillo, https://robertovitillo.com/2015/03/, 2015

https://robertovitillo.com/2015/03/
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Random Forest®
A brief description

Build a majority-voting ensemble of decision trees; for each tree,
• Choose a stratified training set of 𝑛 out of 𝑁 instances by sampling with replacement

• At every level, 
• choose a random feature set (with replacement) of 𝑚 out the 𝑝 attributes 

• choose the best split among those attributes

• No pruning of the branches takes place

Advantages
• Fast training, parallelizable application

• High independence of base classifiers  nearly no overfitting

• Few hyper parameters 

• Applicable to large quantities of 𝑁, 𝑝 and #classes

 Very good out-of-the-box method

Further reading
• [Breiman 2001]: «Random Forests». Machine Learning 45 (1), 5-32 
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2. BOOSTING

1983: BI 2016: Data Science
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Foundations of boosting

General idea
• Boost the performance of weak learners (error slightly >chance)

• Make currently misclassified examples more important, then combine hypotheses
 Each stage (additively) corrects shortcomings of previous stage by reweighting, then majority vote

• Origins in computer science: [Kearns & Valiant, 1988] (as opposed to Bagging: statistics)

Adaptive Boosting algorithm [Freund & Schapire, 1997]

• Weak learner: decision stump (=decision tree of height 1; but generalizable to others)

 Important: weak learners have skill but remain weak (to not lose the ensemble effect)

initialize weights: 𝑤𝑖 ≔
1

𝑁
#each sample gets same weight

for 𝑡: = 1. . 𝑇
ℎ𝑡 ≔ train decision stump on the 𝑥𝑖, weighted by the 𝑤𝑖

𝜀𝑡 ≔
σ𝑖=1
𝑁 𝑤𝑖∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖

σ𝑖=1
𝑁 𝑤𝑖

#compute error; 𝐼() is the identity function

𝛼𝑡 ≔ log
1−𝜀𝑡

𝜀𝑡
#compute influence of weak learner

𝑤𝑖 ≔ 𝑤𝑖 ∙ 𝑒
𝛼𝑡∙𝐼 𝑦𝑖≠ℎ𝑡 𝑥𝑖 #increase weight by exp(influence) in case of error

return ෠ℎ ≔ 𝑠𝑔𝑛 σ𝑡=1
𝑇 𝛼𝑡 ∙ ℎ𝑡(𝑥) #weighted majority vote
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Pros & cons
 Very little code

 Improves capacity of weak (base) learner (thus combating underfitting)

 Still learns when others overfit  margin optimization

 Sensitive to noise and outliers

AdaBoost in practice
Based on Seni & Elder, «From Trees to Forests and Rule Sets – A Unified 

Overview of Ensemble Methods», KDD 2007

AdaBoost’s classifications 

(colors) and weights (size) after 

1 iteration  still looks like a 

single decision tree with 

rectangular decision boundary

3 iterations

20 iterations

Goal
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From AdaBoost to gradient boosting

Recall: In AdaBoost, ”shortcomings" are identified by high-weight data points

A brief history of modern boosting (selective, shortened)

1. Invention: AdaBoost, the first successful boosting algorithm

[Freund et al., 1996], [Freund & Schapire, 1997]

2. Translation: Formulation as gradient descent with special loss function ( compare V04)

[Breiman et al., 1998], [Breiman, 1999]

3. Generalization: Gradient boosting in order to handle a variety of loss functions 

[Friedman et al., 2000], [Friedman, 2001]

 For a great example of cross-disciplinary fertilization, see 

Breiman, “Arcing classifiers (with discussion and a rejoinder by the author)”, 1998

In gradient boosting, “shortcomings" are identified by gradients
• Gradients of what? Why?  see next slides
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Intuition for gradient boosting

Setup
• For ease of discussion we change the setting from (binary) 

classification to regression (i.e., real-valued labels)

• Results are again applicable to classification
(but not intuitively as straight-forward) 

Let’s play a game
• You are given data 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁) and the task to fit model ෠ℎ(𝑥)

 minimize squared loss ℓ 𝑦, ℎ 𝑥 =
1

2
𝑦 − ℎ(𝑥) 2

• Suppose a friend helps by giving you an initial model 𝐹 𝑥 (a regression tree)

 You check his model and find the model is good but not perfect (e.g. 𝐹 𝑥1 = 0.8 while 𝑦1 = 0.9)

• Rule: 𝐹 𝑥 must not be changed in any way, but another model might be added
 i.e. ෠ℎ 𝑥 = 𝐹 𝑥 + ℎ 𝑥

• How to train ℎ 𝑥 ?

