Artificial Intelligence zh
VO04: Local and adversarial search aw

From hill climbing search to genetic algorithms
Game playing
Resource limits and other difficulties

Based on material by Stuart Russell, UC Berkeley
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the story of improving local search from hill-climbing to
genetic algorithms

«  Remember the minimax, a-f and expectiminimax algorithms

- Implement an Al agent for a given simple game

“In which we relax the simplifying assumptions of the previous lecture, thereby
getting closer to the real world; including the problems that arise when we try to

plan ahead in a world where other agents are planning against us.” ‘

= Reading: AIMA, [ch. 4.1-4.2 (local search)]; ch. 5 (games)
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1. FROM HILL CLIMBING SEARCH TO GENETIC ALGORITHMS

Local search

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)



Zurich University
of Applied Sciences

Example: n-queens problem Zh
Task
 Putn queens on an x n board with no two queens on the same row, column, or diagonal

h=2 h=0

=
]
(&)

h: heuristic cost function giving
. ) the number of conflicts
Possible solution

* Initialize one queen per column
 Move one queen up/down at a time to reduce number of conflicts using heuristic h

* Almost always solves n-queens problems almost instantaneously (#states: n™)
=>» works for very large n, e.g., n = 1’000°000
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Iterative Iimprovement algorithms Zh

aw

Local search: search for optimal states instead of path’s

* In many optimization problems, Is irrelevant; the goal state itself is the solution
=>» State space: set of "complete" configurations;
= Goal: find configuration (or a configuration satisfying constraints)

« Examples: TSP, timetable

lterative improvement
* In such cases: use iterative improvement algorithms
= Keep a single "current" state, try to improve it
=» Constant space, suitable for online as well as offline search

Possible implementations
 Hill climbing

« Simulated annealing

« Genetic algorithms
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Hill climbing search zh
(a.k.a. gradient ascent/descent) aw

Systematic search for an optimum
* Analogy: «Like climbing Everest in thick fog with amnesia»
* Result: finds a state that is a local maximum
...by selecting only the highest-valued successor for expansion iif its value is better

The state space landscape

* Practical problems typically have an exponential number of local maxima to get stuck in
 Randome-restart hill climbing overcomes local maxima = trivially complete

« Random sideways moves escape from shoulders (good), loop on flat maxima (bad)

objective function global maximum

shoulder
local maximum
"flat” local maximum

-

-
-~
.

state space
current P

state
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Hill climbing search: an outlook Zh

All previously discussed search algorithms only
work in discrete state and action spaces (otherwise

the branching factor is infinite)

« Hill climbing in continuous space (gradient descent) is the work horse of deep learning

« Some pointers:
—> http://sebastianruder.com/optimizing-gradient-descent/ (overview of the gradient descent family)
—> https://stdm.github.io/Some-places-to-start-learning-ai-ml/ (links to courses on deep neural networks)

Gradient-Based Learning Applied to Document
Recognition Learning to learn by gradient descent

Yann LeCun, Léon Bottou, Yoshun Bengio, and Patrick Haffner by gradient descent

Marcin Andry . Misha Denil', Sergio Gémez Colmenarejo’, Matthew W. HofTman',
David Pfau’, Tom Schaul', Brendan Shillingford ", Nando de Freitas'**
!Google DecpMind  *University of Oxford *Canadian Institute for Advanced Research

andrychoviczognail . con
zwhof fman, pfas, schaul }8google. con

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

arXiv:1606.04474v2 [cs.NE] 30 Nov 2016

+ VEVM Virus! suppo

probl
on sparsity tend 10 favor very

the case for combinatorial
and Wolsey, 1948]

¥t Coaterence cn Neural Information Processing Systems (NIPS 2016). Barceloaa., Spain
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Simulated annealing Zh
Towards optimizing hill climbing search aw

Idea (by [Metropolis et al., 1953] for physical process modelling)
« Escape local maxima by allowing some “bad” moves
* ...but gradually decrease their size and frequency

Appllcatlon
For “good” schedule of decreasing the
temperature (- see appendix), it always
reaches the best state

* Widely applied for e.g. VLSI layout, airline
scheduling

Modern variants
* «momentum», «Adam» and other adaptation

strategies for a «learning rate»
- first link on the last slide

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)



Zurich University
of Applied Sciences

Local beam search

...and still optimizing hill climbing search azﬁ
ldea ’y

 Keep k states instead of 1; choose top k of all their successors
(not the same as k searches run in parallel! > Why?)

