
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Artificial Intelligence

V04: Local and adversarial search

From hill climbing search to genetic algorithms

Game playing

Resource limits and other difficulties

Based on material by Stuart Russell, UC Berkeley

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

2

2048 leaderboard link

https://goo.gl/meh3Ro

https://goo.gl/meh3Ro

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

Educational objectives

• Re-tell the story of improving local search from hill-climbing to

genetic algorithms

• Remember the minimax, 𝜶-𝜷 and expectiminimax algorithms

• Implement an AI agent for a given simple game

“In which we relax the simplifying assumptions of the previous lecture, thereby

getting closer to the real world; including the problems that arise when we try to

plan ahead in a world where other agents are planning against us.”

 Reading: AIMA, [ch. 4.1-4.2 (local search)]; ch. 5 (games)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

4

Local search

1. FROM HILL CLIMBING SEARCH TO GENETIC ALGORITHMS

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

Example: 𝑛-queens problem

Task
• Put 𝑛 queens on a 𝑛 × 𝑛 board with no two queens on the same row, column, or diagonal

Possible solution
• Initialize one queen per column

• Move one queen up/down at a time to reduce number of conflicts using heuristic ℎ
• Almost always solves 𝑛-queens problems almost instantaneously (#states: 𝑛𝑛)

 works for very large 𝑛, e.g., 𝑛 = 1’000’000

ℎ: heuristic cost function giving

the number of conflicts

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

Iterative improvement algorithms

Local search: search for optimal states instead of path’s
• In many optimization problems, path is irrelevant; the goal state itself is the solution

 State space: set of "complete" configurations;

 Goal: find optimal configuration (or a configuration satisfying constraints)

• Examples: TSP, timetable

Iterative improvement
• In such cases: use iterative improvement algorithms

 Keep a single "current" state, try to improve it

 Constant space, suitable for online as well as offline search

Possible implementations
• Hill climbing

• Simulated annealing

• Genetic algorithms

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Hill climbing search
(a.k.a. gradient ascent/descent)

Systematic search for an optimum
• Analogy: «Like climbing Everest in thick fog with amnesia»

• Result: finds a state that is a local maximum

…by selecting only the highest-valued successor for expansion iif its value is better

The state space landscape
• Practical problems typically have an exponential number of local maxima to get stuck in

• Random-restart hill climbing overcomes local maxima  trivially complete

• Random sideways moves escape from shoulders (good), loop on flat maxima (bad)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

Hill climbing search: an outlook

• Hill climbing in continuous space (gradient descent) is the work horse of deep learning

• Some pointers:
 http://sebastianruder.com/optimizing-gradient-descent/ (overview of the gradient descent family)

 https://stdm.github.io/Some-places-to-start-learning-ai-ml/ (links to courses on deep neural networks)

All previously discussed search algorithms only

work in discrete state and action spaces (otherwise

the branching factor is infinite)

http://sebastianruder.com/optimizing-gradient-descent/
https://stdm.github.io/Some-places-to-start-learning-ai-ml/

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

9

Simulated annealing
Towards optimizing hill climbing search

Idea (by [Metropolis et al., 1953] for physical process modelling)

• Escape local maxima by allowing some “bad” moves

• …but gradually decrease their size and frequency

Application
• For “good” schedule of decreasing the

temperature ( see appendix), it always

reaches the best state

• Widely applied for e.g. VLSI layout, airline

scheduling

Modern variants
• «momentum», «Adam» and other adaptation

strategies for a «learning rate»
 first link on the last slide

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

Local beam search
…and still optimizing hill climbing search

Idea
• Keep 𝒌 states instead of 1; choose top 𝒌 of all their successors

(not the same as 𝑘 searches run in parallel! Why?)

