
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Artificial Intelligence

V07: Planning

Planning as search

Algorithms for classical planning

Next steps

Based on material by

• Stuart Russell, UC Berkeley

• Peter Ljunglöf, U Gothenburg / Chalmers

• Malte Helmert, U Basel

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

2

Educational objectives

• Remember PDDL semantics

• Explain in which regard and why planning is the largest part in AI

• Comprehend and extend plans given in PDDL

• Know the road ahead for more complicated planning problems

“In which we see how an agent can take advantage of the structure of a problem

to construct complex plans of action.”

 Reading: AIMA, ch. 10 [+ ch. 11] (ch. 10-11.2 covered here)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

1. PLANNING AS SEARCH

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

4

Planning and AI

Classical planning
• «Planning is the art and practice of thinking before acting» Patrik Haslum

«Devising a plan of action to achieve one’s goal» AIMA p. 366

• Planning agents seen so far:
• Problem solving agent (V03/V04): atomic representation  needs domain-specific heuristics

• Hybrid propositional logic agent (V06a): ground (i.e., variable-free) sentences  may get swamped

 The part of AI being conducted by most researchers today calling themselves «AI guys»

Why is planning so big?
• Solved applications: Large logistics problems, operational planning, robotics, scheduling, …

• Community: Search is its basis; logic & knowledge representation is part of it

 treated at specialized (ICAPS) and major AI (IJCAI, AAAI, ECCAI) international conferences

• AI’s tendency of spawning new disciplines:
• Many now autonomous disciplines started as a field of study within AI

• Examples: Computer vision, robotics, information retrieval, automatic speech recognition

• Currently machine learning seems to take this path

• Other universalist tendencies: “Everything is search”, “everything is optimization”

One of planning’s big shots: Malte Helmert of University of Basel ( see http://ai.cs.unibas.ch/misc/tutorial_aaai2015/)

http://ai.cs.unibas.ch/misc/tutorial_aaai2015/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

Automated planning

Setting
• a single agent in a ( multi-agent / game-playing possible)

• fully observable, ( conformant planning possible)

• sequential and discrete, ( temporal and real-time planning possible)

• deterministic and ( probabilistic planning possible)

• static (offline) environment ( online possible)

Tool: Planning Domain Definition Language (PDDL)

• A subset of FOL, more expressive than propositional logic

• Used to define the planning task as a search problem:
• Initial states and goal states

• A set of 𝐴𝑐𝑡𝑖𝑜𝑛(𝑠) in terms of preconditions and effects 𝑅𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)
• Closed world assumption: Unmentioned state variables are assumed false

• It allows for factored representation (collection of variables)

• Derived from the STRIPS planning language

“Tower of Hanoi” is a classic

planning example

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

PDDL / STRIPS operators
Tidily arranged action descriptions, restricted language

From action schema to ground action
• Action schema (variables are universally quantified [∀]):

𝐴𝑐𝑡𝑖𝑜𝑛(𝐹𝑙𝑦(𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜),
𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝐴𝑡(𝑝, 𝑓𝑟𝑜𝑚) ∧ 𝑃𝑙𝑎𝑛𝑒(𝑝) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑓𝑟𝑜𝑚) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑡𝑜)
𝐸𝑓𝑓𝑒𝑐𝑡: ¬𝐴𝑡(𝑝, 𝑓𝑟𝑜𝑚) ∧ 𝐴𝑡(𝑝, 𝑡𝑜))

• Ground action (all variables have been substituted with values):
𝐴𝑐𝑡𝑖𝑜𝑛(𝐵𝑢𝑦 𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝐺𝑢𝑖𝑡𝑎𝑟𝐵𝑜𝑥, 𝑆𝑡𝑟𝑖𝑛𝑔𝑠𝑀𝑢𝑠𝑖𝑐𝑆𝑡𝑜𝑟𝑒 ,

𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝐴𝑡 𝑆𝑡𝑟𝑖𝑛𝑔𝑠𝑀𝑢𝑠𝑖𝑐𝑆𝑡𝑜𝑟𝑒 ∧ 𝑆𝑒𝑙𝑙𝑠 𝑆𝑡𝑟𝑖𝑛𝑔𝑠𝑀𝑢𝑠𝑖𝑐𝑆𝑡𝑜𝑟𝑒,𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝐺𝑢𝑖𝑡𝑎𝑟𝐵𝑜𝑥
𝐸𝑓𝑓𝑒𝑐𝑡: 𝐻𝑎𝑣𝑒 𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝐺𝑢𝑖𝑡𝑎𝑟𝐵𝑜𝑥)

Note: this abstracts away many important details of buying!

