
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Artificial Intelligence

V03: Problem solving through search

Searching as a problem solving strategy

Uninformed search

Heuristic (informed) search

Based on material by
• Stuart Russell, UC Berkeley

• Inês de Castro Dutra, Cooperating Intelligent Systems, U. Porto

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

2

Educational objectives

• Know classical search algorithms and selection criteria based

on time and space complexity

• Understand how intelligent behavior evolves out of efficient

algorithms

• Know how to inform search methods by heuristics

• Be able to model a real world problem to be solved by searching

“In which we see how an agent can find a sequence of actions that achieves its

goals when no single action will do.”

 Reading: AIMA, ch. 3

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

1. SEARCHING AS A PROBLEM SOLVING STRATEGY

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

4

Example: On holiday in Romania
Task: Catch flight that leaves tomorrow from Bucharest

Initial state
• Currently in Arad

Formulate goal
• be in Bucharest

Formulate problem
• states: various cities

• actions: drive between cities

Find solution
• sequence of cities

e.g., AradSibiuFagarasBucharest

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

Problem formulation
For deterministic & fully observable environments

Problem is defined by four items
• initial state

e.g., In(Arad)

• successor function S(x)

set of action-state pairs, e.g.
S(Arad) = {<AradZerind;Zerind>, …}

• goal test

explicit or implicit, e.g.
x = In(Bucharest) or NoDirt(x)

• path cost (additive)

e.g., sum of distances, number of actions, etc.
c(x,a,y)>=0 is the step cost

Selecting a proper state space
• Real world is very complex

 state & action space must be abstracted

• Abstract state: set of real states

• Abstract action: complex combination of real

actions
e.g., AradZerind represents a complex set

of possible routes, detours, rest stops, etc.

• Abstract solution: set of real paths that are

solutions in the real world

• For guaranteed realizability, any real state
In(Arad) must get to some real state
In(Zerind)

 See also appendix on modeling

 Each abstract action should be easier

than the original problem

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

Suitable agent structure

 If the task is represented as a graph of atomic states, and the solution is a

sequence of state changes  a model based agent may solve it by searching

function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state  Update-State(state, percept)

if seq is empty then

goal  Formulate-Goal(state)

problem  Formulate-Problem(state, goal)

seq  Search(problem)

action  Recommendation(seq, state)

seq  Remainder(seq, state)

return action

Note: this is offline

problem solving; solution

executed “eyes closed“.

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

9

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles; parts to be assembled

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles; parts to be assembled

continuous motions of robot joints

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles; parts to be assembled

continuous motions of robot joints

complete assembly

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles; parts to be assembled

continuous motions of robot joints

complete assembly

execution time

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

Other real-world problems

Route-finding (incl.

touring)

Protein design: find a sequence

of amino acids that folds into a

structure with certain properties

VLSI layout: place

components and

optimize wiring

All TSP-related

problems of finding

a shortest path

Air-travel planning:

much more

complicated than in-

car navigation!

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

Diversity of search approaches
…solving increasingly complex problem types

Uninformed (blind) search
• All it can do: generate successors of tree-nodes, distinguish goal- from non-goal states

• Suitable environments: fully observable, deterministic, discrete (episodic, static, single agent)

Heuristic (informed) search
• Knows whether one non-goal state is “more promising” than another

• Suitable environments: as above, but larger

More informed search methods

Online search
• Environments are dynamic (i.e., not fully known from the beginning  percepts become important)

Local search
• Cares only to find a goal state rather then the optimal path

• Suitable environments: also continuous state/action spaces (hill climbing, simulated annealing)

Adversarial search
• Search in the face of an opponent (i.e., dynamic multi-agent environments; also stochastic and

partially observable forms)


th

is
 l
e

c
tu

re


n
e

x
t
le

c
tu

re

Extensions of today’s methods exist to non-deterministic and partially observable as

well as (semi-)dynamic environments (online search) ( see AIMA, ch. 4.3-4.5)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

2. UNINFORMED SEARCH

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

Uninformed search

Approach
• Tree search: iteratively expand nodes until a goal node is hit

• Different strategies: order of node expansion

Evaluation criteria for strategies
• completeness: does it always find a solution if one exists?

• optimality: does it always find a least-cost solution?

• time complexity: number of nodes generated/expanded

• space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of
• 𝑏: maximum branching factor of the search tree

• 𝑑: depth of the least-cost solution

• 𝑚: maximum depth of the state space (may be ∞)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

Example

Growth of time and memory requirements
• Algorithm: breadth-first search ( ADS: exponential time & space complexity 𝑂(𝑏𝑑))

Assumptions: 𝑏 = 10, 1 mio nodes/sec, 1 kB/node

Question: what 𝑑 is easily manageable?

