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Educational objectives

• Remember PDDL semantics

• Explain in which regard and why planning is the largest part in AI

• Comprehend and extend plans given in PDDL

• Know the road ahead for more complicated planning problems

“In which we see how an agent can take advantage of the structure of a problem 

to construct complex plans of action.”

 Reading: AIMA, ch. 10 [+ ch. 11] (ch. 10-11.2 covered here)
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1. PLANNING AS SEARCH
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Planning and AI

Classical planning
• «Planning is the art and practice of thinking before acting» Patrik Haslum

«Devising a plan of action to achieve one’s goal» AIMA p. 366

• Planning agents seen so far: 
• Problem solving agent (V03/V04): atomic representation  needs domain-specific heuristics

• Hybrid propositional logic agent (V06a): ground (i.e., variable-free) sentences  may get swamped

 The part of AI being conducted by most researchers today calling themselves «AI guys»

Why is planning so big?
• Solved applications: Large logistics problems, operational planning, robotics, scheduling, …

• Community: Search is its basis; logic & knowledge representation is part of it

 treated at specialized (ICAPS) and major AI (IJCAI, AAAI, ECCAI) international conferences

• AI’s tendency of spawning new disciplines:
• Many now autonomous disciplines started as a field of study within AI

• Examples: Computer vision, robotics, information retrieval, automatic speech recognition

• Currently machine learning seems to take this path

• Other universalist tendencies: “Everything is search”, “everything is optimization”

One of planning’s big shots: Malte Helmert of University of Basel ( see http://ai.cs.unibas.ch/misc/tutorial_aaai2015/)

http://ai.cs.unibas.ch/misc/tutorial_aaai2015/
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Automated planning

Setting
• a single agent in a ( multi-agent / game-playing possible)

• fully observable, ( conformant planning possible)

• sequential and discrete, ( temporal and real-time planning possible)

• deterministic and ( probabilistic planning possible)

• static (offline) environment ( online possible)

Tool: Planning Domain Definition Language (PDDL)

• A subset of FOL, more expressive than propositional logic

• Used to define the planning task as a search problem:
• Initial states and goal states

• A set of 𝐴𝑐𝑡𝑖𝑜𝑛(𝑠) in terms of preconditions and effects 𝑅𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)
• Closed world assumption: Unmentioned state variables are assumed false

• It allows for factored representation (collection of variables)

• Derived from the STRIPS planning language

“Tower of Hanoi” is a classic 

planning example
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PDDL / STRIPS operators
Tidily arranged action descriptions, restricted language

From action schema to ground action
• Action schema (variables are universally quantified [∀]):

𝐴𝑐𝑡𝑖𝑜𝑛( 𝐹𝑙𝑦(𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜),
𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝐴𝑡(𝑝, 𝑓𝑟𝑜𝑚) ∧ 𝑃𝑙𝑎𝑛𝑒(𝑝) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑓𝑟𝑜𝑚) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑡𝑜)
𝐸𝑓𝑓𝑒𝑐𝑡: ¬𝐴𝑡(𝑝, 𝑓𝑟𝑜𝑚) ∧ 𝐴𝑡(𝑝, 𝑡𝑜))

• Ground action (all variables have been substituted with values): 
𝐴𝑐𝑡𝑖𝑜𝑛( 𝐵𝑢𝑦 𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝐺𝑢𝑖𝑡𝑎𝑟𝐵𝑜𝑥, 𝑆𝑡𝑟𝑖𝑛𝑔𝑠𝑀𝑢𝑠𝑖𝑐𝑆𝑡𝑜𝑟𝑒 ,

𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝐴𝑡 𝑆𝑡𝑟𝑖𝑛𝑔𝑠𝑀𝑢𝑠𝑖𝑐𝑆𝑡𝑜𝑟𝑒 ∧ 𝑆𝑒𝑙𝑙𝑠 𝑆𝑡𝑟𝑖𝑛𝑔𝑠𝑀𝑢𝑠𝑖𝑐𝑆𝑡𝑜𝑟𝑒,𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝐺𝑢𝑖𝑡𝑎𝑟𝐵𝑜𝑥
𝐸𝑓𝑓𝑒𝑐𝑡: 𝐻𝑎𝑣𝑒 𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝐺𝑢𝑖𝑡𝑎𝑟𝐵𝑜𝑥 )

Note: this abstracts away many important details of buying!

