
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Artificial Intelligence

V06b: Datalog

Recap: propositional & first-order logic

Reasoning in databases – an example

Datalog

Based on material by

• Stuart Russell, UC Berkeley

• Bill Howe, U Washington

• Kevin Leyton-Brown, U British Columbia

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

2

Educational objectives

• Remember the syntax & semantics of Datalog and its derivation

from predicate- and first-order logic

• Explain how the special cut of Datalog‘s features out of different

logics produces an expressive yet fast system

• Formulate intelligent queries over databases using Datalog

“In which we notice that the world is blessed with many objects, some of which

are related to other objects, and in which we endeavor to reason about them.”

 Reading: AIMA, ch. 8 [+ ch. 9] (ch. 7.5.3; 9.3.1 covered here)

(ch. 8.4-8.5; 9.3 related material)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

1. RECAP: PROPOSITIONAL & FIRST-ORDER LOGIC

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

4

Prerequisite 1: Propositional logic
(DE “Aussagenlogik”)

Reasoning over (unrelated) facts
• The simplest of all logics to illustrate basic ideas

Syntax
• If 𝑆 is a sentence, ¬𝑆 is a sentence (negation)

• If 𝑆1 and 𝑆2 are sentences, 𝑆1 ∧ 𝑆2 is a sentence (conjunction, “and”)

• If 𝑆1 and 𝑆2 are sentences, 𝑆1 ∨ 𝑆2 is a sentence (disjunction, “or”)

• If 𝑆1 and 𝑆2 are sentences, 𝑆1 ⇒ 𝑆2 is a sentence (implication)

• If 𝑆1 and 𝑆2 are sentences, 𝑆1 ⇔ 𝑆2 is a sentence (biconditional)

Semantics (rules for evaluating truth with respect to a model 𝑚)

• ¬𝑆 is true 𝑖𝑓𝑓 𝑆 is false

• 𝑆1 ∧ 𝑆2 is true 𝑖𝑓𝑓 𝑆1 is true and 𝑆2 is true

• 𝑆1 ∨ 𝑆2 is true 𝑖𝑓𝑓 𝑆1 is true or 𝑆2 is true

• 𝑆1 ⇒ 𝑆2 is false 𝑖𝑓𝑓 𝑆1 is true and 𝑆2 is false

• 𝑆1 ⇔ 𝑆2 is true 𝑖𝑓𝑓 𝑆1 ⇒ 𝑆2 is true and 𝑆2 ⇒ 𝑆1 is true

The logical implication 𝑆1 ⇒ 𝑆2 (a.k.a.

rule: “𝑆2 if 𝑆1 is true”) shows paradox

behavior when interpreted in a

colloquial way:

• “if I teach AI then the earth is a

sphere” is formally true regardless

of meaning.

But the definition makes sense:

• “if it is raining then the street gets

wet” has to be true (as a rule)

regardless of if it is raining (there

might be other reasons for a wet

street).

See it as if saying “if S1 is true then I

claim S2 to be true as well; else, I

make no claim”.

𝑖𝑓𝑓

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

Prerequisite 2: First-order logic
(FOL, DE “Prädikatenlogik 1. Stufe”)

Pros and cons of propositional logic (as compared to atomic knowledge representation)

• Declarative: pieces of syntax correspond to facts

• Allows partial/disjunctive/negated information (unlike most data structures and databases)

• Compositional: meaning of 𝐵1,1 ∧ 𝑃1,2 is derived from meaning of 𝐵1,1 and of 𝑃1,2
• Meaning is context-independent (unlike natural language, where meaning depends on context)

• Very limited expressive power (unlike natural language)

 E.g., cannot say “pits cause breezes in adjacent squares“ except by one sentence for each square!