 See appendix for some recap on complexity theory

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

Example

Growth of time and memory requirements
• Algorithm: breadth-first search ( ADS: exponential time & space complexity 𝑂(𝑏𝑑))

Assumptions: 𝑏 = 10, 1 mio nodes/sec, 1 kB/node

Question: what 𝑑 is easily manageable?

 Practical advice: Exponential-complexity search problems cannot be solved by

uninformed methods for any but the smallest instances

 See appendix for some recap on complexity theory

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

Uninformed search strategies
 Details: ADS or AIMA ch. 3.4

Practical advice
• Depth-first tree search is a major work horse for many AI tasks (due to linear space

complexity)

• Iterative deepening is not wasteful (a tree with nearly the same 𝑏 at each level has most nodes

in the bottom level  generating higher-level states multiple times doesn’t matter)

• Iterative deepening is preferred uninformed search method
(for large search space and 𝑑 is unknown)

• Bi-directional search can help a lot, but 𝑂(𝑏𝑑/2) space complexity is major drawback

Expand the shallowest

unexpanded node

Expand node with

lowest path cost 𝑔(𝑛)
DFS only

up to level 𝑙
Expand

deepest node

Try DLS with 𝑙 =
1, 𝑙 = 2, … until

goal is reached

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

Repeated states

Problem
• Failure to detect repeated states can turn a linear problem into an exponential one!

Solution
• Graph search: remember nodes already expanded, and don’t revisit them
 keep a list of explored nodes

Practical advice
• All previous strategies can be implemented as both tree- or graph search

• If additional space complexity is affordable determines whether graph search is possible

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

24

3. HEURISTIC (INFORMED) SEARCH

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

Tree-/graph search using additional knowledge
…beyond the definition of the problem

Best-first search
• Select the node to be expanded next based on some evaluation function 𝑓(𝑛𝑜𝑑𝑒)
• Typically, 𝒇 is implemented by a heuristic ℎ(𝑛𝑜𝑑𝑒) (measure of “desirability”)

• ℎ(𝑛𝑜𝑑𝑒) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Step cost in [km]

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Tree-/graph search using additional knowledge
…beyond the definition of the problem

Best-first search
• Select the node to be expanded next based on some evaluation function 𝑓(𝑛𝑜𝑑𝑒)
• Typically, 𝒇 is implemented by a heuristic ℎ(𝑛𝑜𝑑𝑒) (measure of “desirability”)

• ℎ(𝑛𝑜𝑑𝑒) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Step cost in [km]

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

27

Tree-/graph search using additional knowledge
…beyond the definition of the problem

Best-first search
• Select the node to be expanded next based on some evaluation function 𝑓(𝑛𝑜𝑑𝑒)
• Typically, 𝒇 is implemented by a heuristic ℎ(𝑛𝑜𝑑𝑒) (measure of “desirability”)

• ℎ(𝑛𝑜𝑑𝑒) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Step cost in [km]

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

28

Tree-/graph search using additional knowledge
…beyond the definition of the problem

Best-first search
• Select the node to be expanded next based on some evaluation function 𝑓(𝑛𝑜𝑑𝑒)
• Typically, 𝒇 is implemented by a heuristic ℎ(𝑛𝑜𝑑𝑒) (measure of “desirability”)

• ℎ(𝑛𝑜𝑑𝑒) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Step cost in [km]

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

29

Tree-/graph search using additional knowledge
…beyond the definition of the problem

Best-first search
• Select the node to be expanded next based on some evaluation function 𝑓(𝑛𝑜𝑑𝑒)
• Typically, 𝒇 is implemented by a heuristic ℎ(𝑛𝑜𝑑𝑒) (measure of “desirability”)

• ℎ(𝑛𝑜𝑑𝑒) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Step cost in [km]

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

30

Typical implementations

Greedy search
• Expand node with lowest subsequent cost estimate according to some ℎ, i.e. 𝑓(𝑛) = ℎ(𝑛)
• 𝑛 may only appear to be closest to the goal

A*
• Obvious improvement: consider full path cost, i.e. 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

(𝑔(𝑛) cost so far to reach 𝑛, ℎ(𝑛) estimated cost to goal from 𝑛, 𝑓(𝑛) estimated total path cost)

• ℎ(𝑛) needs to be admissible: ≤ 𝑡𝑟𝑢𝑒 𝑐𝑜𝑠𝑡 and ≥ 0 (e.g., ℎ𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

• A* search is optimal, complete

• A* has time complexity 𝑂(2 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 ℎ ⋅𝑑) and keeps all nodes in memory

