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Educational objectives

• Know classical search algorithms and selection criteria based 

on time and space complexity

• Understand how intelligent behavior evolves out of efficient 

algorithms

• Know how to inform search methods by heuristics

• Be able to model a real world problem to be solved by searching

“In which we see how an agent can find a sequence of actions that achieves its 

goals when no single action will do.”

 Reading: AIMA, ch. 3
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1. SEARCHING AS A PROBLEM SOLVING STRATEGY
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Example: On holiday in Romania
Task: Catch flight that leaves tomorrow from Bucharest

Initial state
• Currently in Arad

Formulate goal
• be in Bucharest

Formulate problem
• states: various cities

• actions: drive between cities

Find solution
• sequence of cities

e.g., AradSibiuFagarasBucharest
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Problem formulation 
For deterministic & fully observable environments

Problem is defined by four items
• initial state 

e.g., In(Arad)

• successor function S(x)

set of action-state pairs, e.g.
S(Arad) = {<AradZerind;Zerind>, …}

• goal test

explicit or implicit, e.g.
x = In(Bucharest) or NoDirt(x)

• path cost (additive)

e.g., sum of distances, number of actions, etc.
c(x,a,y)>=0 is the step cost

Selecting a proper state space
• Real world is very complex

 state & action space must be abstracted

• Abstract state: set of real states

• Abstract action: complex combination of real 

actions
e.g., AradZerind represents a complex set 

of possible routes, detours, rest stops, etc.

• Abstract solution: set of real paths that are 

solutions in the real world

• For guaranteed realizability, any real state 
In(Arad) must get to some real state 
In(Zerind)

 See also appendix on modeling

 Each abstract action should be easier 

than the original problem
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Suitable agent structure

 If the task is represented as a graph of atomic states, and the solution is a 

sequence of state changes  a model based agent may solve it by searching

function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state  Update-State(state, percept)

if seq is empty then

goal  Formulate-Goal(state)

problem  Formulate-Problem(state, goal)

seq  Search(problem)

action  Recommendation(seq, state)

seq  Remainder(seq, state)

return action

Note: this is offline

problem solving; solution 

executed “eyes closed“.
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Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic 

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods
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Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic 

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods
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Examples of problems solvable by searching
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• Actions?

• Goal test?
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assembly
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• Goal test?
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Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)
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equals given goal state
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“Toy” problem: helps to identify strengths and weaknesses of different methods
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Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic 

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles;  parts to be assembled

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods
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Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic 

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles;  parts to be assembled

continuous motions of robot joints

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

14

Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic 

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles;  parts to be assembled

continuous motions of robot joints

complete assembly

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods
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Examples of problems solvable by searching

8-puzzle
• States?

• Actions?

• Goal test?

• Path cost?

Robotic 

assembly
• States?

• Actions?

• Goal test?

• Path cost?

Note: Optimal solution of n-Puzzle family is NP-hard ( see appendix)

integer locations of tiles (ignoring intermediate positions)

move blank to left, right, up, down (ignoring unjamming etc.)

equals given goal state

1 per move

real-valued coordinates of robot joint angles;  parts to be assembled

continuous motions of robot joints

complete assembly

execution time

Real-world problem

“Toy” problem: helps to identify strengths and weaknesses of different methods
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Other real-world problems

Route-finding (incl. 

touring)

Protein design: find a sequence 

of amino acids that folds into a 

structure with certain properties

VLSI layout: place 

components and 

optimize wiring

All TSP-related 

problems of finding 

a shortest path

Air-travel planning: 

much more 

complicated than in-

car navigation!
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Diversity of search approaches
…solving increasingly complex problem types

Uninformed (blind) search
• All it can do: generate successors of tree-nodes, distinguish goal- from non-goal states

• Suitable environments: fully observable, deterministic, discrete (episodic, static, single agent)

Heuristic (informed) search
• Knows whether one non-goal state is “more promising” than another

• Suitable environments: as above, but larger

More informed search methods

Online search 
• Environments are dynamic (i.e., not fully known from the beginning  percepts become important)

Local search
• Cares only to find a goal state rather then the optimal path

• Suitable environments: also continuous state/action spaces (hill climbing, simulated annealing)

Adversarial search
• Search in the face of an opponent (i.e., dynamic multi-agent environments; also stochastic and 

partially observable forms)


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Extensions of today’s methods exist to non-deterministic and partially observable as 

well as (semi-)dynamic environments (online search) ( see AIMA, ch. 4.3-4.5)
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2. UNINFORMED SEARCH
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Uninformed search

Approach
• Tree search: iteratively expand nodes until a goal node is hit

• Different strategies: order of node expansion

Evaluation criteria for strategies
• completeness: does it always find a solution if one exists?