 It is useful to view the world as consisting of objects and relationships between them

Much greater expressiveness of FOL (like natural language)

• Quantifiable variables over non-logical objects (quantifiers ∀, ∃, ∄)

• Objects: people, houses, numbers, theories, Ronald McDonald, colors, soccer matches, wars,

centuries, …

• Relations (predicates): red, round, bogus, prime, multistoried, brother of, bigger than, inside, part of,

has color, occurred after, owns, comes between, …

• Functions: father of, best friend, third inning of, one more than, end of, …

A function is a relation with only one “value” for any given “parameter”/input

Only in higher-order logics do predicates have

other predicates (or functions) as parameters

Assert that the relationship exists

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

Exercise: Pen&paper logic (contd.)
 see P03b

Following Russell & Norvig’s finding that “a student of AI

must develop a talent for working with logical notation”

[AIMA, p. 290], this is to get you acquainted with

formulating and manipulating known facts in logical

notation, and to do inference to arrive at new conclusions.

Get together in teams of 2-3 and collectively solve the

following exercises from P03b using pen, paper and the

previous slides. Distribute the work amongst you group and

make sure to explain each result to every group member.

2.2 – formulating sentences in first-order logic

2.3 – formulating sentences in first-order logic

3.2 – inference in first-order logic

Prepare to explain your findings to the class.

 See also definitions in the appendix

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Inspired by Bill Howe’s «Introduction to Data Science», lecture 9

Coursera / University of Washington

2. REASONING IN DATABASES – AN EXAMPLE

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

Prerequisite: Storing knowledge in graphs
based on Jana Koehler’s “DB & SemWeb: Subsumption in OWL-DL”, HSLU 2016

Semantic web technology stack Implementing an ontology (a graph)…

…using triples

…in a database

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

9

Problem: We’re interested in pattern matching
…in graphs such as records in relational databases

Task
• For a given graph and pattern, find all instances of the pattern

• Results:

• 𝑋 = 𝑎, 𝑌 = 𝑏; 𝑋 = 𝑏, 𝑌 = 𝑎
• 𝑋 = 𝑔, 𝑌 = 𝑐; 𝑋 = 𝑐, 𝑌 = 𝑔

𝑋

𝑌

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

Example: Adverse drug reaction research

Given a graph with edge labels
• Drug 𝑋 interferes with drug 𝑌
• Drug 𝑌 regulates the expression of gene 𝑍
• Gene 𝑍 is associated with disease 𝑊

…find drugs that interfere with another drug involved in the treatment of a disease

𝑋 𝑌 𝑍 𝑊

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

A Datalog solution

Datalog – a pattern expression language for DB queries, based on logic
• Assuming a relation 𝑟(𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡) and pseudo syntax

result(X) <=

r(X, interferes_with, Y) &

r(Y, regulates, Z) &

r(Z, associated_with, W)

• Assuming relations 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑠𝑊𝑖𝑡ℎ(𝑑𝑟𝑢𝑔1, 𝑑𝑟𝑢𝑔2), 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑠(𝑑𝑟𝑢𝑔, 𝑔𝑒𝑛𝑒) and

𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑊𝑖𝑡ℎ(𝑔𝑒𝑛𝑒, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒):
result(X) <=

interferesWith(X, Y) &

regulates(Y, Z) &

associatedWith(Z, W)

𝑋 𝑌 𝑍 𝑊

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Example: PRISM-like dragnet investigation
https://www.bloomberg.com/news/articles/2011-11-22/palantir-the-war-on-terrors-secret-weapon

«In October, a foreign national named Mike

Fikri purchased a one-way plane ticket

from Cairo to Miami, where he rented an

apartment»

«Over the next few weeks, he’d made a

number of large withdrawals from a

Russian bank account and placed repeated

calls to a few people in Syria»

«More recently, he rented a truck, drove to

Orlando, and visited Disney World himself»

+ boughtFlight(‘Fikri’, ‘Cairo’, ‘Miami’, ‘oneway’,

2016-10-4)

+ withdrawal(‘Fikri’, 5000, ‘some bank’, 2016-11-2)

+ withdrawal(‘Fikri’, 2000, ‘some bank’, 2016-11-21)

…

+ rented(‘Fikiri’, ‘truck’, ‘Miami’, ‘Orlando’, 2017-

01-30)

https://www.bloomberg.com/news/articles/2011-11-22/palantir-the-war-on-terrors-secret-weapon