• Searches that find good states recruit other searches to join them

Problem
• Quite often, all 𝑘 states end up on same local hill

Idea contd.
• Choose 𝑘 successors randomly, biased towards good ones

 Observe the close analogy to natural selection!
Compare Don Knuth on

“the advantages of

unbiased sampling as a

way to gain insight into a

complicated subject” (e.g.

ch. 2 in the above book)

Not: each

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

Genetic algorithms (GA)
…improving on the idea of local beam search

Idea
• Combine stochastic local beam search + generating successors from pairs of states

 uphill tendency + random exploration + exchange of information among searches

Application
• GAs require states encoded as strings

• Crossover helps iif substrings are meaningful components

• GAs ≠ evolution

Example: 8-queens states encoded as digit strings. The original population (left) is ranked by a fitness

function, resulting in pairs for mating. The offspring is subject to mutation.

Here: # of non-attacking

pairs (max. 28)

Here: mating candidates

are selected at random

according to fitness; the

crossover point is

selected at random

Offspring is created by

crossing over from

parents

Each digit mutates with a

small independent

probability

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Adversarial search

2. GAME PLAYING

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

Games vs. search problems

“Unpredictable" opponent
 solution is a strategy (specifying a move for every possible opponent reply)

Time limits
 unlikely to find goal, must approximate

Early history:
• Computer considers possible lines of play (computer chess: Babbage, 1846)

• Algorithm for perfect play (minimax: Zermelo, 1912; game theory: von Neumann, 1944)

• Finite horizon, approximate evaluation (depth cut-off: Zuse, 1945; Wiener, 1948; Shannon, 1950)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation accuracy (RL for checkers: Samuel, 1952-57)

• Pruning to allow deeper search (𝛼-𝛽 search: McCarthy, 1956)

Which movie?

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

Types of games

deterministic stochastic

perfect information chess, checkers («Dame»),

go, othello («Reversi»)

backgammon, monopoly

only partial observability battleship, kriegspiel (chess

without seeing enemy pieces)

bridge (~ «Jass», «Skat»),

poker, scrabble, global

thermonuclear war

Which movie?

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

Deterministic (turn-based, 2-player) games
The search tree, e.g. of tic-tac-toe

„Max“
• 1st player (moves first)

• Wants to maximize utility of

terminal states

• Tree shows Max´s perspective

„Min“
• 2nd player

• Wants to minimize (Max´s) utility

Utility
• Numeric value („payoff“) of

terminal state

• „zero-sum game“ iif total payoff (to all players)

is constant over all game instances

Player’s name Max moves first, resulting in

the next row of possible states

which Min operates on

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

Minimax: depth-first exploration of game tree
Perfect play for deterministic, fully observable games

Idea
• Choose move to position with highest minimax value

• Minimax value: highest value among options minimized by adversary

 best achievable payoff against best play

Example
• Any 2-ply game tree (i.e., each player moves once)

• Max´s best move at root: a1 (leading to highest minimax value of 3)

• …because Min´s best reply will be b1 (leading to lowest minimax value / utility of 3)

Min is going to do the least

valuable thing here for Max (3).

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

Minimax (contd.)
Algorithm and properties

Properties
• Complete? Yes, if tree is finite (e.g., chess has specific rules for this)

• Optimal? Yes, against an optimal opponent (Otherwise?)

• Time complexity? 𝑂(𝑏𝑚)
• Space complexity? 𝑂(𝑏𝑚) (for depth-first exploration)

• For chess, 𝑏 = 35, 𝑚 = 100 for “reasonable" games
 exact solution completely infeasible; but do we need to explore every path?

function Minimax-Decision(state) returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v  −∞
for a, s in Successors(state) do v  Max(v, Min-Value(s))

return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v  ∞
for a, s in Successors(state) do v  Min(v, Max-Value(s))

return v

Min-Value

Max-Value

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

𝜶-𝜷 pruning example
Overcoming exponential (𝒃𝒎) number of states to be explored

Successively tightening bounds on minimax values
• 𝜶 is the best value (to Max) found so far in current

subtree of a Max node (Aα)