Restricted language allows for efficient algorithms
• Action precondition: conjunction of positive literals

• Action effect: conjunction of literals

• Applicability of action 𝑎 in state 𝑠: 𝑖𝑓𝑓 𝑠 ⊨ 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑎
 E.g., ∀𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜 𝐹𝑙𝑦 𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑠 ⟺ 𝑠 ⊨ (𝐴𝑡(𝑝, 𝑓𝑟𝑜𝑚) ∧ 𝑃𝑙𝑎𝑛𝑒(𝑝) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑓𝑟𝑜𝑚) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑡𝑜))

• Computing the result: 𝑅𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑎 = 𝑠 − 𝐷𝑒𝑙(𝑎) ∪ 𝐴𝑑𝑑(𝑎) without explicit reference to time!

(delete list contains all negative literals in 𝐸𝑓𝑓𝑒𝑐𝑡𝑠(𝑎), add list all positives)

Note that capitalization of

atoms (predicates & terms)

is different here as compared

to Datalog (V06b), to be

consistent with AIMA.

Upper-case constants

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Example: air cargo transport

• A classical transportation problem: Loading / unloading cargo, flying between different airports

• Actions: 𝐿𝑜𝑎𝑑(𝑐𝑎𝑟𝑔𝑜, 𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡), 𝑈𝑛𝑙𝑜𝑎𝑑(𝑐𝑎𝑟𝑔𝑜, 𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡), 𝐹𝑙𝑦(𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡)

• Predicates: 𝐼𝑛(𝑐𝑎𝑟𝑔𝑜, 𝑝𝑙𝑎𝑛𝑒), 𝐴𝑡(𝑐𝑎𝑟𝑔𝑜 ∨ 𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡)

• Complete PDDL planning problem description (with all variables existentially quantified [∃]):

• Plan:
[𝐿𝑜𝑎𝑑(𝐶1, 𝑃1, 𝑆𝐹𝑂), 𝐹𝑙𝑦(𝑃1, 𝑆𝐹𝑂, 𝐽𝐹𝐾), 𝑈𝑛𝑙𝑜𝑎𝑑(𝐶1, 𝑃1, 𝐽𝐹𝐾),
𝐿𝑜𝑎𝑑(𝐶2, 𝑃2, 𝐽𝐹𝐾), 𝐹𝑙𝑦(𝑃2, 𝐽𝐹𝐾, 𝑆𝐹𝑂),𝑈𝑛𝑙𝑜𝑎𝑑(𝐶2, 𝑃2, 𝑆𝐹𝑂).]

SFO JFK

C1@P1

C2@P2

Initial & goal state are

given; 𝐴𝑐𝑡𝑖𝑜𝑛(𝑠) and

𝑅𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎) follow

from action schemas.

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

Example: blocks world

The blocks world
• A block is either on the table or on another block

• Blocks can be stacked (only if one fits directly on another)

• Goal: produce a given configuration of blocks on the table (specified as which is on top of what)

• Challenge: No explicit quantifiers in PDDL  need to introduce artificial predicates
• Example: 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: ¬∃𝑥 𝑂𝑛(𝑥, 𝐵) not directly expressible introduce predicate 𝐶𝑙𝑒𝑎𝑟(𝐵)

Example

 A possible solution sequence: [𝑀𝑜𝑣𝑒𝑇𝑜𝑇𝑎𝑏𝑙𝑒 (𝐶, 𝐴),𝑀𝑜𝑣𝑒(𝐵, 𝑇𝑎𝑏𝑙𝑒, 𝐶),𝑀𝑜𝑣𝑒(𝐴, 𝑇𝑎𝑏𝑙𝑒, 𝐵)]

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

9

How difficult is planning?
Computational complexity of classical planning

Problem definition (see V06a appendix for SAT)

• The PlanSAT problem: Does there exist a plan that achieves the goal?