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

PRISM modeled in Datalog
Rules to reason over the just stated facts

flag(Person, 1, Date) <= boughtFlight(Person, Origin, Destination, Oneway, Date) &

flaggedAirport(Origin) &

usAirports(Destination) &

Oneway=‘oneway’

foreignWithdrawal(Person, sum(Amount), Date) <= withdrawal(Person, Amount, Bank, Date) &

foreignBank(Bank) &

Amount > 1000

flag(Person, 1, Date) <= foreignWithdrawal(Person, Tot_amount, Date) & Tot_amount > 10000

flag(Person, 1, Date) <= rented(Person, Vehicle, Origin, Dest, Date) & importantLocation(Dest)

…

totalflags(Person, sum(Flag), min(Date), max(Date)) <= flag(Person, Flag, Date)

alert(Person, Flag_cnt, Min_date, Max_date) <= totalflags(Person, Flag_cnt, Min_date, Max_date) &

Max_date - Min_date < 10 & #days

Flag_cnt > 3

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

Strengths of a high-level logical language

Who has contacted whom, when?
contacted(Person1, Person2, Time) <= email(Person1, Person2, Message, Time,…)

contacted(Person1, Person2, Time) <= called(Time, Voicemail, Person1, Person2, …)

contacted(Person1, Person2, Time) <= text_message(Time, Message, Person1, Person2, …)

Who could have known before January 30 that 𝑋 was going to happen?
knew(‘Smith’)

knew(Person2) <=

knew(Person1) &

contacted(Person1, Person2, Message, Time) &

Time < 2017-01-30

knew(Person2) <=

knew(Person1) &

met_with(Person1, Person2, Time) &

Time < 2017-01-30

Self-reference / recursion: not possible in standard SQL

(though certain DBMS implement it)

The data probably comes from a lot of different systems

(RDBMS, triple-store, files on Hadoop, …), but syntactic

integration doesn’t take a lot of work

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

3. DATALOG

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

Datalog - A relevant subset of FOL

Background
• Full FOL is very expressive, but not decidable in general

• Thus: Fallback to first-order definite clauses: “∧” of unnegated terms ⟹ unnegated term

(more precisely, Horn clauses: also valid without the implication)

• Some modifications (for efficient evaluation):
• Variables in the head also appear in the body of a clause

• Under certain conditions, up to one negated term in the body is allowed (“stratified negation”)

• Usually no functional symbols (not true in pyDatalog)

• Can represent the type of knowledge typically found in relational databases

• Still powerful (allows recursion!), but not Turing-complete

Datalog fundamentals
• Clause: is either an atomic symbol (fact) or of the form 𝛼 ⟸ 𝛽1 ∧ ⋯∧ 𝛽𝑚 (rule) (with atoms 𝛼, 𝛽𝑖)

• Atom: has either the form 𝑝 or 𝑝(𝑡1, … , 𝑡𝑛), (with predicate 𝑝 and terms 𝑡𝑖)  e.g., 𝑝(𝑋), 𝑡𝑒𝑎𝑐ℎ𝑒𝑠(𝑠𝑡𝑎𝑑𝑒𝑙𝑚𝑎𝑛𝑛, 𝑎𝑖)

• Predicate symbol: starts with lower-case letter  e.g., 𝑝, 𝑡𝑒𝑎𝑐ℎ𝑒𝑠

• Term: is either a variable or a constant
• Variable: starts with upper-case letter  e.g., 𝑋, 𝑃𝑒𝑟𝑠𝑜𝑛1
• Constant: starts with lower-case letter or is a sequence of digits  e.g., 5, 𝑠𝑡𝑎𝑑𝑒𝑙𝑚𝑎𝑛𝑛, 𝑎𝑖

• Knowledge base: a set of clauses

Decision problem: A question (e.g. “is a sentence of

FOL true?”) is decidable if an efficient algorithm

exists that can and will return the answer (yes/no) in

a finite number of steps.

head body

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

Example: Converting measures with pyDatalog
Here pure Python without DB connection

from pyDatalog import pyDatalog

#create terms

pyDatalog.create_terms('scale', 'A, B, C, V', 'conv') #rather atoms (terms and predicates)