• If any node 𝑣 is worse than 𝛼, Max will not choose it

 prune that branch

• Similarly: 𝛽 is best score Min is assured of in current

subtree of a Min node (B, C, D β)

[𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]B has at

most a

value of

3

Recursion: B
α = −∞
β = 3

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

𝜶-𝜷 pruning example
Overcoming exponential (𝒃𝒎) number of states to be explored

Successively tightening bounds on minimax values
• 𝜶 is the best value (to Max) found so far in current

subtree of a Max node (Aα)

• If any node 𝑣 is worse than 𝛼, Max will not choose it

 prune that branch

• Similarly: 𝛽 is best score Min is assured of in current

subtree of a Min node (B, C, D β)

[𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]B has at

most a

value of

3

Recursion: B
α = −∞
β = 3

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

𝜶-𝜷 pruning example
Overcoming exponential (𝒃𝒎) number of states to be explored

Successively tightening bounds on minimax values
• 𝜶 is the best value (to Max) found so far in current

subtree of a Max node (Aα)

• If any node 𝑣 is worse than 𝛼, Max will not choose it

 prune that branch

• Similarly: 𝛽 is best score Min is assured of in current

subtree of a Min node (B, C, D β)

[𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]B has at

most a

value of

3

B has

exactly

value 3,

so A has

at least 3

Recursion: B
α = −∞
β = 3

Recursion: A
α = 3
β = ∞

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

𝜶-𝜷 pruning example
Overcoming exponential (𝒃𝒎) number of states to be explored

Successively tightening bounds on minimax values
• 𝜶 is the best value (to Max) found so far in current

subtree of a Max node (Aα)

• If any node 𝑣 is worse than 𝛼, Max will not choose it

 prune that branch

• Similarly: 𝛽 is best score Min is assured of in current

subtree of a Min node (B, C, D β)

x x

[𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]B has at

most a

value of

3

B has

exactly

value 3,

so A has

at least 3

Recursion: B
α = −∞
β = 3

Recursion: A
α = 3
β = ∞

Recursion: C
α = 3
β = 2

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

𝜶-𝜷 pruning example
Overcoming exponential (𝒃𝒎) number of states to be explored

Successively tightening bounds on minimax values
• 𝜶 is the best value (to Max) found so far in current

subtree of a Max node (Aα)

• If any node 𝑣 is worse than 𝛼, Max will not choose it

 prune that branch

• Similarly: 𝛽 is best score Min is assured of in current

subtree of a Min node (B, C, D β)

x x

[𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]B has at

most a

value of

3

B has

exactly

value 3,

so A has

at least 3

Recursion: B
α = −∞
β = 3

Recursion: A
α = 3
β = ∞

Recursion: C
α = 3
β = 2

Recursion: D
α = 3
β = 14

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

𝜶-𝜷 pruning example
Overcoming exponential (𝒃𝒎) number of states to be explored

Successively tightening bounds on minimax values
• 𝜶 is the best value (to Max) found so far in current

subtree of a Max node (Aα)

• If any node 𝑣 is worse than 𝛼, Max will not choose it

 prune that branch

• Similarly: 𝛽 is best score Min is assured of in current

subtree of a Min node (B, C, D β)

x x

[𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]

⋮

B has at

most a

value of

3

B has

exactly

value 3,

so A has

at least 3

Recursion: B
α = −∞
β = 3

Recursion: A
α = 3
β = ∞

Recursion: C
α = 3
β = 2

Recursion: D
α = 3
β = 14

Recursion: A
α = 3
β = 3

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

24

𝜶-𝜷 pruning (contd.)
Algorithm and properties (changes to minimax in bold-italic)

Properties
• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With “perfect ordering”, time complexity = 𝑂(𝑏𝑚/2)
 doubles solvable depth

 a simple example of the value of reasoning about which computations are relevant (metareasoning)

 unfortunately, 35100/2 (for chess) is still impossible!