« Searches that find good states recruit other searches to join them
p !
s #

~

]
£
e ——
THINGS A ™

Problem
* Quite often, all k states end up on same local hill | cowruren

SCIENTIST
RARELY

TALKS

|dea contd. S
* Choose k successors randomly, biased towards good ones (NS
=>» Observe the close analogy to natural selection!

Compare Don Knuth on
“the advantages of
unbiased sampling as a
way to gain insight into a
complicated subject” (e.g.
Qh. 2 in the above booy

10
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Genetic algorithms (GA)

...improving on the idea of local beam search aw

ldea
« Combine stochastic local beam search + generating successors from pairs of states
=> uphill tendency + random exploration + exchange of information among searches

Offspring is created by

Here: mating candidates _ j |
24748552 | 24 31% .| 327552411 32748552 327412 :
are selected at random : | | | | crossing over from
according to fitness; the = | 22752411 [ 23 29% | 24748552 | 24752411 |—+| 24752411 | parents
crossover point is 54415124 20 26% ~[ 32782411 | 32752124 | | 32PF2124
selected at random m— :
32543213 11 14% ~[ 24415124 | 24415411 || 2441541[] Each digit mutates with a
- i ' small independent
Here: # of non-attacking probability
pairs (max. 28) Fitness Selection  Pairs Cross-Over

Example: 8-queens states encoded as digit strings. The original population (left) is ranked by a fitness
function, resulting in pairs for mating. The offspring is subject to mutation.

Application

 GAs require states encoded as strings

* Crossover helps iif substrings are meaningful components
* GAs =+ evolution

Zurich University of Applied Sciences and Arts 11
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2. GAME PLAYING

Adversarial search
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Games vs. search problems Zh

“Unpredictable" opponent
=>» solution is a strategy (specifying a move for every possible opponent reply)

| Which movie? |

Time limits Bl 0 f“?hm
=> unlikely to find goal, must approximate I\ (B2 me:

Early history:
Computer considers possible lines of play (computer chess: Babbage, 1846)

« Algorithm for perfect play (minimax: Zermelo, 1912; game theory: von Neumann, 1944)

* Finite horizon, approximate evaluation (depth cut-off: Zuse, 1945; Wiener, 1948; Shannon, 1950)

» First chess program (Turing, 1951)

« Machine learning to improve evaluation accuracy (RL for checkers: Samuel, 1952-57)

* Pruning to allow deeper search (a-p search: McCarthy, 1956)

Zurich University of Applied Sciences and Arts 13
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Types of games

perfect information chess, checkers («Dame»),
go, othello («Reversi»)

only partial observability battleship, kriegspiel (chess
without seeing enemy pieces)

CHEgg
i ie? POK
Which movie? S IGHTER COMBAT
GUERRILLA ENGAGEMENT
DESERT WARFARE
AIR-TO-GROUND ACTIONS
THEATERWIDE TACTICAL WARFARE

THEATERWIDE BIOTOXIC AND CHEMICAL WARFARE
GLOBAL THERMONUCLEAR WAR
i
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backgammon, monopoly

bridge (~ «Jass», «Skat»),
poker, scrabble, global
thermonuclear war
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Deterministic (turn-based, 2-player) games
The search tree, e.g. of tic-tac-toe

Player’s name
13

,Max MAX (X)

« 18t player (moves first)

Zurich University
of Applied Sciences

Max moves first, resulting in

the next row of possible states
which Min operates on

« Wants to maximize utility of

. X X X
terminal states MIN (0) X X XL X x
* Tree shows Max’s perspective ‘\
X0 X| o] |X
MAX (X) o
”Min“ \
X0oX X|O X|0
* 2nd player MIN () X X
« Wants to minimize (Max’s) utility ‘\\
Ut|||ty TERMINAL xg i t):a( g i i ?\: i
. « [ x[x[o] [x[o]o
* Numeric value (,payoff”) of Utility » o “

terminal state
« ,zero-sum game” iif total payoff (to all players)
Is constant over all game instances
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Minimax: depth-first exploration of game tree

Perfect play for deterministic, fully observable games aw

ldea

* Choose move to position with highest minimax value

* Minimax value: highest value among options minimized by adversary
=> best achievable payoff against best play

Example

* Any 2-ply game tree (i.e., each player moves once)

« Max’s best move at root: a, (leading to highest minimax value of 3)

* ...because Min’s best reply will be b, (leading to lowest minimax value / utility of 3)

MAX

MIN

Min is going to do the least
valuable thing here for Max (3).