• optimality: does it always find a least-cost solution? 

• time complexity: number of nodes generated/expanded

• space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of
• 𝑏: maximum branching factor of the search tree

• 𝑑: depth of the least-cost solution

• 𝑚: maximum depth of the state space (may be ∞)
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Example

Growth of time and memory requirements
• Algorithm: breadth-first search ( ADS: exponential time & space complexity 𝑂(𝑏𝑑)) 

Assumptions: 𝑏 = 10, 1 mio nodes/sec, 1 kB/node

Question: what 𝑑 is easily manageable?

 See appendix for some recap on complexity theory
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Example

Growth of time and memory requirements
• Algorithm: breadth-first search ( ADS: exponential time & space complexity 𝑂(𝑏𝑑)) 

Assumptions: 𝑏 = 10, 1 mio nodes/sec, 1 kB/node

Question: what 𝑑 is easily manageable?

 Practical advice: Exponential-complexity search problems cannot be solved by 

uninformed methods for any but the smallest instances

 See appendix for some recap on complexity theory
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Uninformed search strategies
 Details: ADS or AIMA ch. 3.4

Practical advice
• Depth-first tree search is a major work horse for many AI tasks (due to linear space 

complexity)

• Iterative deepening is not wasteful (a tree with nearly the same 𝑏 at each level has most nodes 

in the bottom level  generating higher-level states multiple times doesn’t matter)

• Iterative deepening is preferred uninformed search method
(for large search space and 𝑑 is unknown)

• Bi-directional search can help a lot, but 𝑂(𝑏𝑑/2) space complexity is major drawback

Expand the shallowest 

unexpanded node

Expand node with 

lowest path cost 𝑔(𝑛)
DFS only 

up to level 𝑙
Expand 

deepest node

Try DLS with 𝑙 =
1, 𝑙 = 2, … until 

goal is reached
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Repeated states

Problem
• Failure to detect repeated states can turn a linear problem into an exponential one!

Solution
• Graph search: remember nodes already expanded, and don’t revisit them
 keep a list of explored nodes

Practical advice
• All previous strategies can be implemented as both tree- or graph search

• If additional space complexity is affordable determines whether graph search is possible
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3. HEURISTIC (INFORMED) SEARCH
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Tree-/graph search using additional knowledge
…beyond the definition of the problem

Best-first search
• Select the node to be expanded next based on some evaluation function 𝑓(𝑛𝑜𝑑𝑒)
• Typically, 𝒇 is implemented by a heuristic ℎ(𝑛𝑜𝑑𝑒) (measure of “desirability”)

• ℎ(𝑛𝑜𝑑𝑒) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Step cost in [km]
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Tree-/graph search using additional knowledge
…beyond the definition of the problem

Best-first search
• Select the node to be expanded next based on some evaluation function 𝑓(𝑛𝑜𝑑𝑒)
• Typically, 𝒇 is implemented by a heuristic ℎ(𝑛𝑜𝑑𝑒) (measure of “desirability”)
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Step cost in [km]



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

30

Typical implementations

Greedy search
• Expand node with lowest subsequent cost estimate according to some ℎ, i.e. 𝑓(𝑛) = ℎ(𝑛)
• 𝑛 may only appear to be closest to the goal

A*
• Obvious improvement: consider full path cost, i.e. 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

(𝑔(𝑛) cost so far to reach 𝑛, ℎ(𝑛) estimated cost to goal from 𝑛, 𝑓(𝑛) estimated total path cost)

• ℎ(𝑛) needs to be admissible: ≤ 𝑡𝑟𝑢𝑒 𝑐𝑜𝑠𝑡 and ≥ 0 (e.g., ℎ𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

• A* search is optimal, complete

• A* has time complexity 𝑂(2 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 ℎ ⋅𝑑) and keeps all nodes in memory

SMA* - simplified memory-bounded A*
• A* usually runs out of space first  SMA* overcomes this by

• …filling the memory up, then starting to forget the worst expanded nodes

• …ancestors of forgotten subtrees remember the value of the best path within them

• …thus, subtrees are only regenerated if no better solution exists
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A* Example
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A* Example
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A* Example
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A* Example
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A* Example
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A* Example
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Succeeding with search