function Alpha-Beta-Search(state) returns an action

v  Max-Value(state, −∞, ∞)
return the a in Actions(state) with value v

function Max-Value(state, 𝜶, 𝜷) returns a utility value
if Terminal-Test(state) then return Utility(state)

v  −∞
for a in Actions(state) do

v  Max(v, Min-Value(Result(state, a), 𝜶, 𝜷))
if v ≥ 𝜷 then return v

𝜶  Max(𝜶, v)
return v

function Min-Value(state, 𝜶, 𝜷) returns a utility value
if Terminal-Test(state) then return Utility(state)

v  ∞
for a in Actions(state) do

v  Min(v, Max-Value(Result(state, a), 𝜶, 𝜷))
if v ≤ 𝜶 then return v

𝜷  Min(𝜷, v)
return v

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

3. RESOURCE LIMITS AND OTHER DIFFICULTIES

Adversarial search (contd.)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Resource limits
Towards real-world conditions

Standard approach
• Use Cutoff-Test instead of Terminal-Test

e.g., depth limit (perhaps add quiescence search: only cut off search at positions that don´t drastically

change their value in the near future, e.g. captures in chess; otherwise continue search)

• Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

• Lookup of start/end games

Example
• Suppose we have 100 seconds, explore 104 nodes/second
 106 nodes per move ≈ 358/2

• 𝛼-𝛽 reaches depth 8
 pretty good chess program

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

27

Eval(uation) functions
Designing or learning effective cutoff tests

For chess, typically linear weighted sum of features
• Eval(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

• Example:
w1=9 and f1(s)=(number of white queens)-(number of black queens)

• Can be learned with machine learning techniques

Example: The two chess positions differ only in the position of the rook (“Turm”) at lower right.

In (a), Black has an advantage of a knight (“Springer”) and two pawns (“Bauern”)  should be enough to win.

In (b), White will capture the queen (“Dame”)  should be strong enough to win.

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

28

Nondeterministic (stochastic) games

Chance is introduced by e.g. dice-rolling

or card-shuffling

Simplified example
• A game with coin-flipping

• Nondeterminism is handled by an

additional level in the tree, consisting of

chance nodes

Real-world example
• 2048: numbers appear with probability

𝑃 2 =
9

10
and 𝑃 4 =

1

10
at random free

board positions

• Backgammon: Before each move, dice-

rolls determine the legal moves

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

29

Expectiminimax – maximizing expected value
Algorithm and properties

Properties
• Algorithm works just like Minimax – except chance-nodes are also handled

• Expectiminimax gives perfect play

• In case of only 1 player, Expectiminimax becomes Expectimax

• Time complexity: 𝑂(𝑏𝑚𝑛𝑚) (where 𝑛 is the number of distinct random events, e.g. dice rolls)

 Possibilities are multiplied enormously in games of chance

 Simultaneously, no likely sequences exist to do effective 𝜶-𝜷 pruning

function ExpectiMinimax-Decision(state) returns an action

inputs: state, current state in game

return a in Actions(state) maximizing

ExpectiMinimax-Value(Result(a, state))

function ExpectiMinimax-Value(state) returns a utility value

if Terminal-Test(state) then

return Utility(state)

if state is a Max node then

return highest ExpectiMinimax-Value of Successors(state)

if state is a Min node then

return lowest ExpectiMinimax-Value of Successors(state)

if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

30

Nondeterministic games in practice

Example Backgammon
• Dice rolls increase 𝑏 (21 possible rolls with 2 dice)

• Ca. 20 legal moves (can be 6,000 with 1-1 roll)

 at depth 4: 20 × 21 × 20 3 ≈ 1.2 × 109 nodes

• As depth increases, probability of reaching a given node shrinks
 value of lookahead is diminished (see next slide for consequences)