#some facts (atoms, here specifically functional predicates)

scale['meter', 'inch'] = 39.3700787

scale['mile', 'inch'] = 63360.0

scale['feet', 'inch'] = 12.0

#some rules (these make it powerful: e.g. the 1. one that computes an arbitrary conversion path via recursion)

scale[A, B] = scale[A, C] * scale[C, B] #adding transitivity

scale[A, B] = 1/scale[B, A]

conv[V, A, B] = V * scale[A, B]

#some queries

print(scale['inch', 'meter'] == V)

print(scale['mile', 'meter'] == V)

print(conv[3, 'mile', 'meter'] == V) #note that we never explicitly defined how to convert miles to meters

print(conv[1, 'meter', 'feet'] == V)

Source: https://mcturra2000.wordpress.com/2014/09/14/logic-programming-example-unit-conversion-using-datalog/
Installing pyDatalog: pip install pyDatalog

See also: https://sites.google.com/site/pydatalog/home

https://mcturra2000.wordpress.com/2014/09/14/logic-programming-example-unit-conversion-using-datalog/
https://sites.google.com/site/pydatalog/home

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

Inference in Datalog

Foundation: Modus Ponens
• An inference rule known since antiquity: «If 𝛼 ⇒ 𝛽 and 𝛼 == 𝑡𝑟𝑢𝑒, then 𝛽 == 𝑡𝑟𝑢𝑒»

• Also known as implication elimination

Example: Your new pet «Fritz» croaks and eats flies; is it green? (see https://en.wikipedia.org/wiki/Backward_chaining)

• Facts:
• 𝑐𝑟𝑜𝑎𝑘𝑒𝑠(𝑓𝑟𝑖𝑡𝑧)
• 𝑒𝑎𝑡𝑠𝐹𝑙𝑖𝑒𝑠(𝑓𝑟𝑖𝑡𝑧)

• Rules:
• 𝑐𝑟𝑜𝑎𝑘𝑒𝑠 𝑋 ∧ 𝑒𝑎𝑡𝑠𝐹𝑙𝑖𝑒𝑠 𝑋 ⇒ 𝑓𝑟𝑜𝑔 𝑋
• 𝑐ℎ𝑖𝑟𝑝𝑠 𝑋 ∧ 𝑠𝑖𝑛𝑔𝑠 𝑋 ⇒ 𝑐𝑎𝑛𝑎𝑟𝑦 𝑋
• 𝑓𝑟𝑜𝑔 𝑋 ⇒ 𝑔𝑟𝑒𝑒𝑛 𝑋
• 𝑐𝑎𝑛𝑎𝑟𝑦 𝑋 ⇒ 𝑦𝑒𝑙𝑙𝑜𝑤 𝑋

2 ways of answering this
• Data-driven: start from true facts  use rules to derive new true facts  eventually arrive at goal

• Goal-driven: assume goal is true  use rules to assert other facts as true  eventually arrive at

known true facts

Applying Modus Ponens forward

Applying Modus Ponens backward

Logic notation for the

Modus Ponens rule

https://en.wikipedia.org/wiki/Backward_chaining

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

Inference in Datalog (contd.)

Forward chaining
• The data-driven approach:

search for true antecedents («if clauses») 

infer consequent («then clause») to be true 

add this information to KB

• Intuitively understandable

• Sound and complete for Datalog

• Efficiently implementable for Datalog
(a clause can be viewed as defining a CSP)

 runs in polynomial time

• Humans control forward chaining carefully

to not get flooded by irrelevant facts; but:

“if I am indoors and I hear rain fall  I might

conclude that the picnic will be canceled”

Backward chaining
• The goal-driven approach: produces no

unnecessary facts

• Sound and complete for Horn clauses

• Typically implemented using a form of

SLD resolution (usually using depth-first

search)

 also used in pyDatalog

Map coloring as (a) a constraint graph and (b) as a

single definite clause.