Learning to search
• Learn a heuristic function: use inductive supervised learning on features of a state

• Alternative: construct a metalevel state space, consisting of all internal states of search program

Example: For A* searching for a route in Romania, the search tree is its internal state

• Actions in metalevel space: computations that alter the metalevel state

In the example: Expanding a node

• Solution in metalevel space: a path as depicted on the last slide

 can be input to machine learning algorithms to avoid unnecessary expansions

Practical advice
• A* is impractical for large scale problems

• Practical, robust choice: SMA*

• Have good heuristic functions! A well-designed heuristic would have 𝑏∗ ≈ 1
(𝑏∗ is the effective branching factor)
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A closer look on heuristic functions
Example: 8-puzzle

Two proposals – which is better?
• ℎ1 𝑛 = number of misplaced tiles

• ℎ2 𝑛 = total Manhattan distance (i.e., no. of horizontal/vertical squares from desired location of 

each tile)

ℎ1 𝑆 = 6
ℎ2 𝑆 = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14

𝑆
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Dominance
The 8-puzzle example continues

If ℎ2 𝑛 ≥ ℎ1 𝑛 ∀𝑛 ℎ2 dominates ℎ1 and is better for search

Typical search costs

Simple improvement
• Given any admissible heuristics ℎ𝑎 , ℎ𝑏: 

• ℎ(𝑛) = max ℎ𝑎 𝑛 , ℎ𝑏 𝑛 is also admissible and dominates ℎ𝑎 , ℎ𝑏

Algorithm #nodes expanded 

with 𝑑 = 14
#nodes expanded 

with 𝑑 = 24

Iterative deepening 3’473’941 ~54’000’000’000

A* (ℎ1) 539 39’135

A* (ℎ2) 113 1’641
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Relaxed problems
Improving heuristics intelligently

Relaxation as a key
• Admissible heuristics can be derived from the exact solution cost of a relaxed version 

of the problem

• A relaxed problem has fewer constraints on the actions

• Relaxation can be automatized!
E.g., «Absolver» by (Prieditis, 1993) found best heuristic for 8-puzzle, first heuristic for Rubik’s cube

Examples of relaxed 8-puzzle rules
• If each tile can move anywhere (in 1 step), then 𝒉𝟏 𝒏 gives the shortest solution

• If each tile can move to any adjacent square, then 𝒉𝟐 𝒏 gives the shortest solution

Intuition
• Removing constraints adds edges to the state graph

• Additional edges might provide „short cuts“

• The optimal solution cost of a relaxed problem (“short cut”) can be no greater than the 

optimal solution cost of the real problem
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Where’s the intelligence?
Man vs. machine

Uninformed search
• In the abstraction of the problem

• In the choice of algorithm that is optimal for the problem at hand

• In the systematic exploration of the state space graph

Heuristic search
• Additionally, in the heuristic function

 see also: Polya, «How to solve it - a new aspect of mathematical method», 1945

Originally written in German during 

his research stay at ETH
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Exercise: Missionaries & cannibals (AIMA ex. 3.9)

Three missionaries and 3 cannibals are on one side of a 

river, along with a boat that can hold one or two people. 

Find a way to get everyone to the other side, without 

ever leaving a group of missionaries in one place 

outnumbered by the cannibals in that place.

• Formulate the problem precisely: 

Make only those distinctions necessary to ensure a valid 

solution. Draw a diagram of the complete state space.

• Implement and solve the problem optimally:

Use an appropriate search algorithm. Is it a good idea to check 

for repeated states?

• Why do you think people have a hard time solving this puzzle, 

given that the state space is so simple?
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Review

• Search as an approach to AI exists in its current form more or less since 

AI‘s inception

• Extensions of search algorithms exist to non-deterministic and partially 

observable environments as well as online search

• Problem formulation usually requires abstracting away real-world details 

to define a state space that can feasibly be explored

• Iterative deepening search uses only linear space and not much more time 

than other uninformed algorithms

• Graph search can be exponentially more efficient than tree search

• Good heuristics can dramatically reduce search cost

• A* search expands lowest 𝒈 + 𝒉
 complete and optimal, also optimally efficient (up to tie-breaks, for forward search)

• Admissible heuristics can be derived from exact solution of relaxed 

problems
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Fun fact: implement depth-first search in a maze by 

keeping your left hand on the wall.