Restricted language allows for efficient algorithms
• Action precondition: conjunction of positive literals

• Action effect: conjunction of literals

• Applicability of action 𝑎 in state 𝑠: 𝑖𝑓𝑓 𝑠 ⊨ 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑎
 E.g., ∀𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜 𝐹𝑙𝑦 𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑠 ⟺ 𝑠 ⊨ (𝐴𝑡(𝑝, 𝑓𝑟𝑜𝑚) ∧ 𝑃𝑙𝑎𝑛𝑒(𝑝) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑓𝑟𝑜𝑚) ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑡𝑜))

• Computing the result: 𝑅𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑎 = 𝑠 − 𝐷𝑒𝑙(𝑎) ∪ 𝐴𝑑𝑑(𝑎) without explicit reference to time!

(delete list contains all negative literals in 𝐸𝑓𝑓𝑒𝑐𝑡𝑠(𝑎), add list all positives)

Note that capitalization of 

atoms (predicates & terms) 

is different here as compared 

to Datalog (V06b), to be 

consistent with AIMA.

Upper-case constants
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Example: air cargo transport

• A classical transportation problem: Loading / unloading cargo, flying between different airports

• Actions: 𝐿𝑜𝑎𝑑(𝑐𝑎𝑟𝑔𝑜, 𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡), 𝑈𝑛𝑙𝑜𝑎𝑑(𝑐𝑎𝑟𝑔𝑜, 𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡), 𝐹𝑙𝑦(𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡)

• Predicates: 𝐼𝑛(𝑐𝑎𝑟𝑔𝑜, 𝑝𝑙𝑎𝑛𝑒), 𝐴𝑡(𝑐𝑎𝑟𝑔𝑜 ∨ 𝑝𝑙𝑎𝑛𝑒, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡)

• Complete PDDL planning problem description (with all variables existentially quantified [∃]):

• Plan:
[𝐿𝑜𝑎𝑑(𝐶1, 𝑃1, 𝑆𝐹𝑂), 𝐹𝑙𝑦(𝑃1, 𝑆𝐹𝑂, 𝐽𝐹𝐾), 𝑈𝑛𝑙𝑜𝑎𝑑(𝐶1, 𝑃1, 𝐽𝐹𝐾),
𝐿𝑜𝑎𝑑(𝐶2, 𝑃2, 𝐽𝐹𝐾), 𝐹𝑙𝑦(𝑃2, 𝐽𝐹𝐾, 𝑆𝐹𝑂),𝑈𝑛𝑙𝑜𝑎𝑑(𝐶2, 𝑃2, 𝑆𝐹𝑂). ]

SFO JFK

C1@P1

C2@P2

Initial & goal state are 

given; 𝐴𝑐𝑡𝑖𝑜𝑛(𝑠) and 

𝑅𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎) follow 

from action schemas.
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Example: blocks world

The blocks world
• A block is either on the table or on another block

• Blocks can be stacked (only if one fits directly on another)

• Goal: produce a given configuration of blocks on the table (specified as which is on top of what)

• Challenge: No explicit quantifiers in PDDL  need to introduce artificial predicates
• Example: 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: ¬∃𝑥 𝑂𝑛(𝑥, 𝐵) not directly expressible introduce predicate 𝐶𝑙𝑒𝑎𝑟(𝐵)

Example

 A possible solution sequence: [𝑀𝑜𝑣𝑒𝑇𝑜𝑇𝑎𝑏𝑙𝑒 (𝐶, 𝐴),𝑀𝑜𝑣𝑒(𝐵, 𝑇𝑎𝑏𝑙𝑒, 𝐶),𝑀𝑜𝑣𝑒(𝐴, 𝑇𝑎𝑏𝑙𝑒, 𝐵)]
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How difficult is planning?
Computational complexity of classical planning

Problem definition (see V06a appendix for SAT)

• The PlanSAT problem: Does there exist a plan that achieves the goal? 