• The bounded PlanSAT problem: Does there exist a solution of length at most k?
 useful for optimal (i.e., shortest plan) planning

Complexity
• PlanSAT and bounded PlanSAT are PSPACE-complete
i.e., difficult (assumed to be not even in NP)!

• PlanSAT without negative preconditions and without negative effects is in P
 i.e., solvable

Practice
• Sub-optimal planning is sometimes easy

• PDDL has facilitated the development of very accurate domain-independent heuristics

making planning feasible (formalisms based on FOL have had less success)

The PSPACE class contains problems solvable by a

deterministic algorithm with its memory constrained to be

polynomial in the input length

 larger & more difficult than NP (but no constraint on time)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

2. ALGORITHMS FOR CLASSICAL PLANNING

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

Planning as state-space search
…approachable with any algorithm from V03 or local search

Two formulations
• Forward (progression): search considers actions that are applicable

• Backward (regression): search considers actions that are relevant

• Neither of them is efficient without good heuristics!

Futility of uninformed forward search
• Example 1: Buying a copy of AIMA

• Tool: Action schema 𝐵𝑢𝑦(𝑖𝑠𝑏𝑛) with effect 𝑂𝑤𝑛 𝑖𝑠𝑏𝑛
 10-digit ISBN leads to 1010 = 𝟏𝟎 𝒃𝒊𝒍𝒍𝒊𝒐𝒏 ground actions to be enumerated

• Example 2: Moving all cargo from airport 𝐴 to airport 𝐵
• Setting: 10 airports with 5 planes and 20 pieces of cargo at each

• Obvious solution: load all cargo at 𝐴 in one of the planes, fly to 𝐵, unload everything (41 actions)

 search graph has 𝟐𝟎𝟎𝟎𝟒𝟏 nodes up to this depth (assuming ~2’000 actions per state on average)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Heuristics for forward state-space search
Enabled by factored representations for states & actions

Possible domain-independent heuristics
• Relaxing actions (i.e., adding new links to the graph to ease the problem)

• Ignore-preconditions heuristic: All actions are applicable anytime
 leads e.g. easily to the 2 different heuristics for the 𝑛-puzzle of V03

• Ignore-delete-lists heuristic: Removing all negative literals from effects
 enables making monotonic progress towards goal, achievable e.g. with hill climbing

• State abstractions (i.e., collapsing multiple states into a single one to shrink the graph)

• Reduce the state space by e.g. ignoring some fluents

Winners of the bi-annual ICAPS planning competition often used
• Heuristic search ( see FastDownward system: Helmert et al. 2004, http://www.fast-downward.org/)

• Planning graphs ( see next slides)

• SAT solvers ( see V06a and below)

http://www.fast-downward.org/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

Planning graphs
An alternative to basic state-space search

Challenges so far
• Exponential size of the search trees

• Not all heuristics are admissible in general

Solution: the planning graph
1. Propositionalize the search tree:

replace all action schemas by sets of ground actions (to remove variables etc.)

2. Approximate the complete propositionalized tree
• Polynomial size: 𝑂 𝑛 𝑎 + 𝑙 2 for 𝑎 actions, 𝑙 literals and 𝑛 levels

• Useful to create admissible heuristics like set-level heuristic ( see appendix):

cost of achieving ∧ of goals = σ𝑔𝑖 (level cost) of goals in first level without mutual exclusivity

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

The planning graph

Organized in alternating levels of possible states 𝑆𝑖 and applicable actions 𝐴𝑖
• 𝑆𝑖 holds all fluents that could be true at that point

• 𝐴𝑖 holds all actions that could have their preconditions satisfied

• Links between levels represent preconditions and effects

• Links within the levels express conflicts (“mutex”-links)

Example: the «have cake and eat cake too» problem

No-op

Further

levels would

be identical

 graph

leveled off

Contains a set of

possible states (i.e.,

is a belief state)

All 𝑡𝑟𝑢𝑒 fluents in 𝑆0 All applicable ground

actions in 𝑆0

All possibly

𝑡𝑟𝑢𝑒 fluents…

Mutex-link

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

The planning graph

Organized in alternating levels of possible states 𝑆𝑖 and applicable actions 𝐴𝑖
• 𝑆𝑖 holds all fluents that could be true at that point