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

Datalog in practice

History and future
• Lots of research during the 1980’s, including many extensions
 Ceri et al., “What You Always Wanted to Know About Datalog (And Never Dared to Ask)”,

IEEE Trans. Knowledge & Data Engineering, 1989

• Ideas influenced mainstream database technology (e.g., recursion in SQL:1999) and the

semantic web
 https://en.wikipedia.org/wiki/Datalog

• Resurged interest since the rise of big data (compare also B. Howe’s lecture)

 deMoor et al., “Datalog Reloaded – 1st International Workshop, Datalog 2010”, Springer LNCS, 2010

• LogicBlox is a company build around Datalog (product, research and tech. transfer)

 Aref, “Datalog for Enterprise Software – From Industrial Applications to Research”, ICLP 2010

The pyDatalog interpreter
• Light weight, fast, and includes many extensions that facilitate efficiency and convenience

• Memoization of intermediate results

• Access to 11 SQL dialects via integration with SQLAlchemy

• Includes aggregate functions and support for OOP

• Easy mapping of logical terms to Python data structures or records from a DB

• Not used often yet, but at least once in production

https://en.wikipedia.org/wiki/Datalog

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

Example: Querying the chinook.db database

• A DB on music/media information and a company that sells them
• Access it from a terminal (DB in current directory, sqlite installed): sqlite3 chinook.db

• List all tables using the sqlite prompt: .tables

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

Example (contd.): DB query using pyDatalog
Accessing existing relations and fetching results

from sqlalchemy.ext.declarative import declarative_base; from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker; from pyDatalog import pyDatalog

define a base class with SQLAlchemy and pyDatalog capabilities

Base = declarative_base(cls=pyDatalog.Mixin, metaclass=pyDatalog.sqlMetaMixin)

load a database from the same directory and create a session, then associate it to the Base class

engine = create_engine('sqlite:///chinook.db') #, echo=False)

Session = sessionmaker(bind=engine)

session = Session()

Base.session = session

classes that inherit from Base will now have both pyDatalog and SQLAlchemy capability

the approach can be used to load an existing KB from a database relation, using __table_args__ :

class Track(Base):

__tablename__ = 'tracks'

__table_args__ = {'autoload':True, 'autoload_with':engine} #autoload the model

def __repr__(self): #specifies how to print a Track

return "'" + self.Name + "' costs $" + str(self.UnitPrice)

the Track class can now be used in in-line queries; example: which track is at least 5s long?

X = pyDatalog.Variable()

Track.Milliseconds[X] >= 5000000

print(X) #outputs ['Through a Looking Glass' costs $1.99, 'Occupation / Precipice' costs $1.99]

Installing SQLAlchemy: conda install sqlalchemy

Using SQLite: https://www.codeproject.com/Articles/850834/Installing-and-Using-SQLite-on-Windows

Finding the example DB: http://www.sqlitetutorial.net/sqlite-sample-database/ ( see also DB schema on next slide)

https://www.codeproject.com/Articles/850834/Installing-and-Using-SQLite-on-Windows
http://www.sqlitetutorial.net/sqlite-sample-database/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

Where’s the intelligence?
Man vs. machine

Datalog makes the following assumptions about the world
• An agent's knowledge can be usefully described in terms of

individuals and relations among individuals

• An agent's knowledge base consists of

definite and positive statements

• The environment is static

• There are only a finite number of individuals

of interest in the domain

• Each individual can be given a unique name

Under these assumptions, Datalog is a powerful yet fast

system for inference
• Modeling the real world to conform to the assumptions is

up to the developer

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

24

Review

• Datalog combines expressive power (about individuals and their relations) with

efficient inference

• Forward and backward chaining are fast & complete for Horn clauses

(Datalog)

• While Datalog might gain popularity in big data applications in the future,

logic in general remains very important for AI

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Propositional logic cheat sheet

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

27

First order logic cheat sheet

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

28

Datalog vs. SPARQL

Pro SPARQL
• Designed for graph queries

Con SPARQL
• Not algebraically closed (input is a graph, but output is a set of records)

• Limited expressiveness (no arbitrary recursion)

• If input is tabular, you have to shred it into a graph before using SPARQL
( often a 3x-x blow up in size!)

• Everything has to be in one graph