𝐹1 𝑥1 + ℎ 𝑥1 = 𝑦1  ℎ 𝑥1 = 𝑦1 − 𝐹 𝑥1
⋮

𝐹 𝑥𝑁 + ℎ 𝑥𝑁 = 𝑦𝑁  ℎ 𝑥𝑁 = 𝑦𝑁 − 𝐹 𝑥𝑁

We want this to be true Equivalently, we can fit the new regression tree ℎ to:

𝑥

𝑦



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

13

Intuition for gradient boosting (contd.)

Simple ensemble solution
• The 𝑦𝑖 − 𝐹 𝑥𝑖 ’s are called residuals

 These are the parts that the initial model 𝐹 cannot do well

 The role of ℎ is to compensate the shortcomings of 𝐹

• If the new model 𝐹 + ℎ is still not satisfactory, we can add another regression tree...

How is this related to gradient descent?
• Gradient Descent in general: minimize a function 𝐽 by moving into opposite direction of gradient

𝜃𝑖
𝑛𝑒𝑤 = 𝜃𝑖

𝑜𝑙𝑑 − 𝛼
𝜕𝐽

𝜕𝜃𝑖
𝑜𝑙𝑑

• Earlier: wanted to minimize loss function L = σ𝑖=1
𝑁 ℓ 𝑦𝑖 , 𝐹 𝑥𝑖 = σ𝑖=1

𝑁 1

2
𝑦𝑖 − 𝐹 𝑥𝑖

2

 𝐹 𝑥𝑖 is the parameter of 𝐿, so we take derivatives w.r.t. 𝐹 𝑥𝑖 :

𝜕𝐿

𝜕𝐹 𝑥𝑖
=
𝜕ℓ 𝑦𝑖 , 𝐹 𝑥𝑖

𝜕𝐹 𝑥𝑖
= 𝐹 𝑥𝑖 − 𝑦𝑖

• That is: We can interpret residuals for ℎ 𝑥 as negative gradients for improving 𝐹 𝑥𝑖

 𝑦𝑖 − 𝐹 𝑥𝑖 = −
𝜕𝐿

𝜕𝐹 𝑥𝑖

w.r.t 𝐽’s parameters 𝜃

i.e., 𝐽 = 𝐿

assuming mean squared error loss, 

the standard for regression

Improving 𝐹 𝑥𝑖 with ℎ 𝑥𝑖 or by 

gradient descent on its parameters is 

equivalent  doing many iterations of 

gradient descent is equivalent to many 

rounds of boosting as well.

compare 𝐹𝑛𝑒𝑤 𝑥𝑖 = 𝐹𝑜𝑙𝑑 𝑥𝑖 + ℎ 𝑥𝑖
= 𝐹𝑜𝑙𝑑 𝑥𝑖 + 𝑦𝑖 − 𝐹𝑜𝑙𝑑 𝑥𝑖

= 𝐹𝑜𝑙𝑑 𝑥𝑖 − 1 ∙
𝜕𝐿

𝜕𝐹𝑜𝑙𝑑 𝑥𝑖

with:             𝜃𝑖
𝑛𝑒𝑤 = 𝜃𝑖

𝑜𝑙𝑑 − 𝛼
𝜕𝐽

𝜕𝜃𝑖
𝑜𝑙𝑑
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Gradient boosting of regression trees
(Multiclass classification  see appendix)

Algorithm
• Gradient boosting for regression

True for ℓ = squared loss
• Residual ⇔ negative gradient

• Fit ℎ𝑖 to residual ⇔ fit ℎ𝑖 to negative gradient

• Update ℎ𝑖 based on residual ⇔ update ℎ𝑖 based on negative gradient

 So we are actually updating our model using gradient descent!