• 𝐴𝑖 holds all actions that could have their preconditions satisfied

• Links between levels represent preconditions and effects

• Links within the levels express conflicts (“mutex”-links)

Example: the «have cake and eat cake too» problem

No-op

Further

levels would

be identical

 graph

leveled off

Contains a set of

possible states (i.e.,

is a belief state)

All 𝑡𝑟𝑢𝑒 fluents in 𝑆0 All applicable ground

actions in 𝑆0

All possibly

𝑡𝑟𝑢𝑒 fluents…

Mutex-link

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

The GraphPlan algorithm
Plan directly using the planning graph

function GraphPlan(problem) returns solution or failure

graph  Initial-Planning-Graph(problem) #i.e., create 𝑆0
goals  Conjuncts(problem.GOAL) #AND of all goal literals

nogoods  an empty hash table #used for the same purpose as in constraint learning ( see V05)

for t = 0 to ∞ do

if goals all non-mutex in 𝑆𝑡 of graph then

solution  Extract-Solution(graph, goals, Numlevels(graph), nogoods) #e.g. CSP or backward search

if solution ≠ failure then return solution

if graph and nogoods have both leveled off then return failure

graph  Expand-Graph(graph, problem)

Description
• GraphPlan expands the graph with new levels 𝐴𝑖&𝑆𝑖+1 until ∄ mutex links between goals
• The nogoods list records (level, goal) pairs that couldn’t be satisfied at that level
 prevents ExtractSolution from searching again if called with the same arguments

• To extract the actual plan, the algorithm searches backwards in the graph
• Inititial state is the last level 𝑆𝑛 of the planning graph

• Available actions at level 𝑆𝑖 are conflict-free subsets of actions at 𝐴𝑖−1 with effects realizing 𝑆𝑖’s goals

• Goal is to reach a state at 𝑆0 such that all goals are satisfied

 The plan extraction is the difficult part and is usually done with greedy-like heuristics

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

SATplan and CSP solvers
More alternatives to planning

Translate PDDL description into a SAT problem or a CSP
• Goal state and all actions have to be propositionalized

• Action schemas have to be replaced by a set of ground actions (variables to be replaced

by constants)

• Fluents need to be introduced for each time step

• …

 combinatorial explosion

Cost – benefit
• Remove a part of the benefits of the expressiveness of PDDL to…

• …gain access to efficient solution methods of SAT and CSP solvers

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

3. NEXT STEPS

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

Planning in the real world

Use cases
• Spacecraft operation in real time (1998)

NASA’s Deep Space 1 was controlled by a planning & scheduling system devising and

carrying out plans like «During the next week take pictures of the following asteroids

and thrust 90% of the time» ( see [Nilsson, 2010] ch. 32.2.1)

• Factory scheduling (1985)
4 week (3 shifts a day) production plan at Hitachi for assembly line of 350 products with

35 machines and >2000 different operations ( see AIMA ch. 11.2.2, HTN on next slide)

• Military operation planning (1990)
A scheduling program helped with the logistics of 1st gulf war and is said to have

«paid back all of DARPAs 30 years of investment in AI in a matter of a few months»

( see [Nilsson, 2010] ch. 23.3.3)

Challenges
• Taking resources (incl. time) into account  scheduling

• Being overwhelmed by state space size hierarchical planning

• Needing to incorporate human wisdom  hierarchical planning

• Coping with uncertainty conformant / contingency / online planning (analog to AIMA ch. 4)

• Planning with multiple agents  planning with cooperative and adversarial multiagents is unsolved

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

Outlook: Hierarchical planning

The need for abstraction
• Atomic actions for humans: ca. 103 muscles, max. 10 mindful activations per second

• Plan for a lifetime: ca. 109 wake seconds  ca. 1013 possible actions per life

• Plan for 2 weeks vacation: ca. (60 ∗ 60 ∗ 24 ∗ 14) × 103 × 10 ≈ 1010 actions

• Methods seen so far work only for thousands (i.e., ≪ 1010) of actions

 hierarchical decomposition

(e.g., “go to ZRH” “get to train station, take train to Zurich airport, ascend to departure hall”…)