Zurich University of Applied Sciences and Arts 16
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Minimax (contd.)
Algorithm and properties

function Minimax-Decision (state) returns an action
inputs: state, current state in game
return the a in Actions(state) maximizing Min-Value (Result (a, state))

function Max-Value (state) returns a utility value
if Terminal-Test (state) then return Utility(state)
v € —oo
for a, s in Successors (state) do v € Max (v, Min-Value(s))
return v

function Min-Value (state) returns a utility value
if Terminal-Test (state) then return Utility(state)
v €&
for a, s in Successors (state) do v € Min (v, Max-Value(s))
return v

Properties

Zurich University
of Applied Sciences
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Min-Value
MINIMAX(s) =

UTILITY (s) if TERMINAL-TEST(s)
MAX,e Actions(s) MINIMAX(RESULT (s,a)) if PLAYER(s) = MAX
MiNge Actions(s) MINIMAX(RESULT (s, a))  if PLAYER(s) = MIN

Max-Value

« Complete? Yes, if tree is finite (e.g., chess has specific rules for this)

Time complexity? 0(b™)
Space complexity? O(bm) (for depth-first exploration)
For chess, b = 35, m = 100 for “reasonable" games

Optimal? Yes, against an optimal opponent (Otherwise?)

=» exact solution completely infeasible; but do we need to explore every path?

Zurich University of Applied Sciences and Arts
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a-B pruning example

Overcoming exponential (b™) number of states to be explored aw

B has at [lower bound, uper bound]

mosta |,
(a)
value of
3
[-=. 3]

Recursion: B
o= —00

B=3

Successively tightening bounds on minimax values

 «ais the best value (to Max) found so far in current
subtree of a Max node (A>«)

« If any node v is worse than a, Max will not choose it
=>» prune that branch

« Similarly: B is best score Min is assured of in current
subtree of a Min node (B, C, D> p)

Zurich University of Applied Sciences and Arts
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a-B pruning example Zh
Overcoming exponential (b™) number of states to be explored aw

B has at [lower bound, uper bound]
most a
value of

Recursion: B
o= —00

B=3

Successively tightening bounds on minimax values

 «ais the best value (to Max) found so far in current
subtree of a Max node (A>«)

« If any node v is worse than a, Max will not choose it
=>» prune that branch

« Similarly: B is best score Min is assured of in current
subtree of a Min node (B, C, D> p)

Zurich University of Applied Sciences and Arts 19
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a-B pruning example
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Overcoming exponential (b™) number of states to be explored aw
B has at [lower bound, uper bound]
most a
value of
3
Recursion: A
a=3
B=oo
. Successively tightening bounds on minimax values

exagf'y a is the best value (to Max) found so far in current
value 3, subtree of a Max node (A>«)
as'?leAaZ?z If any node v is worse than a, Max will not choose it

Zurich University of Applied Sciences and Arts
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=>» prune that branch
Similarly: B is best score Min is assured of in current
subtree of a Min node (B, C, D> p)
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a-B pruning example Zh

Overcoming exponential (b™) number of states to be explored aw
B has at [lower bound, uper bound]
most a : (d)
value of ™ ‘
3
X
Recursion: C
a=3
p=2
. Successively tightening bounds on minimax values

exagf'y * «ais the best value (to Max) found so far in current
value 3, subtree of a Max node (A>«)
as'?leAaZ?z « If any node v is worse than a, Max will not choose it

=>» prune that branch
« Similarly: B is best score Min is assured of in current
subtree of a Min node (B, C, D> p)

Zurich University of Applied Sciences and Arts 21
InIT Institute of Applied Information Technology (stdm)



a-B pruning example

Overcoming exponential (b™) number of states to be explored

B has at [lower bound, uper bound]

most a @
value of

3

(d)

Recursion: D
a=3
B=14

B has

exactly
value 3,
so A has
at least 3

Zurich University
of Applied Sciences
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Successively tightening bounds on minimax values

 «ais the best value (to Max) found so far in current
subtree of a Max node (A>«)

« If any node v is worse than a, Max will not choose it
=>» prune that branch

« Similarly: B is best score Min is assured of in current

subtree of a Min node (B, C, D> p)

Zurich University of Applied Sciences and Arts
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a-B pruning example Zh