Advantage of gradient descent formulation
• Allows considering other loss functions (e.g. more outlier-robust, domain-specific, …)

 Derive the corresponding algorithms in the same way

Start with an initial model, e.g. 𝐹 =
σ𝑖=1
𝑁 𝑦𝑖

𝑁
(always predict mean value)

repeat until convergence

−𝑔 𝑥𝑖 = −
𝜕ℓ 𝑦𝑖,𝐹 𝑥𝑖

𝜕𝐹(𝑥𝑖)

fit regression tree ℎ to −𝑔 𝑥𝑖
𝐹 ≔ 𝐹 + 𝛼ℎ #𝛼 is a tunable learning rate, e.g. = 1
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XGBoost: A scalable tree boosting system
[Chen & Guestrin, 2016]

A skillfully engineered, highly optimized implementation
• Used by 17/29 winning teams on Kaggle 2015

• Open source (Python, R, Spark, …): https://github.com/dmlc/xgboost

• Scalable: 10 × faster than usual implementations, scales to ~109 training points

• Massive use of parallelization/distribution (e.g. on Hadoop/Spark, but also on desktop)

Algorithmic novelties
• Distributed approximate best split finding („weighted quantile sketch“ using quantile statistics)

• Exploit sparsity (induced by missing values/one-hot encoding  via default directions for branching)

Parallelization Cache-aware access (for gradient statistics)

• Efficient out-of-core computation (i.e., computation on data not fitting into main memory)

General tricks for tree boosting
• Use aggressive sub-sampling (e.g., selecting only 50% of the data)

• Using column sub-sampling prevents over-fitting even more so than row sub-sampling

Both types of novelties purely increase the 

computational performance, not learning in general

https://github.com/dmlc/xgboost
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3. A PATTERN RECOGNITION EXAMPLE
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AdaBoost for face detection
A detailed example of a boosted decision stumps application

Challenges
• Slide a window across image and evaluate a face model at every location & scale

 Sliding window detector must evaluate tens of thousands of location/scale combinations

• Faces are rare:  0–10 per image
• For computational efficiency, we should try spending as little time as possible on non-face windows

 A megapixel image has ~106 pixels and a comparable number of candidate face locations

• To avoid having a false positive in every image, the false positive rate has to be less than 𝟏𝟎−𝟔

The Viola-Jones face detector [Viola & Jones, 2001]

• A seminal approach to real-time object detection
Training is slow, but detection is very fast

• Key ideas
• Integral images for fast feature evaluation

• Boosting for feature selection amongst ~105 candidates

• Attentional cascade for fast & accurate rejection of non-face windows
 see appendix
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Rectangular facial features

…and their efficient calculation via the integral image

Pixel-based features for face detection
• Reminiscent of Haar wavelets

• Simple sum of pixel intensities within rectangular regions resemble 

typical shading patterns of faces

Integral images (𝑖𝑖)
• Let each pixel be the sum of all pixels left and above

Computing sums of pixels within a rectangle using 𝑖𝑖
• 𝑠𝑢𝑚 = 𝑖𝑖𝐴 − 𝑖𝑖𝐵 − 𝑖𝑖𝐶 + 𝑖𝑖𝐷
• Needs only 3 additions for any size of rectangle (constant time)

D B

C A
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Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle 

feature on faces and non-faces.

Face Non-face
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Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle 

feature on faces and non-faces.

Face Non-face
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Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle 

feature on faces and non-faces.

Face Non-face
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Feature selection via AdaBoost
Slide adapted from Grauman & Leibe’s AAAI’08 tutorial

Size of feature space
• Ca. 160‘000 distinct rectangular features per detection window (via scaling/translation)

 Which ones are good? What is a good subset?

Finding a good succession of features
• Start: Select the single rectangle feature & threshold that best separates faces/non-faces

…

Outputs of a possible rectangle 

feature on faces and non-faces.

Resulting weak classifier: 

 Continue using AdaBoost

Face Non-face
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Training the boosting classifier
Incorporating feature selection

Training set contains face and non-face examples
• 𝟓𝟎𝟎𝟎 faces (frontal, many variations among illumination/pose, rescaled to 24 × 24) 

• 𝟑𝟎𝟎 million non-faces (extracted from 9’500 non-face images)

• Faces are normalized (scale, translation)

• Initially, all have equal weights

For each round of boosting:
• Evaluate each rectangle filter on each example, select best threshold

• Select best filter/threshold combination

• Reweight examples

Computational complexity: 𝑂(𝑟𝑜𝑢𝑛𝑑𝑠 × 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

Result
• A 200-feature classifier can yield 95% detection rate and a 

false positive rate of 1 in 14084

 Not yet good enough for practice!