• The bounded PlanSAT problem: Does there exist a solution of length at most k? 
 useful for optimal (i.e., shortest plan) planning

Complexity
• PlanSAT and bounded PlanSAT are PSPACE-complete
i.e., difficult (assumed to be not even in NP)!

• PlanSAT without negative preconditions and without negative effects is in P
 i.e., solvable

Practice
• Sub-optimal planning is sometimes easy

• PDDL has facilitated the development of very accurate domain-independent heuristics

making planning feasible (formalisms based on FOL have had less success)

The PSPACE class contains problems solvable by a 

deterministic algorithm with its memory constrained to be 

polynomial in the input length

 larger & more difficult than NP (but no constraint on time)
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2. ALGORITHMS FOR CLASSICAL PLANNING



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

11

Planning as state-space search
…approachable with any algorithm from V03 or local search

Two formulations
• Forward (progression): search considers actions that are applicable

• Backward (regression): search considers actions that are relevant

• Neither of them is efficient without good heuristics!

Futility of uninformed forward search
• Example 1: Buying a copy of AIMA

• Tool: Action schema 𝐵𝑢𝑦(𝑖𝑠𝑏𝑛) with effect 𝑂𝑤𝑛 𝑖𝑠𝑏𝑛
 10-digit ISBN leads to 1010 = 𝟏𝟎 𝒃𝒊𝒍𝒍𝒊𝒐𝒏 ground actions to be enumerated

• Example 2: Moving all cargo from airport 𝐴 to airport 𝐵
• Setting: 10 airports with 5 planes and 20 pieces of cargo at each

• Obvious solution: load all cargo at 𝐴 in one of the planes, fly to 𝐵, unload everything (41 actions)

 search graph has 𝟐𝟎𝟎𝟎𝟒𝟏 nodes up to this depth (assuming ~2’000 actions per state on average)
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Heuristics for forward state-space search
Enabled by factored representations for states & actions

Possible domain-independent heuristics
• Relaxing actions (i.e., adding new links to the graph to ease the problem)

• Ignore-preconditions heuristic: All actions are applicable anytime
 leads e.g. easily to the 2 different heuristics for the 𝑛-puzzle of V03

• Ignore-delete-lists heuristic: Removing all negative literals from effects
 enables making monotonic progress towards goal, achievable e.g. with hill climbing

• State abstractions (i.e., collapsing multiple states into a single one to shrink the graph)

• Reduce the state space by e.g. ignoring some fluents

Winners of the bi-annual ICAPS planning competition often used
• Heuristic search ( see FastDownward system: Helmert et al. 2004, http://www.fast-downward.org/)

• Planning graphs ( see next slides)

• SAT solvers ( see V06a and below)

http://www.fast-downward.org/
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Planning graphs
An alternative to basic state-space search

Challenges so far
• Exponential size of the search trees

• Not all heuristics are admissible in general

Solution: the planning graph
1. Propositionalize the search tree: 

replace all action schemas by sets of ground actions (to remove variables etc.)

2. Approximate the complete propositionalized tree
• Polynomial size: 𝑂 𝑛 𝑎 + 𝑙 2 for 𝑎 actions, 𝑙 literals and 𝑛 levels

• Useful to create admissible heuristics like set-level heuristic ( see appendix): 

cost of achieving ∧ of goals = σ𝑔𝑖 (level cost) of goals in first level without mutual exclusivity
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The planning graph

Organized in alternating levels of possible states 𝑆𝑖 and applicable actions 𝐴𝑖
• 𝑆𝑖 holds all fluents that could be true at that point

• 𝐴𝑖 holds all actions that could have their preconditions satisfied

• Links between levels represent preconditions and effects

• Links within the levels express conflicts (“mutex”-links)