SMA* - simplified memory-bounded A*
• A* usually runs out of space first  SMA* overcomes this by

• …filling the memory up, then starting to forget the worst expanded nodes

• …ancestors of forgotten subtrees remember the value of the best path within them

• …thus, subtrees are only regenerated if no better solution exists

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

31

A* Example

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

32

A* Example

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

33

A* Example

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

34

A* Example

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

35

A* Example

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

36

A* Example

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

37

Succeeding with search

Learning to search
• Learn a heuristic function: use inductive supervised learning on features of a state

• Alternative: construct a metalevel state space, consisting of all internal states of search program

Example: For A* searching for a route in Romania, the search tree is its internal state

• Actions in metalevel space: computations that alter the metalevel state

In the example: Expanding a node

• Solution in metalevel space: a path as depicted on the last slide

 can be input to machine learning algorithms to avoid unnecessary expansions

Practical advice
• A* is impractical for large scale problems

• Practical, robust choice: SMA*

• Have good heuristic functions! A well-designed heuristic would have 𝑏∗ ≈ 1
(𝑏∗ is the effective branching factor)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

38

A closer look on heuristic functions
Example: 8-puzzle

Two proposals – which is better?
• ℎ1 𝑛 = number of misplaced tiles

• ℎ2 𝑛 = total Manhattan distance (i.e., no. of horizontal/vertical squares from desired location of

each tile)

ℎ1 𝑆 = 6
ℎ2 𝑆 = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14

𝑆

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

39

Dominance
The 8-puzzle example continues

If ℎ2 𝑛 ≥ ℎ1 𝑛 ∀𝑛 ℎ2 dominates ℎ1 and is better for search

Typical search costs

Simple improvement
• Given any admissible heuristics ℎ𝑎 , ℎ𝑏:

• ℎ(𝑛) = max ℎ𝑎 𝑛 , ℎ𝑏 𝑛 is also admissible and dominates ℎ𝑎 , ℎ𝑏

Algorithm #nodes expanded

with 𝑑 = 14
#nodes expanded

with 𝑑 = 24

Iterative deepening 3’473’941 ~54’000’000’000

A* (ℎ1) 539 39’135

A* (ℎ2) 113 1’641

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

40

Relaxed problems
Improving heuristics intelligently

Relaxation as a key
• Admissible heuristics can be derived from the exact solution cost of a relaxed version

of the problem

• A relaxed problem has fewer constraints on the actions

• Relaxation can be automatized!
E.g., «Absolver» by (Prieditis, 1993) found best heuristic for 8-puzzle, first heuristic for Rubik’s cube

Examples of relaxed 8-puzzle rules
• If each tile can move anywhere (in 1 step), then 𝒉𝟏 𝒏 gives the shortest solution

• If each tile can move to any adjacent square, then 𝒉𝟐 𝒏 gives the shortest solution

Intuition
• Removing constraints adds edges to the state graph

• Additional edges might provide „short cuts“

• The optimal solution cost of a relaxed problem (“short cut”) can be no greater than the

optimal solution cost of the real problem

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

41

Where’s the intelligence?
Man vs. machine

Uninformed search
• In the abstraction of the problem

• In the choice of algorithm that is optimal for the problem at hand

• In the systematic exploration of the state space graph

Heuristic search
• Additionally, in the heuristic function

 see also: Polya, «How to solve it - a new aspect of mathematical method», 1945

Originally written in German during

his research stay at ETH

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

42

Exercise: Missionaries & cannibals (AIMA ex. 3.9)

Three missionaries and 3 cannibals are on one side of a

river, along with a boat that can hold one or two people.

Find a way to get everyone to the other side, without

ever leaving a group of missionaries in one place

outnumbered by the cannibals in that place.

• Formulate the problem precisely:

Make only those distinctions necessary to ensure a valid

solution. Draw a diagram of the complete state space.

• Implement and solve the problem optimally:

Use an appropriate search algorithm. Is it a good idea to check

for repeated states?

• Why do you think people have a hard time solving this puzzle,

given that the state space is so simple?

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

43

Review

• Search as an approach to AI exists in its current form more or less since

AI‘s inception

• Extensions of search algorithms exist to non-deterministic and partially

observable environments as well as online search

• Problem formulation usually requires abstracting away real-world details

to define a state space that can feasibly be explored

• Iterative deepening search uses only linear space and not much more time

than other uninformed algorithms

• Graph search can be exponentially more efficient than tree search

• Good heuristics can dramatically reduce search cost

• A* search expands lowest 𝒈 + 𝒉
 complete and optimal, also optimally efficient (up to tie-breaks, for forward search)

• Admissible heuristics can be derived from exact solution of relaxed

problems

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

44

Fun fact: implement depth-first search in a maze by

keeping your left hand on the wall.