Technical solution sketch
• Hierarchical task networks (HTN): more factored representations for actions (besides states)

• Two kinds of actions:
• Primitive actions: standard precondition-effect schemas

• High level actions (HLA): e.g. “go to ZRH” have one or more possible refinements

• Refinement: a sequence of HLAs or primitive actions, maybe recursive

• Key benefits: Possibly huge speed improvements, possibility for humans to define HLAs

• Implementation: E.g. by forward breadth-first search (but can be done much better)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

Where’s the intelligence?
Man vs. machine

• Planning is foremost an exercise in controlling combinatorial explosion

• It does so by combining efficient search & logical reasoning
 necessary speedups are achieved by domain-independent heuristics that exploit structure in the

representation

 this is really smart

• But: There is no clear understanding yet of which methods work best on what problems

• In contrast to popular opinion, AI planning is widely applied in practice today
 Also, research is not “dead”, but less hyped at the moment

 Probably planning is the best that symbolic AI currently offers

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

Automating university timetabling by planning?
A search exercise

Automatic scheduling is a relevant subfield of AI planning.

Likewise, automated timetable generation (often focused on

university teaching timetables) is a vibrant field of study.

• Conduct a quick literature research on automated timetabling

(e.g. https://scholar.google.ch/scholar?q=automated+timetabling)

• What kind of approaches are proposed? How do they relate to

AI planning as you have heard of here?

• With your current understanding of AI – how would you

approach the problem? What are your options?

https://scholar.google.ch/scholar?q=automated+timetabling

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

Review

• Planning is AI’s main field, due to success stories like remotely controlling a

NASA spacecraft in real time
• Planning refers to problem solving techniques (i.e., search) on factored (i.e., logic-

based) representations of states and actions, allowing for fast algorithms

• PDDL describes the initial and goal states as conjunctions of literals; actions in

terms of their preconditions and effects

• Effective domain-independent heuristics are derived by subgoal

independence or problem relaxation

• A planning graph is constructed incrementally
• Each layer containing the superset of all actions/literals that could occur in this

time step, including mutex relationships

• Can be used to derive useful heuristics; or directly for planning via GraphPlan

• Other approaches are using SAT or CSP solvers
• FOL-based planning has much-needed expressiveness for larger real-world

problems, but yet no efficient algorithms (missing heuristics)

• Workarounds include hierarchical planning trough HTNs

• It is yet unknown which approach is best

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

24

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

Using planning graphs to devise heuristics

A (serial) planning graph facilitates domain-independent heuristics
• Problem is unsolvable if any goal literal fails to appear in the final level

• Level cost of goal 𝑔𝑖: Level in planning graph at which 𝑔𝑖 first appeared

• Heuristics for conjunctions of goals:
• Max-level heuristic: maximum of the level costs of all subgoals

• Level sum heuristic: sum of level costs of all subgoals (assuming independence  not necessarily

admissible)

• Set-level heuristic: First level at which all subgoals appear without any pair being mutex

• As with CSPs: checking for pair-wise consistency often pays off; higher order often doesn’t

I.e., only one action per level / time step

Heuristic values for

𝐻𝑎𝑣𝑒(𝐶𝑎𝑘𝑒) ∧ 𝐸𝑎𝑡𝑒𝑛(𝐶𝑎𝑘𝑒):
• Max-level: max(1,0) = 1
• Level sum: 1 + 0 = 1
• Set-level: 2 (accurate!)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Historical remark: Linear planning

Planners in the early 1970s considered totally ordered action sequences
• Problems were decomposed in subgoals

• Resulting subplans were stringed together in some order
This is called linear planning

But, linear planning is incomplete!
• There are some very simple problems it cannot handle

• E.g., the Sussman anomaly: Unsolvable by linear planner
 A complete planner must be able to interleave subplans

Enter partial-order planning, state-of-the-art during the 1980s and 90s
• Today mostly used for specific tasks, such as operations scheduling

• Also used when it is important for humans to understand the plans
 E.g., operational plans for spacecraft and Mars rovers are checked by human operators before

uploaded to the vehicles