Example: the «have cake and eat cake too» problem

No-op

Further 

levels would 

be identical 

 graph 

leveled off

Contains a set of 

possible states (i.e., 

is a belief state)

All 𝑡𝑟𝑢𝑒 fluents in 𝑆0 All applicable ground 

actions in 𝑆0

All possibly

𝑡𝑟𝑢𝑒 fluents…

Mutex-link
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The GraphPlan algorithm
Plan directly using the planning graph

function GraphPlan(problem) returns solution or failure

graph  Initial-Planning-Graph(problem) #i.e., create 𝑆0
goals  Conjuncts(problem.GOAL) #AND of all goal literals

nogoods  an empty hash table #used for the same purpose as in constraint learning ( see V05)

for t = 0 to ∞ do

if goals all non-mutex in 𝑆𝑡 of graph then

solution  Extract-Solution(graph, goals, Numlevels(graph), nogoods) #e.g. CSP or backward search

if solution ≠ failure then return solution

if graph and nogoods have both leveled off then return failure

graph  Expand-Graph(graph, problem)

Description
• GraphPlan expands the graph with new levels 𝐴𝑖&𝑆𝑖+1 until ∄ mutex links between goals
• The nogoods list records (level, goal) pairs that couldn’t be satisfied at that level
 prevents ExtractSolution from searching again if called with the same arguments

• To extract the actual plan, the algorithm searches backwards in the graph
• Inititial state is the last level 𝑆𝑛 of the planning graph

• Available actions at level 𝑆𝑖 are conflict-free subsets of actions at 𝐴𝑖−1 with effects realizing 𝑆𝑖’s goals

• Goal is to reach a state at 𝑆0 such that all goals are satisfied

 The plan extraction is the difficult part and is usually done with greedy-like heuristics
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SATplan and CSP solvers
More alternatives to planning

Translate PDDL description into a SAT problem or a CSP 
• Goal state and all actions have to be propositionalized

• Action schemas have to be replaced by a set of ground actions (variables to be replaced 

by constants)

• Fluents need to be introduced for each time step

• …

 combinatorial explosion

Cost – benefit
• Remove a part of the benefits of the expressiveness of PDDL to…

• …gain access to efficient solution methods of SAT and CSP solvers
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3. NEXT STEPS
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Planning in the real world

Use cases
• Spacecraft operation in real time (1998) 

NASA’s Deep Space 1 was controlled by a planning & scheduling system devising and 

carrying out plans like «During the next week take pictures of the following asteroids 

and thrust 90% of the time»  ( see [Nilsson, 2010] ch. 32.2.1)

• Factory scheduling (1985)
4 week (3 shifts a day) production plan at Hitachi for assembly line of 350 products with 

35 machines and >2000 different operations ( see AIMA ch. 11.2.2, HTN on next slide)

• Military operation planning (1990)
A scheduling program helped with the logistics of 1st gulf war and is said to have 

«paid back all of DARPAs 30 years of investment in AI in a matter of a few months»

( see [Nilsson, 2010] ch. 23.3.3)

Challenges
• Taking resources (incl. time) into account  scheduling

• Being overwhelmed by state space size hierarchical planning

• Needing to incorporate human wisdom  hierarchical planning

• Coping with uncertainty conformant / contingency / online planning (analog to AIMA ch. 4)

• Planning with multiple agents  planning with cooperative and adversarial multiagents is unsolved
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Outlook: Hierarchical planning

The need for abstraction
• Atomic actions for humans: ca. 103 muscles, max. 10 mindful activations per second

• Plan for a lifetime: ca. 109 wake seconds  ca. 1013 possible actions per life

• Plan for 2 weeks vacation: ca. (60 ∗ 60 ∗ 24 ∗ 14) × 103 × 10 ≈ 1010 actions

• Methods seen so far work only for thousands (i.e., ≪ 1010) of actions

 hierarchical decomposition 

(e.g., “go to ZRH” “get to train station, take train to Zurich airport, ascend to departure hall”…)

Technical solution sketch
• Hierarchical task networks (HTN): more factored representations for actions (besides states)