APPENDIX
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On modeling and abstraction

Quoted from AIMA, p. 68-69, sec. 3.1.2
• A model [is] an abstract mathematical description […] and not the real thing

• The process of removing detail from a representation is called abstraction

• The abstraction is valid if we can expand any abstract solution into a solution in the more 

detailed world

• The abstraction is useful if carrying out each of the actions in the abstraction is easier than 

the original problem

• The choice of a good abstraction thus involves removing as much detail as possible 

while retaining validity and ensuring that the abstract actions are easy to carry out

 Were it not for the ability to construct useful abstractions, intelligent agents would be 

completely swamped by the real world
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Recap on complexity theory

Problems are classified to be part of (attention: only intuitive “definitions”)

• P – can be solved in polynomial time by a deterministic algorithm
 deemed to be solvable «efficiently»

• NP – can only be solved efficiently (i.e., in polynomial time) by guessing the solution 
(i.e., by a non-deterministic algorithm)

More terminology
• NP-hard – a problem 𝑥 is said to be NP-hard if all problems in NP can be reduced to (i.e., converted 

into / stated as) 𝑥 (i.e., can be solved by an algorithm for 𝑥) efficiently
 Example: Traveling salesman problem (i.e., any problem in NP is at most as hard as 𝑥)

• NP-complete – a problem 𝑥 is said to be NP-complete if it is NP-hard and in NP
 Example: The satisfiability problem (SAT) – is there an assignment of truth values to make a given formula of 

propositional logic true? ( see V06 and AIMA ch. 7.5)

…which is all good (i.e., we don’t have to care for efficiency) if 𝑃 = 𝑁𝑃 (tremendously unlikely!)

Further reading
• AIMA appendix A.1 (< 3 pages!)

• J. Koehler’s lecture slides on complexity and AI: https://user.enterpriselab.ch/~takoehle/teaching/ai/ProblemComplexity.pdf

• Some more intuition: http://stackoverflow.com/questions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard

When people talk about efficient computation, this always 

means (at most) polynomial time: 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡~𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑖𝑚𝑒.

https://user.enterpriselab.ch/~takoehle/teaching/ai/ProblemComplexity.pdf
http://stackoverflow.com/questions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard
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Pseudocode for general tree- and graph search

function Tree-Search(problem, frontier) returns a solution, or failure

frontier  Insert(Make-Node(Initial-State(problem)), frontier)

loop do

if frontier is empty then return failure

node  Remove-Front(frontier) #choice of picked node defined by strategy

if Goal-Test(problem) applied to State(node) succeeds return node

frontier  InsertAll(Expand(node, problem), frontier)

function Graph-Search(problem, frontier) returns a solution, or failure

frontier  Insert(Make-Node(Initial-State(problem)), frontier)

explored  empty

loop do

if frontier is empty then return failure

node Remove-Front(frontier) #choice of picked node defined by strategy

explored  Insert(node, explored)

if Goal-Test(problem) applied to State(node) succeeds return node

frontier  InsertAll(Expand(node, problem), frontier) only if not in frontier or explored set

 Bold italic font shows the additions that handle repeated states in graph search
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Missionaries & cannibals (contd.)

States
• 𝜃 = (𝑀, 𝐶, 𝐵) signifies the number of missionaries, cannibals, and boats on the left bank
• The start state is (3,3,1) and the goal state is (0,0,0)

Actions (successor function)
• 10 possible, but only 5 available each move due to boat
• One cannibal/missionary crossing LR: subtract (0,1,1) or (1,0,1)
• Two cannibals/missionaries crossing LR: subtract (0,2,1) or (2,0,1)
• One cannibal/missionary crossing RL: add (1,0,1) or (0,1,1)
• Two cannibals/missionaries crossing RL: add (2,0,1) or (0,2,1)
• One cannibal and one missionary crossing: add/subtract (1,1,1)

Source: http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html

http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html
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Missionaries & cannibals states

• Assumes that passengers have to get out of the boat after the trip

• Red states = missionaries get eaten
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Breadth-first search (4 iterations) 

on missionaries & cannibals

States are generated by applying
• +/- (1,0,1)

• +/- (0,1,1)

• +/- (2,0,1)

• +/- (0,2,1)

• +/- (1,1,1)

Red states = missionaries get eaten

Yellow states = repeated states


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
Breadth-first search (final state) 

on missionaries & cannibals

• Breadth first search expanded 48 nodes

• This is an optimal solution (minimum number 

of crossings)

• Depth-first search expanded 30 nodes

• ...if repeated states are checked, otherwise 

we end up in an endless loop