False alarm rate of 𝑂(10−5), 
but 𝐎(𝟏𝟎−𝟔) needed
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Final result of Viola-Jones face detection

After some more engineering…
• Attentional cascade for improved false positive rate ( see appendix)

• Variance normalization of pixel intensities to cope with different lighting

• Merging multiple detections

• Multi-scale detection by scaling the detector (factor of 1.25 yields good resolution)

Lasting effect
• Got applied to more visual detection problems

 facial feature localization, profile faces, male/female image classification, audio fingerprinting, …

• Solved the problem of face detection in real time (e.g. for digicams)

 available in OpenCV (http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html)

• One of the first mind-blowing computer vision applications before deep learning trend

http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html


Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

25

Where’s the intelligence?
Man vs. machine

• Boosting emerged as an answer for theoretical problems in computational learning theory 
 solves the „function learning“ problem quite well!

• Trees still need hand-crafted feature engineering
 solved by deep learning models (on different kinds of data)

• Building strong agents by combining the „wisdom of a crowd“ of just barely useful agents 

is again a powerful principle from real life, thus taken over to AI
 We see a pattern here: Single good (& simple) ideas are taken over as singletons, but are yet 

disconnected
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Review

• Ensembles combine many weak learners (same or different ℋ) to a strong

classifier by weighted majority voting

• Bagging uses bootstrap resampling to construct diversity (~complementarity)

• Random Forest® uses bagging for row subsampling as well as columns (feature) 

subsampling  very good out-of-the-box model, nearly parameter-free

• AdaBoost subsequently adds new models that focus on the harder 

(previously misclassified) examples via reweighting
• A seminal example is the Viola-Jones face detector application using Boosting for 

feature selection as well as the foundation for classification

• AdaBoost can be generalized to gradient boosting (a form of gradient descent)

• Intuition (in a regression setting) comes by deriving that the residuals (errors) of the last 

round are equivalent to the negative gradient of the squared error loss function

• XGBoost is a computationally highly optimized & scalable implementation

• [Opinion] Ensembles make decision trees fashionable again in my eyes 
(i.e., not just usable on BI-like problems)



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

27

APPENDIX
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Gradient boosting extension to (multiclass) 

classification

Model
• Each class 𝑐 has its own model 𝐹𝑐(𝑥) (binary classification tree, emitting 0/1)

• Use outputs to compute class probabilities: 𝑃𝑐 𝑥 =
𝑒𝐹𝑐(𝑥)

σ𝑖 𝑒
𝐹𝑖(𝑥)

(softmax)

 Final classification = class with highest probability

Loss function per data point
• Turn the label 𝑦𝑖 into a (true) probability distribution 𝑌𝑐(𝑥𝑖)
• Calculate predicted probability distribution 𝑃𝑐 𝑥𝑖

 Based on current models 𝐹𝑐(𝑥𝑖)

• Calculate difference between true and predicted probability distribution
 Use e.g. KL-divergence as loss

Overall objective
• Do gradient descent to make true and predicted distribution as close as possible ∀𝑥𝑖
• We achieve this goal by adjusting our models 𝐹𝑐

Example: Letter (A-Z) classification
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Removing false alarms while retaining high 

detection rate

Attentional Cascade
• Start with a simple classifier (2 features) 

 Rejecting many of the negative sub-windows while detecting almost all positive sub-windows

• Positive response from the first classifier triggers the evaluation the next classifier, etc.
 Subsequent classifiers get more complex, hence longer runtime but lower false alarm rate

• A negative outcome at any point leads to the immediate rejection of the sub-window

• Training: 
• Keep adding features to current stage until its target rates (TP, FP) have been met

• If overall FP is not low enough, then add another stage

• Use false positives from current stage as the negative training examples for the next stage

Detection rate (TP) vs. false alarm rate (FP) for chained classifiers
• Found by multiplying the respective rates of the individual stages

 TP of 𝟎. 𝟗 and FP of ~𝟏𝟎−𝟔 can be achieved with 

a 𝟏𝟎-stage cascade: each stage having 

- TP of 0.99 (0.9910 ≈ 0.9) 

- FP of ~0.3 (0.310 ≈ 6 × 10−6) 

Reject sub-window

1 2 3 4 5 6 7 8 38 Face

F F F F F F F F F

T T T T T T T T T

All sub-windows

2 features, reject 50% non-faces, detect 100% faces 

10 features, reject 80% non-faces, detect 100% faces 

25 features

50 features
6061 features