But
• «TDGammon» (Tesauro, 1992) uses depth-2 search ≈ world-champion level
 uses neural network and reinforcement learning (RL) to train Eval function via games against itself

•  see also http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node108.html

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node108.html

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

31

Digression: Exact Eval values do matter
…for nondeterministic games

• Behavior is preserved only by positive linear transformation of Eval

• Hence Eval should be proportional to the expected payoff

 Exact values don´t matter for deterministic games  see appendix

The vastly enlarged scale

(compared to the left tree) of the

utility value suffices to form the

highest expectiminimax value

despite the low probability

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

32

Games of imperfect information
E.g., card games, where opponent's initial cards are unknown

First idea («averaging over clairvoyance»)

• Typically we can calculate a probability for each possible deal
 Seems just like having one big dice roll at the beginning of the game *

 Idea: compute the Minimax value of each action in each deal;

then, choose the action with highest expected value over all deals (i.e., Expectiminimax) *

«GIB» - Ginsberg´s Intelligent Bridgeplayer
• Current best bridge program (Ginsberg, 1999)

• Approximates idea above by Monte Carlo simulation of some

of the possible deals to be computationally feasible
1. Generate 100 deals consistent with bidding information

2. Pick the action that wins most tricks on average
Skat: a wonderful partially observable stochastic

card game with some similarity to Bridge

 see https://www.pagat.com/schafk/skat.html

Monte Carlo simulation alone does not

always suffice: it handles randomness

well (e.g. in the deal), but not strategy

that looks like randomness (e.g. an

adversary’s move in Kriegspiel)

https://www.pagat.com/schafk/skat.html

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

33

*) Proper analysis of averaging over clairvoyance

Intuition might mislead
• That the value of an action is the average of its values in all possible states is WRONG

( see appendix)

• With partial observability, value of an action depends on the belief state the agent will

end up in

Dealing with belief states
• Generate and search a tree of belief states

• Leads to rational behaviors such as
• Acting to obtain information

• Signaling to one's partner

• Acting randomly to minimize information disclosure

The agent´s current information about

all the possible physical states it might

be in (given the sequence of actions and

percepts up to that point)

Maintaining its belief state is a core function of

any intelligent system in partially observable

(~real world) environments  see AIMA, ch. 4.4

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

34

Where’s the intelligence?
Man vs. machine

• Searching over the right state spaces leads to emergent “clever” behavior in games
(information gathering, alliances, bluffs)

• Many local and adversarial search methods can be enhanced by learning
(e.g., learn good Eval functions by playing games against oneself)

• The brain might perform local (hill climbing) search as well
 see https://www.cs.toronto.edu/~hinton/backpropincortex2014.pdf

 Hill-climbing, minimax, 𝛼-𝛽, etc. are still pure computation
 Intelligent behavior emerges from their composition on suitable data structures

https://www.cs.toronto.edu/~hinton/backpropincortex2014.pdf

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

35

Review

• Local search algorithms evolve a small number of states towards better

utility (typical: 1 state)

• In continuous space, local search by linear programming or convex

optimization is extremely efficient in practice (polynomial time complexity!)

• In non-deterministic environments, keeping track of one´s belief state is

paramount

• Games are fun to work on – and dangerous

• They illustrate several important points about AI
• perfection is unattainable must approximate

• good idea to think about what to think about (metareasoning pruning)

• uncertainty constrains the assignment of values to states

• optimal decisions depend on information state (belief state), not real state

 Games are to AI as grand prix racing is to automobile design

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

36

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

37

Pseudocode for hill climbing search and

simulated annealing

function Hill-Climbing(problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbour, a node

current  Make-Node(Initial-State[problem])

loop do

neighbour  a highest-valued successor of current

if Value[neighbour] ≤ Value[current] then return State[current]

current  neighbour

end

function Simulated-Annealing(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

local variables: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

current  Make-Node(Initial-State[problem])

for t  1 to ∞ do

T  schedule[t]

if T = 0 then return current

next  a randomly selected successor of current

ΔE  Value[next]-Value[current]

if Δ E > 0 then current  next

else current  next only with probability 𝑒
Δ𝐸

𝑇

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

38

Digression: Exact Eval values don't matter
…for deterministic games

• Behavior is preserved under any monotonic transformation of Eval

• Only the order matters: payoff in deterministic games acts as an ordinal utility function