Overcoming exponential (b™) number of states to be explored aw
B has at [lower bound, uper bound]
mosta |,
(a) (d)
value of
3

B has

exactly
value 3,
so A has
at least 3

Zurich University of Applied Sciences and Arts
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Recursion: A
a=3

B=3

Successively tightening bounds on minimax values

 «ais the best value (to Max) found so far in current
subtree of a Max node (A>«)

« If any node v is worse than a, Max will not choose it
=>» prune that branch

« Similarly: B is best score Min is assured of in current
subtree of a Min node (B, C, D> p)
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a-B pruning (contd.) Zh
Algorithm and properties (changes to minimax in bold-italic) aw

function Alpha-Beta-Search (state) returns an action
v € Max-Value (state, —o0, ©o0)
return the a in Actions(state) with value v

function Max-Value (state, @, B) returns a utility value function Min-Value (state, &, B) returns a utility value
if Terminal-Test (state) then return Utility(state) if Terminal-Test (state) then return Utility(state)
v &€ —o v € o
for a in Actions(state) do for a in Actions(state) do
v € Max (v, Min-Value (Result (state, a), a, B)) v € Min (v, Max-Value (Result (state, a), a, B))
if v 2 [ then return v if v < a then return v
a € Max(a, v) f € Min(f, v)
return v return v
Properties

* Pruning does not affect final result

 Good move ordering improves effectiveness of pruning

«  With “perfect ordering”, time complexity = 0(b™/?)
=>» doubles solvable depth
=>» a simple example of the value of reasoning about which computations are relevant (metareasoning)
= unfortunately, 351°%/2 (for chess) is still impossible!

Zurich University of Applied Sciences and Arts 24
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3. RESOURCE LIMITS AND OTHER DIFFICULTIES

Adversarial search (contd.)

Zurich University of Applied Sciences and Arts
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Resource limits Zh
Towards real-world conditions aw

Standard approach

Example

Use Cutoff-Test instead of Terminal-Test

e.g., depth limit (perhaps add quiescence search: only cut off search at positions that don’t drastically
change their value in the near future, e.g. captures in chess; otherwise continue search)

Use Eval instead of Utility

l.e., evaluation function that estimates desirability of position

Lookup of start/end games

Suppose we have 100 seconds, explore 10* nodes/second
= 10° nodes per move =~ 358/2

a-f reaches depth 8

=>» pretty good chess program

Zurich University of Applied Sciences and Arts 26
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Eval(uation) functions 4
Designing or learning effective cutoff tests aw

E 6 & A= i
444 | 241 ry ]
H B B R
H B B B L]
canl
] H B %D L] %
A YA \Qﬂ%é £ %é
0 Be B 5

(a) White to move (b) White to move

Example: The two chess positions differ only in the position of the rook (“Turm”) at lower right.
In (@), Black has an advantage of a knight (“Springer”) and two pawns (“Bauern”) - should be enough to win.
In (b), White will capture the queen (“Dame”) - should be strong enough to win.

For chess, typically linear weighted sum of features
* Eval(s) = w;f;(s) + w,f,(s) + .. + w, £ (s)
* Example:
w;=9 and £, (s) = (number of white queens)- (number of black queens)
 Can be learned with machine learning techniques

Zurich University of Applied Sciences and Arts 27
InIT Institute of Applied Information Technology (stdm)



Nondeterministic (stochastic) games

Chance is introduced by e.g. dice-rolling
or card-shuffling

Simplified example

« A game with coin-flipping

* Nondeterminism is handled by an
additional level in the tree, consisting of
chance nodes

N
A

Zurich University of Applied Sciences and Arts
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0.5 0.5
2 4
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Real-world example
« 2048: numbers appear with probability
P(2) = 130 and P(4) = 1—10 at random free

board positions
« Backgammon: Before each move, dice-
rolls determine the legal moves

25 242322212019

18 17 16 15 14 13
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Expectiminimax — maximizing expected value

Algorithm and properties

function ExpectiMinimax-Decision(state) returns an action
inputs: state, current state in game
return a in Actions(state) maximizing
ExpectiMinimax-Value (Result (a, state))

function ExpectiMinimax-Value (state) returns a utility wvalue
if Terminal-Test (state) then
return Utility(state)
if state is a Max node then
return highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors (state)