• Two kinds of actions:
• Primitive actions: standard precondition-effect schemas

• High level actions (HLA): e.g. “go to ZRH” have one or more possible refinements

• Refinement: a sequence of HLAs or primitive actions, maybe recursive

• Key benefits: Possibly huge speed improvements, possibility for humans to define HLAs

• Implementation: E.g. by forward breadth-first search (but can be done much better)
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Where’s the intelligence?
Man vs. machine

• Planning is foremost an exercise in controlling combinatorial explosion

• It does so by combining efficient search & logical reasoning
 necessary speedups are achieved by domain-independent heuristics that exploit structure in the 

representation 

 this is really smart

• But: There is no clear understanding yet of which methods work best on what problems

• In contrast to popular opinion, AI planning is widely applied in practice today 
 Also, research is not “dead”, but less hyped at the moment

 Probably planning is the best that symbolic AI currently offers
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Automating university timetabling by planning?
A search exercise

Automatic scheduling is a relevant subfield of AI planning. 

Likewise, automated timetable generation (often focused on 

university teaching timetables) is a vibrant field of study.

• Conduct a quick literature research on automated timetabling 

(e.g. https://scholar.google.ch/scholar?q=automated+timetabling)

• What kind of approaches are proposed? How do they relate to 

AI planning as you have heard of here?

• With your current understanding of AI – how would you 

approach the problem? What are your options?

https://scholar.google.ch/scholar?q=automated+timetabling
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Review

• Planning is AI’s main field, due to success stories like remotely controlling a 

NASA spacecraft in real time
• Planning refers to problem solving techniques (i.e., search) on factored (i.e., logic-

based) representations of states and actions, allowing for fast algorithms

• PDDL describes the initial and goal states as conjunctions of literals; actions in 

terms of their preconditions and effects

• Effective domain-independent heuristics are derived by subgoal

independence or problem relaxation

• A planning graph is constructed incrementally
• Each layer containing the superset of all actions/literals that could occur in this 

time step, including mutex relationships

• Can be used to derive useful heuristics; or directly for planning via GraphPlan

• Other approaches are using SAT or CSP solvers
• FOL-based planning has much-needed expressiveness for larger real-world 

problems, but yet no efficient algorithms (missing heuristics)

• Workarounds include hierarchical planning trough HTNs

• It is yet unknown which approach is best
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APPENDIX
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Using planning graphs to devise heuristics

A (serial) planning graph facilitates domain-independent heuristics
• Problem is unsolvable if any goal literal fails to appear in the final level

• Level cost of goal 𝑔𝑖: Level in planning graph at which 𝑔𝑖 first appeared

• Heuristics for conjunctions of goals:
• Max-level heuristic: maximum of the level costs of all subgoals

• Level sum heuristic: sum of level costs of all subgoals (assuming independence  not necessarily 

admissible)

• Set-level heuristic: First level at which all subgoals appear without any pair being mutex

• As with CSPs: checking for pair-wise consistency often pays off; higher order often doesn’t

I.e., only one action per level / time step

Heuristic values for 

𝐻𝑎𝑣𝑒(𝐶𝑎𝑘𝑒) ∧ 𝐸𝑎𝑡𝑒𝑛(𝐶𝑎𝑘𝑒):
• Max-level: max(1,0) = 1
• Level sum: 1 + 0 = 1
• Set-level: 2 (accurate!)
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Historical remark: Linear planning

Planners in the early 1970s considered totally ordered action sequences
• Problems were decomposed in subgoals

• Resulting subplans were stringed together in some order
This is called linear planning

But, linear planning is incomplete!
• There are some very simple problems it cannot handle

• E.g., the Sussman anomaly: Unsolvable by linear planner
 A complete planner must be able to interleave subplans

Enter partial-order planning, state-of-the-art during the 1980s and 90s
• Today mostly used for specific tasks, such as operations scheduling

• Also used when it is important for humans to understand the plans
 E.g., operational plans for spacecraft and Mars rovers are checked by human operators before 

uploaded to the vehicles