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

39

Deterministic games in practice

Checkers
• «Chinook» ended 40-year-reign of human world champion Marion Tinsley in 1994

• Used an endgame database defining perfect play for all positions involving 8 or fewer

pieces on the board (total: 443,748,401,247)

Chess
• «Deep Blue» defeated human world champion Gary Kasparov in a six-game match in 1997

• Searches 200 million positions per second, uses very sophisticated evaluation, and

undisclosed methods for extending some lines of search up to 40 ply

Othello
• Human champions refuse to compete against computers, who are too good

Go
• 2010: human champions refuse to compete against computers, who are too bad

• 2016: Google DeepMind´s «AlphaGo» unexpectedly defeats world champion Lee Sedol

• 𝑏 > 300 most programs use pattern knowledge bases to suggest plausible moves

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

40

Expectations & expected values
adapted from U Washington`s CSE473, lecture 8

The expectation operator 𝐸()
• We can define a function 𝑓(𝑋) of a random variable 𝑋
• The expected value of a function is its average value under the probability distribution

over the function’s inputs:

𝐸 𝑓 𝑋 =෍

𝑥

𝑓 𝑋 = 𝑥 𝑃 𝑋 = 𝑥

Example
• How long to drive to the airport?

• Driving time 𝐷 (in mins) as a function of traffic 𝑇:
𝐷 𝑇 = 𝑛𝑜𝑛𝑒 = 20, 𝐷(𝑇 = 𝑙𝑖𝑔ℎ𝑡) = 30, 𝐷 𝑇 = ℎ𝑒𝑎𝑣𝑦 = 60

• What is your expected driving time?
Let probability 𝑃(𝑇) = {𝑛𝑜𝑛𝑒: 0.25, 𝑙𝑖𝑔ℎ𝑡: 0.5, ℎ𝑒𝑎𝑣𝑦: 0.25}

 𝐸 𝐷 𝑇 = 𝐷 𝑛𝑜𝑛𝑒 𝑃 𝑛𝑜𝑛𝑒 + 𝐷 𝑙𝑖𝑔ℎ𝑡 𝑃 𝑙𝑖𝑔ℎ𝑡 + 𝐷 ℎ𝑒𝑎𝑣𝑦 𝑃 ℎ𝑒𝑎𝑣𝑦

 𝐸 𝐷 𝑇 = 20 ∗ 0.25 + 30 ∗ 0.5 + 60 ∗ 0.025 = 35 mins

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

41

Why averaging over clairvoyance is wrong
A common sense example of a journey

Day 1
• Road A leads to a small heap of gold pieces

• Road B leads to a fork:
• the left fork leads to a bigger heap of gold;

• take the right fork and you'll be run over by a bus.

 „B“ (and then „left“) is the optimal choice

Day 2
• Road A leads to a small heap of gold pieces

• Road B leads to a fork:
• take the left fork and you'll be run over by a bus;

• the right fork leads to a bigger heap of gold.

 „B“ (and then „right“) is the optimal choice

Day 3
• Road A leads to a small heap of gold pieces

• Road B leads to a fork:
• guess correctly and you'll find a bigger heap of gold;

• guess incorrectly and you'll be run over by a bus.

 „B“ still seems optimal; but this ignores the resulting belief state (that includes ignorance & possibility of death!)

Averaging over clairvoyance will

never select actions to gather

information because it assumes

future states to be of perfect

knowledge after the initial deal.