Properties

Expectiminimax gives perfect play

Zurich University
of Applied Sciences

zh
aw

EXPECTIMINIMAX (s) =

UTILITY (s) if TERMINAL-TEST ()
max, EXPECTIMINIMAX (RESULT (s,a))  if PLAYER(s) = MAX
ming EXPECTIMINIMAX (RESULT(s, @)) if PLAYER(s) = MIN

>, P(r)EXPECTIMINIMAX (RESULT (s, 7)) if PLAYER(s) = CHANCE

Algorithm works just like Minimax — except chance-nodes are also handled

In case of only 1 player, Expectiminimax becomes Expectimax

Time complexity: 0(b™n™) (where n is the number of distinct random events, e.g. dice rolls)
=>» Possibilities are multiplied enormously in games of chance

=>» Simultaneously, no likely sequences exist to do effective a-f pruning

Zurich University of Applied Sciences and Arts
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Nondeterministic games in practice Zh
Example Backgammon

* Dice rolls increase b (21 possible rolls with 2 dice)

* Ca. 20 legal moves (can be 6,000 with 1-1 roll)
= at depth 4: 20 x (21 x 20)3 ~ 1.2 x 10° nodes

« As depth increases, probability of reaching a given node shrinks
=» value of lookahead is diminished (see next slide for consequences)

But

 «TDGammon» (Tesauro, 1992) uses depth-2 search = world-champion level
=>» uses neural network and reinforcement learning (RL) to train Eval function via games against itself

predicted probability
of winning, vy

TD error, V, -V, —-é

« = see also http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node108.html

Zurich University of Applied Sciences and Arts 30
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Digression: Exact Eval values do matter

...for nondeterministic games azﬁ

MAX

DICE The vastly enlarged scale

(compared to the left tree) of the
utility value suffices to form the
highest expectiminimax value
despite the low probability

MIN

« Behavior is preserved only by positive linear transformation of Eval
* Hence Eval should be proportional to the expected payoff

= Exact values don’t matter for deterministic games - see appendix

Zurich University of Applied Sciences and Arts 31
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Games of imperfect information Zh

E.g., card games, where opponent's initial cards are unknown

First idea («averaging over clairvoyance»)

« Typically we can calculate a probability for each possible deal
=>» Seems just like having one big dice roll at the beginning of the game *
=» |dea: compute the Minimax value of each action in each deal;
then, choose the action with highest expected value over all deals (i.e., Expectiminimax) *

Monte Carlo simulation alone does not
always suffice: it handles randomness
well (e.g. in the deal), but not strategy
; NAJA ,MACKT NIX, €R HAT SOWISO RLOREN
that looks |I|fe randornness (e.g. an AT 3. SPIGLY HAND,S, STINEIOERS. Serornty a2y
adversary’s move in Kriegspiel) SPITZE 8, ANGESAGTS, TISCHA4D, STUM. 49, |
GEKOTZT 42, Almrzw RNTRA VB0, *

RE 960, HIRSCH 4920, €LcH3 .
k\ 7680, veztoxe/v Adsfo 'c'f c,s?}z”

«GIB» - Ginsberg’s Intelligent Bridgeplayer
» Current best bridge program (Ginsberg, 1999) f ‘?Bk\
« Approximates idea above by Monte Carlo simulation of some /&
of the possible deals to be computationally feasible
1. Generate 100 deals consistent with bidding information g, .+ 4 wonderful partially observable stochastic

2. Pick the action that wins most tricks on average card game with some similarity to Bridge
- see https://www.pagat.com/schafk/skat.html

Zurich University of Applied Sciences and Arts 32
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*) Proper analysis of averaging over clairvoyance Zh

Intuition might mislead

aw

« That the value of an action is the average of its values in all possible states is WRONG

(= see appendix)

« With partial observability, value of an action depends on the belief state the agent will

end up in

Maintaining its belief state is a core function of
any intelligent system in partially observable
(~real world) environments - see AIMA, ch. 4.4

Dealing with belief states
* Generate and search a tree of belief states
« Leads to rational behaviors such as
» Acting to obtain information
« Signaling to one's partner
* Acting randomly to minimize information disclosure

Zurich University of Applied Sciences and Arts
InIT Institute of Applied Information Technology (stdm)

The agent’s current information about

all the possible physical states it might

be in (given the sequence of actions and
percepts up to that point)
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Where’s the intelligence?