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

45

On modeling and abstraction

Quoted from AIMA, p. 68-69, sec. 3.1.2
• A model [is] an abstract mathematical description […] and not the real thing

• The process of removing detail from a representation is called abstraction

• The abstraction is valid if we can expand any abstract solution into a solution in the more

detailed world

• The abstraction is useful if carrying out each of the actions in the abstraction is easier than

the original problem

• The choice of a good abstraction thus involves removing as much detail as possible

while retaining validity and ensuring that the abstract actions are easy to carry out

 Were it not for the ability to construct useful abstractions, intelligent agents would be

completely swamped by the real world

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

46

Recap on complexity theory

Problems are classified to be part of (attention: only intuitive “definitions”)

• P – can be solved in polynomial time by a deterministic algorithm
 deemed to be solvable «efficiently»

• NP – can only be solved efficiently (i.e., in polynomial time) by guessing the solution
(i.e., by a non-deterministic algorithm)

More terminology
• NP-hard – a problem 𝑥 is said to be NP-hard if all problems in NP can be reduced to (i.e., converted

into / stated as) 𝑥 (i.e., can be solved by an algorithm for 𝑥) efficiently
 Example: Traveling salesman problem (i.e., any problem in NP is at most as hard as 𝑥)

• NP-complete – a problem 𝑥 is said to be NP-complete if it is NP-hard and in NP
 Example: The satisfiability problem (SAT) – is there an assignment of truth values to make a given formula of

propositional logic true? ( see V06 and AIMA ch. 7.5)

…which is all good (i.e., we don’t have to care for efficiency) if 𝑃 = 𝑁𝑃 (tremendously unlikely!)

Further reading
• AIMA appendix A.1 (< 3 pages!)

• J. Koehler’s lecture slides on complexity and AI: https://user.enterpriselab.ch/~takoehle/teaching/ai/ProblemComplexity.pdf

• Some more intuition: http://stackoverflow.com/questions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard

When people talk about efficient computation, this always

means (at most) polynomial time: 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡~𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑖𝑚𝑒.

https://user.enterpriselab.ch/~takoehle/teaching/ai/ProblemComplexity.pdf
http://stackoverflow.com/questions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

47

Pseudocode for general tree- and graph search

function Tree-Search(problem, frontier) returns a solution, or failure

frontier  Insert(Make-Node(Initial-State(problem)), frontier)

loop do

if frontier is empty then return failure

node  Remove-Front(frontier) #choice of picked node defined by strategy

if Goal-Test(problem) applied to State(node) succeeds return node

frontier  InsertAll(Expand(node, problem), frontier)

function Graph-Search(problem, frontier) returns a solution, or failure

frontier  Insert(Make-Node(Initial-State(problem)), frontier)

explored  empty

loop do

if frontier is empty then return failure

node Remove-Front(frontier) #choice of picked node defined by strategy

explored  Insert(node, explored)

if Goal-Test(problem) applied to State(node) succeeds return node

frontier  InsertAll(Expand(node, problem), frontier) only if not in frontier or explored set

 Bold italic font shows the additions that handle repeated states in graph search

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

48

Missionaries & cannibals (contd.)

States
• 𝜃 = (𝑀, 𝐶, 𝐵) signifies the number of missionaries, cannibals, and boats on the left bank
• The start state is (3,3,1) and the goal state is (0,0,0)

Actions (successor function)
• 10 possible, but only 5 available each move due to boat
• One cannibal/missionary crossing LR: subtract (0,1,1) or (1,0,1)
• Two cannibals/missionaries crossing LR: subtract (0,2,1) or (2,0,1)
• One cannibal/missionary crossing RL: add (1,0,1) or (0,1,1)
• Two cannibals/missionaries crossing RL: add (2,0,1) or (0,2,1)
• One cannibal and one missionary crossing: add/subtract (1,1,1)

Source: http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html

http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

49

Missionaries & cannibals states

• Assumes that passengers have to get out of the boat after the trip

• Red states = missionaries get eaten

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

50

Breadth-first search (4 iterations)

on missionaries & cannibals

States are generated by applying
• +/- (1,0,1)

• +/- (0,1,1)

• +/- (2,0,1)

• +/- (0,2,1)

• +/- (1,1,1)

Red states = missionaries get eaten

Yellow states = repeated states



Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

51


Breadth-first search (final state)

on missionaries & cannibals

• Breadth first search expanded 48 nodes

• This is an optimal solution (minimum number

of crossings)

• Depth-first search expanded 30 nodes

• ...if repeated states are checked, otherwise

we end up in an endless loop