_ zh
Man vs. machine aw

« Searching over the right state spaces leads to emergent “clever” behavior in games
(information gathering, alliances, bluffs)

« Many local and adversarial search methods can be enhanced by learning
(e.g., learn good Eval functions by playing games against oneself)

» The brain might perform local (hill climbing) search as well
-> see https://www.cs.toronto.edu/~hinton/backpropincortex2014.pdf

How to do backpropagation in a brain

Geoffrey Hinton

Canadian Institute for Advanced Research

University of Toronto
&
Google Inc.

=>» Hill-climbing, minimax, a-£, etc. are still pure computation
=> Intelligent behavior emerges from their composition on suitable data structures

Zurich University of Applied Sciences and Arts
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* Local search algorithms evolve a small number of states towards better
utility (typical: 1 state)

* In continuous space, local search by linear programming or convex
optimization is extremely efficient in practice (polynomial time complexity!)

* In non-deterministic environments, keeping track of one’s belief state is
paramount

« Games are fun to work on — and dangerous

They illustrate several important points about Al

« perfection is unattainable = must approximate

* good ideato think about what to think about (metareasoning = pruning)
* uncertainty constrains the assignment of values to states

» optimal decisions depend on information state (belief state), not real state

= Games are to Al as grand prix racing is to automobile design
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Pseudocode for hill climbing search and
simulated annealing

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbour, a node
current € Make-Node (Initial-State[problem])
loop do
neighbour € a highest-valued successor of current
if Value[neighbour] < Value[current] then return State[current]
current € neighbour
end

function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling the probability of downward steps
current € Make-Node (Initial-State[problem])
for t € 1 to o do
T €& schedule[t]
if T = 0 then return current
next € a randomly selected successor of current
AE € Value[next]-Value[current]

if AE > 0 then current € next
AE

else current € next only with probability eT
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Digression: Exact Eval values don't matter

...for deterministic games azw

MAX
MIN 1& 2 1& 20
1 4 1 0 2 400

« Behavior is preserved under any monotonic transformation of Eval
* Only the order matters: payoff in deterministic games acts as an ordinal utility function
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Deterministic games in practice Zh

Checkers

« «Chinook» ended 40-year-reign of human world champion Marion Tinsley in 1994

« Used an endgame database defining perfect play for all positions involving 8 or fewer
pieces on the board (total: 443,748,401,247)

Chess

+ «Deep Blue» defeated human world champion Gary Kasparov in a six-game match in 1997

« Searches 200 million positions per second, uses very sophisticated evaluation, and
undisclosed methods for extending some lines of search up to 40 ply

Othello
« Human champions refuse to compete against computers, who are too good

Go

« 2010: human champions refuse to compete against computers, who are too bad
* 2016: Google DeepMind’s «AlphaGo» unexpectedly defeats world champion Lee Sedol [
b > 300 = most programs use pattern knowledge bases to suggest plausible moves |
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Expectations & expected values Zh
adapted from U Washington's CSE473, lecture 8 aw

The expectation operator E()

« We can define a function f(X) of a random variable X

« The expected value of a function is its average value under the probability distribution
over the function’s inputs:

E(fO0) = ) fX = 0)P(X = )

Example
* How long to drive to the airport?
* Driving time D (in mins) as a function of traffic T
D(T = none) = 20, D(T = light) = 30, D(T = heavy) = 60
« What is your expected driving time?
Let probability P(T) = {none: 0.25, light: 0.5, heavy: 0.25}
-> E(D(T)) = D(none)P(none) + D(light)P(light) + D(heavy)P(heavy)

> E(D(T)) = 20  0.25 4+ 30 = 0.5 + 60 * 0.025 = 35 mins
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Why averaging over clairvoyance is wrong

A common sense example of a journey aw

Day 1
* Road A leads to a small heap of gold pieces
* Road B leads to a fork:

» the left fork leads to a bigger heap of gold;
» take the right fork and you'll be run over by a bus.

= ,B“ (and then ,left?) is the optimal choice

Day 2
* Road A leads to a small heap of gold pieces
* Road B leads to a fork:

» take the left fork and you'll be run over by a bus;
» the right fork leads to a bigger heap of gold.

= ,B“ (and then ,right”) is the optimal choice

Averaging over clairvoyance will
never select actions to gather
information because it assumes
future states to be of perfect
knowledge after the initial deal.

Day 3
* Road A leads to a small heap of gold pieces

* Road B leads to a fork:
» guess correctly and you'll find a bigger heap of gold;
* guess incorrectly and you'll be run over by a bus.

= B still seems optimal; but this ignores the resulting belief state (that includes ignorance & possibility of death!)
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